JP6119300B2 - Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same - Google Patents

Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same Download PDF

Info

Publication number
JP6119300B2
JP6119300B2 JP2013034455A JP2013034455A JP6119300B2 JP 6119300 B2 JP6119300 B2 JP 6119300B2 JP 2013034455 A JP2013034455 A JP 2013034455A JP 2013034455 A JP2013034455 A JP 2013034455A JP 6119300 B2 JP6119300 B2 JP 6119300B2
Authority
JP
Japan
Prior art keywords
nitrogen
nitrite
reducing agent
nitrate nitrogen
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013034455A
Other languages
Japanese (ja)
Other versions
JP2014161791A (en
Inventor
和美 磯部
和美 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013034455A priority Critical patent/JP6119300B2/en
Publication of JP2014161791A publication Critical patent/JP2014161791A/en
Application granted granted Critical
Publication of JP6119300B2 publication Critical patent/JP6119300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水中の硝酸性窒素及び亜硝酸性窒素を簡便に低減することが可能な硝酸性窒素及び亜硝酸性窒素低減剤に関する。   The present invention relates to a nitrate nitrogen and a nitrite nitrogen reducing agent capable of easily reducing nitrate nitrogen and nitrite nitrogen in water.

生活排水や工場排水中に含まれる硝酸性窒素及び亜硝酸性窒素は、河川、湖沼及び海洋などにおける富栄養化の原因物質であることから、水質環境の保全及び改善のため、排水処理工程で処理を行い効率的に低減・除去することが求められている。この硝酸性窒素及び亜硝酸性窒素を低減する方法として、微生物を利用した生物学的浄化方法、膜濾過法、イオン交換法、触媒脱窒法等の物理的浄化方法が知られている。しかしながら、生物学的浄化方法においては処理水質のコントロールが難しくさらに処理に時間を必要とすること、物理的浄化方法においては高いイニシャルコスト及びランニングコストが必要とされること等が問題点として挙げられている。   Nitrate nitrogen and nitrite nitrogen contained in domestic wastewater and factory wastewater are eutrophication substances in rivers, lakes, and oceans, and so in the wastewater treatment process to preserve and improve the water quality environment. There is a demand for efficient reduction and removal by processing. Known methods for reducing nitrate nitrogen and nitrite nitrogen include biological purification methods using microorganisms, membrane filtration methods, ion exchange methods, and catalytic denitrification methods. However, it is difficult to control the quality of the treated water in the biological purification method, and further time is required for the treatment, and the high initial cost and running cost are required in the physical purification method. ing.

上記の問題点を解決する、低コストで効率良く排水中の窒素成分を低減する方法として、ウール表面に親水性カチオン性高分子化合物を固着させた剤(特許文献1)、粒子表面が親水性のカチオン性高分子鎖を有し、中心部の疎水性高分子化合物表面に親水性カチオン性高分子化合物を固着させた高分子微粒子(特許文献2)が硝酸性窒素及び亜硝酸性窒素低減剤として提案されている。 As a method of solving the above-mentioned problems and efficiently reducing the nitrogen component in the wastewater at low cost, an agent in which a hydrophilic cationic polymer compound is fixed to the wool surface (Patent Document 1), and the particle surface is hydrophilic. Fine particle (Patent Document 2) having a cationic polymer chain and having a hydrophilic cationic polymer compound fixed to the surface of a hydrophobic polymer compound in the center is a nitrate nitrogen and nitrite nitrogen reducing agent As proposed.

特開2008−260004号公報JP 2008-260004 A 特開2010−214356号公報JP 2010-214356 A

しかしながら、上記先行技術文献では硝酸性窒素及び亜硝酸性窒素低減剤の核となるウールや疎水性高分子化合物と親水性カチオン性高分子化合物を固着させる複雑な形態を取るため、製造プロセスが繁雑となる。また、記載されている親水性カチオン性高分子化合物では該低減剤としての性能が十分に発揮できない可能性がある。加えて、ウールや疎水性高分子化合物への固着率低下を防ぐ目的で親水性カチオン性高分子化合物の分子量が比較的小さく設定されているため、硝酸イオン及び亜硝酸イオンとのイオンコンプレックスを形成する能力が制限されると考えられる。 However, in the above prior art documents, the manufacturing process is complicated because it takes a complicated form in which wool, which is the core of nitrate nitrogen and nitrite nitrogen reducing agent, or a hydrophobic polymer compound and a hydrophilic cationic polymer compound are fixed. It becomes. Further, the described hydrophilic cationic polymer compound may not be able to sufficiently exhibit the performance as the reducing agent. In addition, the molecular weight of the hydrophilic cationic polymer compound is set to be relatively small in order to prevent a decrease in the adhesion rate to wool and hydrophobic polymer compounds, so that an ion complex with nitrate ions and nitrite ions is formed. The ability to do so is considered to be limited.

