JP2010284570A - Method of treating antimony-containing water - Google Patents

Method of treating antimony-containing water Download PDF

Info

Publication number
JP2010284570A
JP2010284570A JP2009138283A JP2009138283A JP2010284570A JP 2010284570 A JP2010284570 A JP 2010284570A JP 2009138283 A JP2009138283 A JP 2009138283A JP 2009138283 A JP2009138283 A JP 2009138283A JP 2010284570 A JP2010284570 A JP 2010284570A
Authority
JP
Japan
Prior art keywords
antimony
water
concentration
treated
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009138283A
Other languages
Japanese (ja)
Inventor
Takuhiro Maeda
拓洋 前田
Junji Nomura
順治 野村
Toshio Yotsumoto
利夫 四元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KAISUI KK
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Nihon Kaisui Co Ltd
Original Assignee
NIHON KAISUI KK
Mitsubishi Heavy Industries Mechatronics Systems Ltd
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KAISUI KK, Mitsubishi Heavy Industries Mechatronics Systems Ltd, Nihon Kaisui Co Ltd filed Critical NIHON KAISUI KK
Priority to JP2009138283A priority Critical patent/JP2010284570A/en
Publication of JP2010284570A publication Critical patent/JP2010284570A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antimony removing method capable of simply and economically treating antimony-containing water using a small amount of a chemical agent while reducing the production amount of sludge in highly treating the antimony-containing water, wherein antimony is contained in water to be treated at a concentration of 2 mg/L or above, to reduce the concentration of antimony to 0.2-0.01 mg/L. <P>SOLUTION: This method of treating the antimony-containing water includes a first process for adding a ferric salt and an alkali agent to water to be treated containing antimony to precipitate and separate antimony to obtain antimony-containing water with a concentration of 2 mg/L or below and a second process for succeedingly adding a rare-earth element salt solution based on cerium and the alkali agent to the separated solution in the first process to separate the residual antimony as a hardly soluble precipitate to reduce the concentration of antimony in the separated solution to 0.2-0.01 mg/L. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アンチモンの製造や、アンチモン及びその化合物を利用している産業より排出される廃水または、土壌や地下水から溶出するアンチモン含有水からアンチモンを高度かつ経済的に分離除去する処理方法に関するものである。 TECHNICAL FIELD The present invention relates to a treatment method for separating and removing antimony from wastewater discharged from industries using antimony or antimony and its compounds, or from antimony-containing water eluted from soil or groundwater. It is.

アンチモン(一般的に廃水中のアンチモンはコロイド状のアンチモン化合物と、溶解しているオキシアンチモニイオンが共存するが、本明細書では水中に含有するこの両方のアンチモンを指すものとし、アンチモンの重量で表し、アンチモン濃度として記載する)は、毒性の強い物質であり、環境省の排水規制物質には未だ指定されていないが、環境基準では要監視項目の指針値として0.02mg/リットル以下に見直す動きがある(平成16年2月26日環境省報道発表)。アンチモン含有水からのアンチモン除去は、一般的に鉄化合物を凝集剤として添加する凝集沈殿法(例えば、特許文献1、2)が知られているが、低濃度に処理する為には多量の凝集剤を必要とし、その結果スラッジが多量に発生する。また三価のアンチモンは5価のアンチモンより除去率が低いため予め酸化処理が必要となる。更に、無機系のアンチモンには効果があるが有機系のアンチモンに対しては効果が減少するなどの問題がある。 Antimony (In general, antimony in wastewater coexists with colloidal antimony compounds and dissolved oxyantimony ions, but in this specification we shall refer to both antimony contained in water, and the weight of antimony. Is expressed as antimony concentration) and is a highly toxic substance and has not yet been designated as a wastewater control substance by the Ministry of the Environment. There is a move to review (Ministry of the Environment press release on February 26, 2004). For the removal of antimony from antimony-containing water, a coagulation-precipitation method (for example, Patent Documents 1 and 2) in which an iron compound is added as a coagulant is generally known. A large amount of sludge is generated as a result. In addition, trivalent antimony has a lower removal rate than pentavalent antimony, and therefore requires an oxidation treatment in advance. Furthermore, there are problems such as being effective for inorganic antimony but decreasing for organic antimony.

これらの問題に対して、チタン塩を添加した後pHを5以上に調整して凝集沈殿を行う方法(特許文献3)、ランタン、セリウム、ジルコニュウムなどから選ばれた金属元素化合物を添加して中和処理を行う凝集沈殿方法(特許文献4)が提案されている。これらの方法は上記の鉄化合物を用いる方法に比較して、溶存するオキシアンチモニイオンに対する吸着量が大きいため少量の使用で低濃度処理が可能となるが、例えばアンチモン濃度が2mg/リットル程度以上の高濃度含有水処理の場合は、これらの凝集剤の単価は高価である為処理費用が過大になる問題がある。また、オキシアンチモニイオンをゼオライト吸着剤(特許文献5)、陰イオン交換性無機イオン交換体の吸着剤(特許文献6)などにより吸着処理する方法も提案されているが、吸着処理後の吸着剤は再生処理による再使用ができないため、廃棄物として処理せねばならず、ランニングコストが過大になる問題がある。 In order to solve these problems, a method in which the pH is adjusted to 5 or higher after adding a titanium salt (Patent Document 3), a metal element compound selected from lanthanum, cerium, zirconium, etc. is added. A coagulation-precipitation method (Patent Document 4) that performs a sum treatment has been proposed. Since these methods have a large amount of adsorption to dissolved oxyantimony ions compared to the above method using an iron compound, a low concentration treatment is possible with a small amount of use. For example, the antimony concentration is about 2 mg / liter or more. In the case of the treatment with high concentration of water, the unit cost of these flocculants is expensive, so that the treatment cost becomes excessive. In addition, a method of adsorbing oxyantimony ions with a zeolite adsorbent (Patent Document 5), an anion exchangeable inorganic ion exchanger adsorbent (Patent Document 6), etc. has been proposed. Since the agent cannot be reused by a regeneration process, it must be treated as a waste, resulting in an excessive running cost.

特開昭63−236592号公報JP 63-236592 A 特開平08−080490号公報Japanese Patent Laid-Open No. 08-080490 特開平10−290986号公報JP-A-10-290986 特開平11−010170号公報Japanese Patent Laid-Open No. 11-010170 特開2002−143846号公報JP 2002-143846 A 特開平11−216356号公報JP-A-11-216356

上記の問題点に鑑みて、本発明の目的は、被処理水中のアンチモン濃度が2mg/L以上含有する高濃度のアンチモン含有水を0.2〜0.01mg/L以下の濃度に除去する高度処理において、スラッジの発生量が少なく、簡便且つ経済的に処理できるアンチモンの除去方法を提供することにある。 In view of the above problems, the object of the present invention is to remove high-concentration antimony-containing water having an antimony concentration of 2 mg / L or more in water to be treated to a concentration of 0.2 to 0.01 mg / L or less. It is an object of the present invention to provide a method for removing antimony that can be easily and economically processed with less sludge generation.

本発明者らは、上記課題を解決すべく、第二鉄塩を使用した凝集沈殿法の処理効率を検討した結果、アンチモン濃度が2mg/L程度までは比較的除去効率が高いものの、これ以下の濃度に処理するには多量の凝集剤の添加が必要になること、また、低濃度のアンチモン含有水にセリウムを主成分とする希土類塩とアルカリ剤を添加して生成する水酸化物に溶解アンチモンを難溶性沈殿として共沈させると、少量の希土類塩の使用でほぼ完全にアンチモンを除去できることを見出し、この両方を組合せることで本発明に到達した。 As a result of examining the processing efficiency of the coagulation precipitation method using ferric salt to solve the above-mentioned problems, the present inventors have a relatively high removal efficiency up to about 2 mg / L of antimony. It is necessary to add a large amount of flocculant to process to a high concentration, and it dissolves in the hydroxide formed by adding rare earth salt mainly composed of cerium and alkali agent to low concentration antimony-containing water. It was found that when antimony was coprecipitated as a hardly soluble precipitate, antimony could be removed almost completely with the use of a small amount of rare earth salt, and the present invention was achieved by combining both.