本発明は、上記実情に鑑みなされたものであり、その目的は、単純な形態であり、かつ、硝酸性窒素及び亜硝酸性窒素除去性能の高い該低減剤を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide this reducing agent with a simple form and high nitrate nitrogen and nitrite nitrogen removal performance.

上記課題を解決するため鋭意研究した結果、親水性カチオン性高分子化合物であるアミジン系カチオン性高分子化合物が硝酸性窒素及び亜硝酸性窒素低減に有効であることを見出し、本発明に至った。   As a result of diligent research to solve the above problems, it was found that amidine-based cationic polymer compounds, which are hydrophilic cationic polymer compounds, are effective in reducing nitrate nitrogen and nitrite nitrogen, resulting in the present invention. .

すなわち、本発明の第一の要旨は、構造式(1)及び/又は(2)で表されるアミジン環を有する構成単位を含有するアミジン系カチオン性高分子化合物からなる硝酸性窒素及び亜硝酸性窒素低減剤に存する。   That is, the first gist of the present invention is nitrate nitrogen and nitrous acid composed of an amidine-based cationic polymer compound containing a structural unit having an amidine ring represented by the structural formula (1) and / or (2). Exists in a natural nitrogen reducing agent.

Figure 0006119300
式(1)、(2)中、R1〜R4は各々水素原子またはメチル基であり、Xは陰イオンである。
Figure 0006119300
In the formulas (1) and (2), R1 to R4 are each a hydrogen atom or a methyl group, and X is an anion.

本発明の第二の要旨は、前記硝酸性窒素及び亜硝酸性窒素低減剤を使用する排水の処理方法に存する。   The second gist of the present invention resides in a wastewater treatment method using the nitrate nitrogen and the nitrite nitrogen reducing agent.

本発明の硝酸性窒素及び亜硝酸性窒素低減剤は、アミジン系カチオン性高分子化合物のみから構成される単純な形態をとることから、製造が容易に行うことができる。また、他の親水性カチオン性高分子化合物と比較し、該低減剤としての性能が高い。そのため、硝酸性窒素及び亜硝酸性窒素含有水より、短時間で高効率に硝酸性窒素及び亜硝酸性窒素を低減することが可能である。   Since the nitrate nitrogen and the nitrite nitrogen reducing agent of the present invention take a simple form composed only of amidine-based cationic polymer compounds, they can be easily produced. Moreover, compared with other hydrophilic cationic polymer compounds, the performance as the reducing agent is high. Therefore, it is possible to reduce nitrate nitrogen and nitrite nitrogen more efficiently in a short time than water containing nitrate nitrogen and nitrite nitrogen.

図1は実施例および比較例における亜硝酸イオン除去率を示すグラフである。FIG. 1 is a graph showing nitrite ion removal rates in Examples and Comparative Examples.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<硝酸性窒素及び亜硝酸性窒素低減剤>
本発明中の硝酸性窒素及び亜硝酸性窒素低減剤は、下記構造式(1)及び/又は(2)で表されるアミジン環を有する構成単位を含有するアミジン系カチオン性高分子で構成される。構造式中のXは陰イオンである。陰イオンとしては、例えば、Cl、1/2SO 2−等が挙げられるが、一般的なイオン選択性を考慮すると、SO 2−>NO >NO >Clとなるため、Clが好ましい。
<Nitrate nitrogen and nitrite nitrogen reducing agent>
The nitrate nitrogen and nitrite nitrogen reducing agent in the present invention is composed of an amidine cationic polymer containing a structural unit having an amidine ring represented by the following structural formula (1) and / or (2). The X in the structural formula is an anion. Examples of the anion include Cl , 1 / 2SO 4 2−, etc., but considering general ion selectivity, SO 4 2− > NO 3 > NO 2 > Cl is satisfied. , Cl is preferred.

アミジン系カチオン性高分子の製造方法としては、特に制限はされないが、例えば、N−ビニルホルムアミド又はN−ビニルアセトアミド等で例示されるN−ビニルカルボン酸アミドと、アクリロニトリル又はメタアクリロニトリル等で例示されるニトリル類との共重合体を製造し、酸により変性(加水分解)してビニルアミド基を一級アミノ基とし、ついで加熱することによって該共重合体中のニトリル基と一級アミノ基を反応させてアミジン化する方法が挙げられる。   The method for producing the amidine-based cationic polymer is not particularly limited, and examples thereof include N-vinylcarboxylic amides exemplified by N-vinylformamide or N-vinylacetamide, acrylonitrile, methacrylonitrile and the like. To produce a copolymer with nitriles, which are modified (hydrolyzed) with an acid to make the vinylamide group a primary amino group, and then heated to react the nitrile group with the primary amino group in the copolymer. A method of amidinating is mentioned.

共重合する(A)N−ビニルカルボン酸アミドと(B)ニトリル類の割合(A):(B)は、モル比で、通常20:80〜95:5であり、アミジン化の反応率を高くする点で好ましくは40:60〜80:20である。共重合体の変性反応は、酸の変性剤を、共重合体中の所望のホルミル基に対し、通常0.1〜2倍モル、好ましくは0.2〜1.5倍モル使用し、反応温度30〜130℃、好ましくは40〜110℃で行われる。また、変性後の共重合体は、通常70〜130℃、好ましくは80〜110℃で加熱され、アミジン環を有する高分子を形成する。   The ratio (A) :( B) of (A) N-vinylcarboxylic acid amide and (B) nitriles to be copolymerized is usually 20:80 to 95: 5 in terms of molar ratio, and the reaction rate of amidation is It is preferably 40:60 to 80:20 from the viewpoint of increasing. For the copolymer modification reaction, the acid modifier is usually used in an amount of 0.1 to 2 mol, preferably 0.2 to 1.5 mol per mol of the desired formyl group in the copolymer. The temperature is 30 to 130 ° C, preferably 40 to 110 ° C. The modified copolymer is usually heated at 70 to 130 ° C., preferably 80 to 110 ° C., to form a polymer having an amidine ring.

本発明に用いられるアミジン系カチオン性高分子化合物から成る硝酸性窒素及び亜硝酸性窒素低減剤は、最も典型的には、上記で説明したところに従い、N−ビニルホルムアミドとアクリロニトリルとを共重合させ、生成した共重合体を、塩酸の存在下に過熱して加水分解で生成したアミノ基と隣接するニトリル基からアミジン構造単位を形成させることにより製造されるのが好ましい。なお、アミジン系カチオン性高分子化合物としては、入手し易い市販品から選択使用しても良い。   The nitrate nitrogen and nitrite nitrogen reducing agent comprising an amidine-based cationic polymer compound used in the present invention is most typically a copolymer of N-vinylformamide and acrylonitrile as described above. The produced copolymer is preferably produced by heating in the presence of hydrochloric acid to form an amidine structural unit from a nitrile group adjacent to the amino group produced by hydrolysis. The amidine-based cationic polymer compound may be selected from commercially available products.

本発明の硝酸性窒素及び亜硝酸性窒素低減剤におけるアミジン環含有構成単位の含有量は全構成単位に対し、20〜95モル%であることが好ましく、35〜80モル%であることがより好ましい。アミジン環含有構成単位の含有量が20〜95モル%の範囲においては、硝酸性窒素及び亜硝酸性窒素を吸着する効果が高くなる。 In the nitrate nitrogen and nitrite nitrogen reducing agent of the present invention, the content of the amidine ring-containing structural unit is preferably 20 to 95 mol%, more preferably 35 to 80 mol%, based on all the structural units. preferable. When the content of the amidine ring-containing structural unit is in the range of 20 to 95 mol%, the effect of adsorbing nitrate nitrogen and nitrite nitrogen is enhanced.

上記のようにして得られるアミジン系カチオン性高分子化合物の水溶液粘度は、通常1〜20mPa・sであるが、本発明における硝酸性窒素及び亜硝酸性窒素低減剤としては、硝酸イオン及び亜硝酸イオンとのイオンコンプレックスを形成するための反応性及び取り扱いの点から3〜8mPa・sが好ましい。この値は、25℃における4質量%塩化ナトリウム水溶液中での該低減剤の0.5質量%の水溶液として測定した値であり、以下に記載(実施例含む)の他の高分子化合物の水溶液粘度についても同じである。   The viscosity of the aqueous solution of the amidine-based cationic polymer compound obtained as described above is usually 1 to 20 mPa · s. As the nitrate nitrogen and nitrite nitrogen reducing agent in the present invention, nitrate ions and nitrite are used. 3-8 mPa · s is preferable from the viewpoint of reactivity for forming an ion complex with ions and handling. This value is a value measured as a 0.5% by mass aqueous solution of the reducing agent in a 4% by mass sodium chloride aqueous solution at 25 ° C., and is an aqueous solution of another polymer compound described below (including examples). The same applies to the viscosity.