すなわち本発明は、下記(1)から(4)で構成される。
(1)アンチモンを含有する被処理水に第二鉄塩及びアルカリ剤を添加して不溶性のアンチモン粒子及び溶解しているアンチモンを沈殿分離する第一工程、続いてこの分離液にセリウムを主成分とする希土類塩溶液及びアルカリ剤を添加して残余の溶解アンチモンを難容性沈殿として分離するする第二工程からなるアンチモン含有水の処理方法。
(2)アンチモン含有水のアンチモン濃度が2mg/リットル以上の被処理水を第一工程で2mg/以下に処理し、続いて第二工程で0.2mg/リットル以下に処理する上記(1)に記載のアンチモン含有水の処理方法。
(3)第一工程の凝集沈殿をpH6〜11で行い、続いて第二工程として、セリウムを主成分とする希土類塩溶液に続いて消石灰を添加して、pH9〜12に調整する上記(1)または(2)に記載のアンチモン含有水の処理方法。
(4)第二工程で生成した沈殿物を第一工程に返送して第一工程を行う上記(1)〜(3)のいずれかに記載のアンチモン含有水の処理方法。
That is, the present invention includes the following (1) to (4).
(1) A first step in which ferric salt and an alkaline agent are added to water to be treated containing antimony to precipitate and separate insoluble antimony particles and dissolved antimony, followed by cerium as a main component in this separated liquid A method for treating antimony-containing water comprising a second step of adding a rare earth salt solution and an alkali agent to separate the remaining dissolved antimony as a difficult-to-be-precipitated precipitate.
(2) In the above (1), the water to be treated having an antimony concentration of antimony-containing water having an antimony concentration of 2 mg / liter or more is treated to 2 mg / liter or less in the first step and subsequently treated to 0.2 mg / liter or less in the second step. The method for treating antimony-containing water as described.
(3) The aggregation precipitation in the first step is performed at pH 6-11, and then, as the second step, slaked lime is added to the rare earth salt solution mainly composed of cerium to adjust the pH to 9-12 (1) ) Or the method for treating antimony-containing water according to (2).
(4) The method for treating antimony-containing water according to any one of (1) to (3), wherein the precipitate generated in the second step is returned to the first step and the first step is performed.

本発明の方法によれば、2mg/L以上の高濃度のアンチモン含有水に第二鉄塩を凝集剤とする第一工程と、それに続くセリウムを主成分とする希土類塩を使用する第二工程からなる二段階凝集沈殿処理を行うことにより、アンチモン濃度を0.2〜0.01mg/L以下に処理することができ、凝集剤の使用量が少ないためにスラッジの生成量が減少し、処理コストの低減が可能となる。また、第二工程の沈殿物を第一工程に返送して第一工程を行うことにより、更に処理効率を向上できる。 According to the method of the present invention, a first step using a ferric salt as a flocculant in antimony-containing water having a high concentration of 2 mg / L or more, followed by a second step using a rare earth salt mainly composed of cerium. The antimony concentration can be reduced to 0.2 to 0.01 mg / L or less by performing the two-stage coagulation sedimentation treatment consisting of Cost can be reduced. Moreover, processing efficiency can be further improved by returning the deposit of a 2nd process to a 1st process, and performing a 1st process.

以下、本発明について詳細に説明する。
本発明において処理の対象となるアンチモン含有水は、金属アンチモンの製造、InSbやAlSbなどの化合物半導体、バリスタなどの電子部品、メッキ、難燃剤、触媒などの製造により排出される排水、また自然由来の土壌や工場用地の土壌からアンチモンが溶出した地下水などである。これらのアンチモン含有水には可溶性の3価及び5価のオキシアンチモニイオン以外に金属、酸化物(3価、5価)、フッ化物などの不溶性のアンチモン化合物がコロイド状となって水に分散している場合にも適用できる。また、アンチモン含有水には、フッ素、砒素、ホウ素、セレン、リン、鉄、クロム、鉛、モリブデン等の重金属等のイオンが共存する場合にも適用できる。特に、本発明の方法は、被処理水のアンチモンの濃度が2mg/L以上、より好ましくは1000〜5mg/L程度の高濃度のアンチモン含有水の処理に適する。
Hereinafter, the present invention will be described in detail.
Antimony-containing water to be treated in the present invention includes metal antimony production, compound semiconductors such as InSb and AlSb, electronic parts such as varistors, wastewater discharged from the production of plating, flame retardants, catalysts, etc., and naturally derived And groundwater from which antimony is eluted from the soil of the factory. In addition to soluble trivalent and pentavalent oxyantimony ions, insoluble antimony compounds such as metals, oxides (trivalent and pentavalent), and fluorides are colloidally dispersed in water. It can also be applied when The antimony-containing water can also be applied when ions of heavy metals such as fluorine, arsenic, boron, selenium, phosphorus, iron, chromium, lead, and molybdenum coexist. In particular, the method of the present invention is suitable for treating antimony-containing water having a high concentration of antimony concentration of 2 mg / L or more, more preferably about 1000 to 5 mg / L.

本発明のアンチモン含有水の処理における第一工程は、被処理水に第二鉄塩とアルカリ剤の添加により、pH4〜11、好ましくはpH6〜11に調整して、生成する沈殿を固液分離する。本発明に使用する第二鉄塩としては、硫酸第二鉄、塩化第二鉄、ポリ硫酸第二鉄など任意のものが使用でき、これらは単独でも組合せでも使用可能である。また、第一鉄塩を添加した反応糟内に空気を吹き込むか、次亜塩素酸ソーダや過酸化水素などの酸化剤を添加することで第二鉄塩にしても良い。第一鉄塩を使用する場合は、溶存するアンチモンが3価の場合は鉄イオンの酸化と同時にアンチモンも酸化されるので、アンチモンの除去効率が向上する場合がある。 The first step in the treatment of the antimony-containing water of the present invention is to adjust the pH to 4 to 11, and preferably to pH 6 to 11, by adding a ferric salt and an alkaline agent to the water to be treated, and the resulting precipitate is subjected to solid-liquid separation. To do. As a ferric salt used for this invention, arbitrary things, such as ferric sulfate, ferric chloride, poly ferric sulfate, can be used, These can be used individually or in combination. Alternatively, the ferric salt may be formed by blowing air into the reaction vessel to which the ferrous salt has been added or by adding an oxidizing agent such as sodium hypochlorite or hydrogen peroxide. When ferrous salt is used, if the dissolved antimony is trivalent, the antimony is oxidized at the same time as the oxidation of iron ions, so that the antimony removal efficiency may be improved.

第二鉄塩の添加量は、被処理水のアンチモンの濃度と目標とする処理濃度により異なるが、本発明では、被処理水のアンチモン濃度が2mg/L以上を対象とし、処理液を2〜1mg/L程度に処理することが第二鉄塩の最も効率的な使用方法であり、被処理水のアンチモン濃度1に対して、重量比でFeとして0.5〜3が目安となる。因みに、処理液を1mg/L以下に処理する場合にはFeとして10〜100程度必要であり、この場合スラッジの生成量が非常に多くなり、ランニングコストが割高となる。 The amount of ferric salt added varies depending on the antimony concentration of the water to be treated and the target treatment concentration, but in the present invention, the antimony concentration of the water to be treated is 2 mg / L or more, and the treatment liquid is 2 to 2. Treating to about 1 mg / L is the most efficient method of using ferric salt, and 0.5 to 3 as a weight ratio is a standard with respect to the antimony concentration 1 of the water to be treated. Incidentally, when processing the processing liquid to 1 mg / L or less, about 10 to 100 is required as Fe, and in this case, the amount of sludge generated becomes very large and the running cost becomes high.