硝酸性窒素及び亜硝酸性窒素低減剤としてアミジン系カチオン性高分子化合物が好ましい理由としては、1つには従来のアクリル系カチオン性高分子化合物対して構成単位当たりの分子量が低いため、重量当たりで比較すると荷電密度が高く、硝酸イオン及び亜硝酸イオンの負電荷を効率良く吸着できることが考えられる。2つには、特に中〜弱アルカリ域に関しては、アミノ基よりもアミジン基の方がより多く解離していることが挙げられ、より広範囲のpH域で硝酸イオン及び亜硝酸イオンとのイオンコンプレックスを形成しやすくなるものと考えられる。また、構造単位中に環状構造を含んでいることから、主鎖の剛直化による分子が広がりやすく、その結果より多くの硝酸イオン及び亜硝酸イオンを吸着・捕集することができると考えられる。   One reason why amidine-based cationic polymer compounds are preferable as nitrate-nitrogen and nitrite-nitrogen reducing agents is that the molecular weight per structural unit is lower than that of conventional acrylic-based cationic polymer compounds. The charge density is high and the negative charges of nitrate ions and nitrite ions can be adsorbed efficiently. Secondly, particularly in the middle to weak alkali range, the amidine group is more dissociated than the amino group, and an ion complex with nitrate ion and nitrite ion in a wider pH range. It is thought that it becomes easy to form. In addition, since the structural unit includes a cyclic structure, molecules due to the rigidization of the main chain are likely to spread, and as a result, more nitrate ions and nitrite ions can be adsorbed and collected.

<硝酸性窒素及び亜硝酸性窒素低減剤の使用方法>
本発明の硝酸性窒素及び亜硝酸性窒素低減剤の使用方法としては、特に限定されないが、例えば、硝酸性窒素あるいは亜硝酸性窒素含有水中に硝酸性窒素及び亜硝酸性窒素低減剤を直接添加し、攪拌混合して十分に分散させた後、pHを調整し、無機凝集剤及び/又はアニオン系凝集剤を添加し、再度攪拌混合して硝酸性窒素あるいは亜硝酸性窒素を吸着した該低減剤とのフロックを形成させ固液分離する方法が挙げられる。本発明の硝酸性窒素及び亜硝酸性窒素低減剤は、硝酸性窒素あるいは亜硝酸性窒素を含有する排水等、広く適用することができる。
<Usage method of nitrate nitrogen and nitrite nitrogen reducing agent>
The method of using the nitrate nitrogen and nitrite nitrogen reducing agent of the present invention is not particularly limited. For example, nitrate nitrogen and nitrite nitrogen reducing agent are directly added to nitrate nitrogen or nitrite nitrogen-containing water. After stirring and mixing and dispersing sufficiently, adjust the pH, add inorganic flocculant and / or anionic flocculant, stir and mix again to adsorb nitrate nitrogen or nitrite nitrogen And a method of forming a floc with the agent to separate the solid and liquid. The nitrate nitrogen and nitrite nitrogen reducing agent of the present invention can be widely applied to wastewater containing nitrate nitrogen or nitrite nitrogen.

硝酸性窒素低減剤及び亜硝酸性窒素低減剤の添加量としては、硝酸性窒素あるいは亜硝酸性窒素含有水に対して50ppm以上が好ましい。添加量が少なすぎると十分な吸着が行えない。また硝酸性窒素あるいは亜硝酸性窒素含有水に対して500ppm以下が好ましい。添加量が多すぎても、それ以上の効果が得られない。   As addition amount of a nitrate nitrogen reducing agent and a nitrite nitrogen reducing agent, 50 ppm or more is preferable with respect to nitrate nitrogen or nitrite nitrogen containing water. If the amount added is too small, sufficient adsorption cannot be performed. Moreover, 500 ppm or less is preferable with respect to nitrate nitrogen or nitrite nitrogen containing water. If the amount is too large, no further effect can be obtained.

無機凝集剤としては、硫酸バンド、PAC、ポリ鉄、塩化第二鉄、消石灰などが挙げられるが、これらを単独又は複数組み合わせて使用してもよく、特に限定されない。   Examples of the inorganic flocculant include sulfate band, PAC, polyiron, ferric chloride, slaked lime, and the like, and these may be used alone or in combination, and are not particularly limited.

アニオン系高分子化合物としては、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリルアミドの加水分解物、(メタ)アクリルアミド・(メタ)アクリル酸ナトリウム共重合体、(メタ)アクリルアミド・(メタ)アクリル酸ナトリウム・2−アクリルアミド−2−メチル−プロパン−1−スルホン酸ナトリウム共重合体、(メタ)アクリルアミド・2−アクリルアミド−2−メチル−プロパン−1−スルホン酸ナトリウム共重合体などが挙げられるが、特に限定はされない。また、アルギン酸ソーダなどの天然高分子化合物を使用しても良い。   Anionic polymer compounds include poly (meth) acrylate sodium, hydrolyzate of poly (meth) acrylamide, (meth) acrylamide / sodium (meth) acrylate copolymer, (meth) acrylamide / (meth) acrylic And sodium 2-acrylamido-2-methyl-propane-1-sulfonic acid sodium copolymer, (meth) acrylamide-sodium 2-acrylamido-2-methyl-propane-1-sulfonic acid sodium copolymer, and the like. There is no particular limitation. Natural polymer compounds such as sodium alginate may also be used.