本発明の第一工程で使用するアルカリ剤としては、苛性ソーダ、苛性カリ、消石灰、水酸化マグネシュウムなど任意のものが使用でき、これらは単独でもまた組合せでも使用可能である。特に消石灰を使用すると生成するフロックの凝集性が良く、また経済的にも有利なので好ましい。その使用量は、反応糟のpHを6〜11に調整するのに必要な量であるが、詳しくは、添加する第二鉄塩から水酸化第二鉄の沈殿を生成するのに必要な化学当量と、反応時のpH調整に必要な量の和である。 As the alkaline agent used in the first step of the present invention, any of caustic soda, caustic potash, slaked lime, magnesium hydroxide and the like can be used, and these can be used alone or in combination. In particular, the use of slaked lime is preferable because the floc produced has good cohesiveness and is economically advantageous. The amount used is the amount necessary to adjust the pH of the reaction vessel to 6-11. Specifically, the amount of chemistry required to produce a ferric hydroxide precipitate from the ferric salt to be added. This is the sum of the equivalent amount and the amount necessary for pH adjustment during the reaction.

第一工程の反応は、処理水に第二鉄塩とアルカリ剤を添加後直ちに起こるので、特に時間的制約は考慮する必要ないが、5〜30分反応させるとアンチモンは水酸化鉄と共に不溶性の沈殿物となって固形化するので、固液分離により固形分を除去する。固液分離の方法としては、沈殿物抜き出し、ろ過、遠心分離、膜ろ過など公知の方法で行えば良い。また、固液分離の前に凝集フロックの沈降性を高める為に高分子凝集剤や無機のフロック成長剤などを使用することもできる。 Since the reaction in the first step occurs immediately after adding the ferric salt and the alkali agent to the treated water, it is not necessary to consider time restrictions in particular. However, when reacted for 5 to 30 minutes, antimony is insoluble with iron hydroxide. Since it becomes a precipitate and solidifies, the solid content is removed by solid-liquid separation. As a method of solid-liquid separation, a known method such as precipitation extraction, filtration, centrifugation, membrane filtration, or the like may be used. In addition, a polymer flocculant or an inorganic floc growth agent can be used to improve the sedimentation property of the flocs before solid-liquid separation.

本発明の第二工程は、上記の第一工程の分離液にセリウムを主成分とする希土類塩溶液を添加した後、アルカリ剤を添加してpH9〜12、好ましくはpH10〜12に調整して生成する沈殿を固液分離して、処理水のアンチモン濃度を0.2〜0.01mg/L以下に処理する。 In the second step of the present invention, after adding a rare earth salt solution containing cerium as a main component to the separation liquid in the first step, an alkaline agent is added to adjust the pH to 9 to 12, preferably 10 to 12. The produced precipitate is subjected to solid-liquid separation, and the antimony concentration of the treated water is treated to 0.2 to 0.01 mg / L or less.

使用するセリウムを主成分とする希土類塩としては、塩酸塩、硫酸塩、硝酸塩から選ばれた何れの塩でも良く、セリウムを90重量%以上、好ましくは92重量%以上含有する希土類元素混合物の塩溶液である。希土類塩溶液の濃度は特に限定するものではないが、通常、酸化物(酸化セリウム:CeO)換算で40〜20重量%である。セリウムイオンはアルカリ剤によりpH8〜12に調整することで、効率的に被処理水中のオキシアンチモニイオンと結合して沈殿を生成する。セリウム以外の希土類元素が多く含まれているとアンチモンと結合した化合物の溶解度により被処理水中のアンチモンの除去率が低下する問題がある。セリウム以外に混合されて良い物質としては、セリウム以外の希土類元素及びIVb元素であるスカンジウム、イットリウム、ランタン、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニユム、テリビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、チタン、ジルコニウム、ハフニウムを含む化合物等が挙げられる。 The rare earth salt mainly composed of cerium to be used may be any salt selected from hydrochloride, sulfate and nitrate, and a salt of a rare earth element mixture containing cerium in an amount of 90% by weight or more, preferably 92% by weight or more. It is a solution. The concentration of the rare earth salt solution is not particularly limited, but is usually 40 to 20% by weight in terms of oxide (cerium oxide: CeO 2 ). Cerium ions are adjusted to pH 8 to 12 with an alkali agent to efficiently combine with oxyantimony ions in the water to be treated to form precipitates. When a large amount of rare earth elements other than cerium is contained, there is a problem that the removal rate of antimony in the water to be treated decreases due to the solubility of the compound bonded to antimony. Materials other than cerium that may be mixed include scandium, yttrium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium. , Lutetium, titanium, zirconium, compounds containing hafnium, and the like.

本発明において、希土類塩溶液の添加量は、第一工程の分離液中のアンチモン濃度にもよるが、例えば、2mg/Lを0.2〜0.01mg/L以下の濃度に処理する場合、酸化セリウム基準で(以下セリウム塩をCeOに換算した値で示す)、アンチモン濃度1に対して、重量比でCeOとして0.01〜0.1が目安となる。本発明者らの実験によれば、アンチモン含有水にセリウム塩とアルカリ剤を添加して生成した沈殿物のアンチモンの平衡吸着量は、水層中のアンチモン平衡濃度が、0.1mg/Lの時、100mg-Sb/g-CeO、また0.01mg/Lの時、30mg-Sb/g-CeO程度と非常に大きい(図1参照)ことから、極めて少量の添加量で効率的にアンチモンを除去できる。 In the present invention, the addition amount of the rare earth salt solution depends on the antimony concentration in the separation liquid in the first step. For example, when processing 2 mg / L to a concentration of 0.2 to 0.01 mg / L or less, On the basis of cerium oxide (hereinafter referred to as a value obtained by converting a cerium salt into CeO 2 ), a weight ratio of 0.01 to 0.1 is a standard for CeO 2 with respect to an antimony concentration of 1. According to the experiments by the present inventors, the antimony equilibrium adsorption amount of the precipitate formed by adding the cerium salt and the alkali agent to the antimony-containing water is that the antimony equilibrium concentration in the aqueous layer is 0.1 mg / L. 100 mg-Sb / g-CeO 2 , and 0.01 mg / L, which is very large (about 30 mg-Sb / g-CeO 2 ) (see FIG. 1). Can remove antimony.

本発明の第二工程で使用するアルカリ剤としては、苛性ソーダ、苛性カリ、消石灰、水酸化マグネシュウムなど任意のものが使用でき、これらは単独でもまた組合せでも使用可能である。特に消石灰を使用すると生成するフロックの凝集性が良く、また経済的にも有利なので好ましい。その使用量は、反応糟のpHを9〜12に調整するのに必要な量であるが、詳しくは、添加するセリウムを主成分とする希土類塩から水酸化物の沈殿を生成するのに必要な化学当量と、反応時のpH調整に必要な量の和である。pHの調整は、ほぼpH8.5前後から沈殿が生成し始めるが、pH9〜12、より好ましくはpH10〜12の範囲に調整するとアンチモンの除去率が向上する。 As the alkaline agent used in the second step of the present invention, any one such as caustic soda, caustic potash, slaked lime, magnesium hydroxide can be used, and these can be used alone or in combination. In particular, the use of slaked lime is preferable because the floc produced has good cohesiveness and is economically advantageous. The amount used is the amount necessary to adjust the pH of the reaction vessel to 9-12. Specifically, it is necessary to form a hydroxide precipitate from the rare earth salt mainly composed of cerium to be added. Is the sum of the chemical equivalent and the amount necessary for pH adjustment during the reaction. In the adjustment of the pH, a precipitate starts to be formed from about pH 8.5, but the antimony removal rate is improved by adjusting the pH within the range of 9 to 12, more preferably 10 to 12.