処理温度としては、特に制限されないが、通常の排水処理の点から、10〜40℃が好ましい。また処理時間は処理温度等により適宜設定できる。処理pHについても特に制限はされないが、アミジン環の構造安定性の点から、好ましくは5〜8である。pH値の調節は、酸、またはアルカリを添加して行う。酸としては硫酸、塩酸、硝酸等の鉱酸の他、ギ酸、酢酸、スルファミン酸等の有機酸が例示される。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、アンモニア水、アミン系化合物等が例示される。   Although it does not restrict | limit especially as process temperature, 10-40 degreeC is preferable from the point of a normal waste water treatment. The processing time can be appropriately set depending on the processing temperature and the like. The treatment pH is not particularly limited, but is preferably 5 to 8 from the viewpoint of the structural stability of the amidine ring. The pH value is adjusted by adding an acid or an alkali. Examples of the acid include mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as formic acid, acetic acid and sulfamic acid. Examples of the alkali include sodium hydroxide, potassium hydroxide, magnesium hydroxide, aqueous ammonia, and amine compounds.

なお、処理後、フロック化し、固液分離によって分別除去された硝酸性窒素及び亜硝酸性窒素低減剤は、焼却処理することが可能である。   It should be noted that the nitrate nitrogen and the nitrite nitrogen reducing agent that are flocated and separated by solid-liquid separation after the treatment can be incinerated.

以下、実施例及び比較例を示して本発明を詳細に説明するが、本発明はその要旨を超えない限り以下の記載によって限定されるものではない。なお、本実施例における「%」は特に断りのない限り「質量%」を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited by the following description, unless the summary is exceeded. Note that “%” in this example represents “% by mass” unless otherwise specified.

製造例
<製造例1>
[アミジン系カチオン性高分子化合物(処理剤1)]
攪拌機、窒素導入管、冷却管を備えた50mlの四つ口フラスコにアクリロニトリルとN−ビニルホルムアミドの混合物(モル比55:45)6gと脱塩水34gとの混合物を入れた。窒素ガス中攪拌しつつ60℃に昇温し、10%の2,2’−アゾビス(2−アミジノプロパン)の2塩酸塩水溶液0.12gを添加し、さらに3時間保持し、水中に重合体が析出した懸濁物を得た。該懸濁物に水20g添加し、さらに濃塩酸を重合体のホルミル基に対し2当量添加し100℃で4時間保持し、黄色の高粘度液を得た。これを多量のアセトンに添加し、重合体を析出させ、細断し、60℃で1中夜乾燥後粉砕してアミジン系カチオン性高分子化合物を得た(水溶液粘度:6.3mPa・s)。これを処理剤1とした。
Production Example <Production Example 1>
[Amidine Cationic Polymer Compound (Treatment Agent 1)]
A mixture of 6 g of a mixture of acrylonitrile and N-vinylformamide (molar ratio 55:45) and 34 g of demineralized water was placed in a 50 ml four-necked flask equipped with a stirrer, a nitrogen inlet tube, and a condenser tube. While stirring in nitrogen gas, the temperature was raised to 60 ° C., 10% 2,2′-azobis (2-amidinopropane) dihydrochloride aqueous solution 0.12 g was added, and further maintained for 3 hours. A suspension was obtained. 20 g of water was added to the suspension, and 2 equivalents of concentrated hydrochloric acid was added to the formyl group of the polymer, and kept at 100 ° C. for 4 hours to obtain a yellow high-viscosity liquid. This was added to a large amount of acetone, the polymer was precipitated, chopped, dried at 60 ° C. for 1 night and pulverized to obtain an amidine-based cationic polymer compound (aqueous solution viscosity: 6.3 mPa · s). . This was designated Treatment Agent 1.

<製造例2>
[アミジン系カチオン性高分子化合物(処理剤2)]
還流冷却器と撹拌機を備えた2000mlセパラブルフラスコに、脱塩水473gとポリエチレングリコール(分子量20000)22.5gを入れ、窒素ガスを流通させて充分に脱酸素を行った。別途、N−ビニルホルムアミド172g、アクリロニトリル128g、脱塩水181.5g、次亜燐酸ナトリウム1水和物1.5gからなるモノマー水溶液を調製した。窒素ガスを流通させて充分に脱酸素を行い、70℃に昇温し、2,2−アゾビス(2−アミジノプロパン)塩酸塩を4.5g添加した。ついで直ちにモノマー溶液を3時間かけて連続的に供給した。重合の進行に従ってポリマーが析出し、内容物はスラリーになった。モノマー溶液供給終了後、さらに3時間重合反応を継続し、ポリ(N−ビニルホルムアミド−アクリロニトリル)共重合体の水分散スラリーを得た。
<Production Example 2>
[Amidine-based cationic polymer compound (treatment agent 2)]
A 2000 ml separable flask equipped with a reflux condenser and a stirrer was charged with 473 g of demineralized water and 22.5 g of polyethylene glycol (molecular weight 20000), and sufficiently deoxygenated by circulating nitrogen gas. Separately, an aqueous monomer solution consisting of 172 g of N-vinylformamide, 128 g of acrylonitrile, 181.5 g of demineralized water, and 1.5 g of sodium hypophosphite monohydrate was prepared. Nitrogen gas was circulated to sufficiently deoxygenate, the temperature was raised to 70 ° C., and 4.5 g of 2,2-azobis (2-amidinopropane) hydrochloride was added. Immediately thereafter, the monomer solution was continuously fed over 3 hours. As the polymerization progressed, the polymer precipitated and the content became a slurry. After completion of the monomer solution supply, the polymerization reaction was continued for another 3 hours to obtain an aqueous dispersion slurry of poly (N-vinylformamide-acrylonitrile) copolymer.