さらに必要に応じて、生成した沈殿の沈降性を高める為にフロック成長剤を使用することもできる。具体例としては、ポリ塩化アルミ、ポリ硫酸鉄等の無機系凝集剤の他、ポリアクリルアミドのカチオン化変性物、ポリアクリル酸ジメチルアミノエチルエステル、ポリメタクリル酸ジメチルアミノエチルエステル、ポリエチレンイミン、キトサン等のカチオン性有機系凝集剤、ポリアクリルアミド等のノニオン性有機系凝集剤、ポリアクリル酸、アクリルアミドとアクリル酸との共重合体及び/その塩等のアニオン性有機系凝集剤等が挙げられる。 Further, if necessary, a floc growth agent can be used to enhance the sedimentation property of the generated precipitate. Specific examples include inorganic flocculants such as polyaluminum chloride and polyiron sulfate, cationized modified polyacrylamide, polydimethylaminoethyl ester of polyacrylic acid, dimethylaminoethyl ester of polymethacrylic acid, polyethyleneimine, chitosan, etc. Cationic organic flocculants, nonionic organic flocculants such as polyacrylamide, anionic organic flocculants such as polyacrylic acid, copolymers of acrylamide and acrylic acid, and salts thereof, and the like.

上記の一連の第二工程の終了後、被処理水を固液分離処理する。この固液分離は常法により行なうことができ、例として、凝集沈殿処理、加圧浮上処理、濾過処理、遠心分離処理、フィルターろ過処理、膜分離処理等が挙げられる。 After completion of the series of second steps, the water to be treated is subjected to solid-liquid separation treatment. This solid-liquid separation can be performed by a conventional method, and examples thereof include a coagulation sedimentation treatment, a pressure flotation treatment, a filtration treatment, a centrifugal separation treatment, a filter filtration treatment, and a membrane separation treatment.

連続式の反応槽と沈降槽を用いて処理を行う場合は、第二工程の沈殿物を第一工程の反応糟に返送しても良い。この場合、第二鉄塩を凝集剤に用いる第一工程に、第二工程の沈殿物を添加することで、第一工程で使用するアルカリ剤の使用量を減らすことができるのと、希土類水酸化物の沈殿物が高濃度のアンチモン含有水と接触することで希土類水酸化物のアンチモン吸着量が増し、第一工程でのアンチモン除去率を向上させることができ、結果として凝集剤の使用量を減らすことができる。更に、二種類の沈殿物を一つの減量されたスラッジとして分離回収できるメリットもある。   When processing using a continuous reaction tank and a sedimentation tank, you may return the deposit of a 2nd process to the reaction tank of a 1st process. In this case, the amount of the alkaline agent used in the first step can be reduced by adding the precipitate in the second step to the first step in which the ferric salt is used as the flocculant. The amount of antimony adsorbed on the rare earth hydroxide can be increased by contacting the oxide precipitate with water containing high concentration of antimony, and the antimony removal rate in the first step can be improved. As a result, the amount of flocculant used is increased. Can be reduced. Furthermore, there is an advantage that two kinds of precipitates can be separated and recovered as one reduced sludge.