還流冷却器と撹拌機を備えた100mlセパラブルフラスコに、上記のポリ(N−ビニルホルムアミド−アクリロニトリル)共重合体のスラリー50gを入れ、70℃に加熱した。ここに35%HCl水溶液8.2gを加え、70℃で1時間、次いで80℃で10時間加熱して加水分解を行い、アミジン系カチオン性高分子化合物の水溶液を得た(水溶液粘度:1.6mPa・s)。これを処理剤2とした。   A 100 ml separable flask equipped with a reflux condenser and a stirrer was charged with 50 g of the above poly (N-vinylformamide-acrylonitrile) copolymer slurry and heated to 70 ° C. Thereto was added 8.2 g of 35% HCl aqueous solution, and hydrolysis was carried out by heating at 70 ° C. for 1 hour and then at 80 ° C. for 10 hours to obtain an aqueous solution of amidine-based cationic polymer compound (aqueous solution viscosity: 1. 6 mPa · s). This was designated Treatment Agent 2.

<製造例3>
10%の2,2’−アゾビス(2−アミジノプロパン)の2塩酸塩水溶液の添加量を0.08gに変更した以外は、製造例1と同様に製造した。これを処理剤3とした。
<Production Example 3>
Production was conducted in the same manner as in Production Example 1 except that the addition amount of 10% 2,2′-azobis (2-amidinopropane) dihydrochloride aqueous solution was changed to 0.08 g. This was designated Treatment Agent 3.

比較製造例
<比較製造例1>
[ビニルアミン系カチオン性高分子化合物(比較処理剤1)]
N−ビニルホルムアミド単独重合体(水溶液粘度:25mPa・s)を5%水溶液にし、対N−ビニルホルムアミドユニット40モル%の塩酸を加え、60℃、30分間攪拌し、加水分解率40モル%のビニルアミン系カチオン性高分子化合物を得た(水溶液粘度:7mPa・s)。これを比較処理剤1とした。
Comparative Production Example <Comparative Production Example 1>
[Vinylamine Cationic Polymer Compound (Comparative Treatment Agent 1)]
N-vinylformamide homopolymer (aqueous solution viscosity: 25 mPa · s) is made into 5% aqueous solution, hydrochloric acid with respect to N-vinylformamide unit 40 mol% is added, and the mixture is stirred at 60 ° C. for 30 minutes, and the hydrolysis rate is 40 mol%. A vinylamine-based cationic polymer compound was obtained (aqueous solution viscosity: 7 mPa · s). This was designated as Comparative Treatment Agent 1.

[アクリル系カチオン性高分子化合物(比較処理剤2、3)]
アクリル系カチオン性高分子化合物としては、以下の2つを比較処理剤2及び3とした。
[Acrylic cationic polymer compound (Comparative treatment agents 2, 3)]
As the acrylic cationic polymer compound, the following two were used as comparative treatment agents 2 and 3.

比較処理剤2:ダイヤフロック KP201G(商品名、ダイヤニトリックス社製、水溶液粘度:16mPa・s)   Comparative treatment agent 2: Diafloc KP201G (trade name, manufactured by Daianitrix, aqueous solution viscosity: 16 mPa · s)

比較処理剤3:ダイヤフロック KP1205E(商品名、ダイヤニトリックス社製、 水溶液粘度:17mPa・s)   Comparative treatment agent 3: Diafloc KP1205E (trade name, manufactured by Dianitricks, aqueous solution viscosity: 17 mPa · s)

なお、処理剤1〜3及び比較処理剤1〜3はいずれも脱塩水中に0.3重量%濃度となるよう溶解し、溶解液を使用した。   The treating agents 1 to 3 and the comparative treating agents 1 to 3 were all dissolved in demineralized water so as to have a concentration of 0.3% by weight, and a solution was used.

[アニオン系高分子化合物]
アニオン系凝集剤としては、ダイヤフロックAP825C(商品名、ダイヤニトリックス社製、水溶液粘度:465mPa・s)を脱塩水中に0.1重量%濃度となるよう溶解し、溶解液を使用した。
[Anionic polymer compound]
As an anionic flocculant, Diafloc AP825C (trade name, manufactured by Daianitrix Co., Ltd., aqueous solution viscosity: 465 mPa · s) was dissolved in demineralized water to a concentration of 0.1% by weight, and a solution was used.

<実施例1>
亜硝酸性窒素が100mg/Lとなるよう調製した水溶液をビーカーに50ml取り、処理剤1を200ppmとなるよう添加し、攪拌子を用いて1分間攪拌した。その後、pH値は6.5に調整し、アニオン系高分子化合物を40ppmとなるよう添加し、さらに1分攪拌した。処理水は0.45μmシリンジフィルターを用いてろ過し、処理水中の亜硝酸イオン濃度をイオンクロマトグラフィー(検出器:東ソー社製 CM−8020、ポンプ:東ソー社製 CCPS、使用カラム:東ソー社製 TSKgelIC-Anion-PWXL PEEK、カラム恒温槽:TOYO SODA社製 CO−8000、デガッサ:東ソー社製 SD−8023、溶離液:東ソー社製 TSKeluentIC−Anion−A(アセトニトリル10%含む))によって測定し、亜硝酸性窒素の除去率を算出した。なお、亜硝酸性窒素の除去率は(%)、((処理された亜硝酸イオンの濃度)/(処理前の亜硝酸イオン濃度))×100として算出した。
<Example 1>
50 ml of an aqueous solution prepared so that nitrite nitrogen was 100 mg / L was placed in a beaker, treatment agent 1 was added to 200 ppm, and the mixture was stirred for 1 minute using a stir bar. Thereafter, the pH value was adjusted to 6.5, an anionic polymer compound was added to 40 ppm, and the mixture was further stirred for 1 minute. The treated water is filtered using a 0.45 μm syringe filter, and the nitrite ion concentration in the treated water is determined by ion chromatography (detector: CM-8020 manufactured by Tosoh Corp., pump: CCPS manufactured by Tosoh Corp., column used: TSKgel IC manufactured by Tosoh Corp. -Anion-PW XL PEEK, column thermostatic chamber: TOYO SODA CO-8000, Degasser: Tosoh SD-8023, eluent: Tosoh TSKluent IC-Anion-A (including acetonitrile 10%)) The removal rate of nitrite nitrogen was calculated. In addition, the removal rate of nitrite nitrogen was calculated as (%), ((concentration of treated nitrite ion) / (concentration of nitrite ion before treatment)) × 100.

なお、亜硝酸性窒素含有水溶液の調製には、亜硝酸ナトリウムを使用し、pH調整には塩酸、水酸化ナトリウムを使用した。   In addition, sodium nitrite was used for preparation of the nitrite nitrogen-containing aqueous solution, and hydrochloric acid and sodium hydroxide were used for pH adjustment.

<実施例2、3>
処理剤2、3を使用した以外は、実施例1と同様の試験を行った。
<Examples 2 and 3>
The same test as in Example 1 was performed except that the treating agents 2 and 3 were used.

<比較例1〜3>
比較処理剤1〜3を使用した以外は、実施例1と同様の試験を行った。
<Comparative Examples 1-3>
The same test as in Example 1 was performed except that the comparative treatment agents 1 to 3 were used.

実施例及び比較例における試験結果を図1に示す。実施例1〜3及び比較例1〜5より、本発明の硝酸性窒素及び亜硝酸性窒素低減剤である処理剤1〜3は比較処理剤1〜5に比べ、亜硝酸窒素の除去率が高いことが確認できる。特に処理剤1については、水溶液粘度の好ましい範囲内に合致しており、実施例2及び3と比較してさらに除去率が向上していることがわかる。   The test results in Examples and Comparative Examples are shown in FIG. From Examples 1 to 3 and Comparative Examples 1 to 5, the treating agents 1 to 3 which are the nitrate nitrogen and nitrite nitrogen reducing agents of the present invention have a removal rate of nitrite compared to the comparative treating agents 1 to 5. It can be confirmed that it is expensive. In particular, it can be seen that the treating agent 1 is within the preferable range of the aqueous solution viscosity, and the removal rate is further improved as compared with Examples 2 and 3.

本発明の硝酸性窒素及び亜硝酸性窒素低減剤は、複雑な形態を取ることなく容易に製造することが可能であり、短時間で容易に硝酸性窒素及び亜硝酸性窒素を低減することができる。従って、本発明の産業上の価値は顕著であると言える。   The nitrate nitrogen and nitrite nitrogen reducing agent of the present invention can be easily manufactured without taking a complicated form, and can easily reduce nitrate nitrogen and nitrite nitrogen in a short time. it can. Therefore, it can be said that the industrial value of the present invention is remarkable.

Claims (2)

構造式(1)及び/又は(2)で表されるアミジン環を有する構成単位を含有するアミジン系カチオン性高分子化合物からなる硝酸性窒素及び亜硝酸性窒素低減剤。
Figure 0006119300
式(1)、(2)中、R1〜R4は各々水素原子またはメチル基であり、Xは陰イオンである。
A nitrate nitrogen and nitrite nitrogen reducing agent comprising an amidine-based cationic polymer compound containing a structural unit having an amidine ring represented by structural formula (1) and / or (2).
Figure 0006119300
In the formulas (1) and (2), R1 to R4 are each a hydrogen atom or a methyl group, and X is an anion.
請求項1に記載の硝酸性窒素及び亜硝酸性窒素低減剤を硝酸性窒素あるいは亜硝酸性窒素含有水に対して50ppm以上500ppm以下使用する排水の処理方法。 A wastewater treatment method using the nitrate nitrogen and the nitrite nitrogen reducing agent according to claim 1 in an amount of 50 ppm to 500 ppm with respect to nitrate nitrogen or nitrite nitrogen-containing water .
JP2013034455A 2013-02-25 2013-02-25 Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same Active JP6119300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013034455A JP6119300B2 (en) 2013-02-25 2013-02-25 Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013034455A JP6119300B2 (en) 2013-02-25 2013-02-25 Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same

Publications (2)

Publication Number Publication Date
JP2014161791A JP2014161791A (en) 2014-09-08
JP6119300B2 true JP6119300B2 (en) 2017-04-26

Family

ID=51612952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013034455A Active JP6119300B2 (en) 2013-02-25 2013-02-25 Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same

Country Status (1)

Country Link
JP (1) JP6119300B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117858910A (en) * 2021-08-31 2024-04-09 Tdk株式会社 Copolymer, piezoelectric material, piezoelectric film, and piezoelectric element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024988A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method
JP5037002B2 (en) * 2004-11-25 2012-09-26 ダイヤニトリックス株式会社 Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water
JP2008086848A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Apparatus and method for treating organic liquid waste
JP4807647B2 (en) * 2007-04-13 2011-11-02 センカ株式会社 Method for producing (nitrogen) nitrate nitrogen reducing agent and method for reducing (nitrogen) nitrate nitrogen concentration in water by (nitrogen) nitrate nitrogen reducing agent obtained by the method
JP2010214356A (en) * 2009-03-17 2010-09-30 Mitsuru Akashi Nitrite/nitrate-nitrogen lowering agent and method of lowering nitrite/nitrate-nitrogen concentration in water
JP2011174043A (en) * 2010-01-29 2011-09-08 National Institute Of Advanced Industrial Science & Technology Layered double hydroxide-containing gel-like composition

Also Published As

Publication number Publication date
JP2014161791A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
JP2624089B2 (en) Cationic polymer flocculant
CN101717145A (en) Ring amidino-polymer flocculant and preparation method thereof
JP6119300B2 (en) Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same
JP3314432B2 (en) Sludge dewatering agent
JP2019214020A (en) Method for treating waste water containing cod components
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
CN115321657B (en) Hydrophobic chitosan-polyaluminium chloride Hmcs-PAC composite flocculant and preparation and application thereof
JP7293596B2 (en) Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution
WO2004045740A1 (en) Purification agent for wastewater and sludge water
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JP6186944B2 (en) Papermaking wastewater treatment method
JP6607561B2 (en) Method for removing molybdenum from wastewater
JP2009142761A (en) Water treatment method
JP4583786B2 (en) Treatment method for boron-containing wastewater
WO2016158632A1 (en) Flocculant for treating waste water, and method for flocculation treatment of waste water
JP5170563B2 (en) Humic substance removing agent and method for removing humic substance contained in water
JP2015123417A (en) Saccharide treatment agent, and water treatment method
JP2005052798A (en) Method of treating fluorine-containing sludge
JP4807647B2 (en) Method for producing (nitrogen) nitrate nitrogen reducing agent and method for reducing (nitrogen) nitrate nitrogen concentration in water by (nitrogen) nitrate nitrogen reducing agent obtained by the method
JP2010214356A (en) Nitrite/nitrate-nitrogen lowering agent and method of lowering nitrite/nitrate-nitrogen concentration in water
CN106745623A (en) The preparation and its application of COD macromolecule organic flocculating agents in a kind of reduction coating waste-water
JP4048369B2 (en) Sludge dewatering agent for high concentration mud and treatment method for sludge high concentration mud
JP2017104791A (en) Sludge dewatering agent and sludge dewatering method
JP2005199185A (en) Organic sludge dehydrating method
JP6798867B2 (en) Wastewater treatment method and wastewater treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R151 Written notification of patent or utility model registration

Ref document number: 6119300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250