本発明のアンチモン含有水を処理するシステム構成を参考例として図2に示す。被処理水1は、第一反応糟Aに供給され、第二鉄塩及びアルカリ剤2、返送された第二工程沈殿スラリー7が混合され、所定のpHで水酸化第二鉄を析出させた後、高分子凝集剤3が注入されて、高速凝沈層Bで沈降物6と上澄み液に分離される(第一工程)。上澄み液は続いて、第二反応糟Cに送られ、希土類塩溶液及びアルカリ剤4が混合され、所定のpHで希土類水酸化物を析出させた後、高分子凝集剤3を注入し、加圧タンクCで加圧された高圧水と共に加圧浮上糟Dに送られ、浮上した凝集スラリー7と清浄な処理水5に分離される(第二工程)。加圧浮上糟Dからの第二工程沈殿スラリー7は、循環汚泥ピットEに回収され、第一反応糟Aに返送される。また、高速凝沈糟Bからの第一工程沈殿スラリー6は、廃棄汚泥ピットFに送られ、続いてろ過機により脱水スラッジとして回収廃棄される。 A system configuration for treating antimony-containing water of the present invention is shown in FIG. 2 as a reference example. The treated water 1 is supplied to the first reaction tank A, the ferric salt and the alkali agent 2, and the returned second-step precipitation slurry 7 are mixed to precipitate ferric hydroxide at a predetermined pH. Thereafter, the polymer flocculant 3 is injected and separated into the sediment 6 and the supernatant liquid in the high-speed sedimentation layer B (first step). The supernatant liquid is then sent to the second reaction vessel C, where the rare earth salt solution and the alkali agent 4 are mixed to precipitate the rare earth hydroxide at a predetermined pH, and then the polymer flocculant 3 is injected and added. Along with the high-pressure water pressurized in the pressure tank C, it is sent to the pressurized levitation basin D and separated into the agglomerated slurry 7 and the clean treated water 5 (second step). The second-step sedimentation slurry 7 from the pressurized floating leash D is collected in the circulating sludge pit E and returned to the first reaction leash A. Further, the first-step sedimentation slurry 6 from the high-speed sedimentation basin B is sent to the waste sludge pit F, and subsequently recovered and discarded as dewatered sludge by a filter.

以下、この発明を具体的に説明するが、実施例はこの発明の理解を容易とするためのものであり、この発明を限定するものではない。実施例中%とあるのは重量%を表す。 The present invention will be described in detail below, but the examples are for facilitating the understanding of the present invention and are not intended to limit the present invention. In the examples, “%” means “% by weight”.

実施例1
実際の電子部品工場から排出したコロイド状粒子を含有するアンチモン廃水(pH7.1、アンチモン濃度32mg/L、内、溶解性アンチモン4.4mg/L)を被処理水として使用した。第一工程として、このアンチモン廃水に100mg/Lの塩化第二鉄を添加し、続いて消石灰80mg/Lを添加して5分間攪拌し、次にアニオン系高分子凝集剤を1mg/L加え、15分間静置した後に上澄みを濾紙No.5Aでろ過した。ろ液はpH6.3、アンチモン濃度1.6mg/Lであった。続いて、第二工程として、このろ液に塩化セリウム溶液(比重1.59、CeO換算濃度29%)を0.03mL(CeO換算0.014g)/L添加し、その後消石灰を添加してpH11.0に調整し10分間攪拌した後アニオン系高分子凝集剤を1mg/L添加して15分静置し、沈殿物をろ過した。ろ液のアンチモン濃度は、0.13mg/Lであった。また、それぞれの工程で得られたろ過物の重量を測定した結果、1Lの被処理水当りケーク量は、第一工程から450mg、第二工程から94mgが得られ、合計544mgとなった。
Example 1
Antimony waste water containing colloidal particles discharged from an actual electronic component factory (pH 7.1, antimony concentration 32 mg / L, of which soluble antimony 4.4 mg / L) was used as water to be treated. As a first step, 100 mg / L of ferric chloride is added to this antimony wastewater, followed by adding slaked lime 80 mg / L and stirring for 5 minutes, and then adding 1 mg / L of anionic polymer flocculant, After leaving it to stand for 15 minutes, the supernatant was filtered through paper No. Filtered with 5A. The filtrate had a pH of 6.3 and an antimony concentration of 1.6 mg / L. Subsequently, as a second step, the filtrate cerium chloride solution (specific gravity 1.59, CeO 2 concentration in terms of 29%) was 0.03 mL (CeO 2 in terms 0.014 g) / L added, followed by addition of slaked lime After adjusting the pH to 11.0 and stirring for 10 minutes, 1 mg / L of an anionic polymer flocculant was added and allowed to stand for 15 minutes, and the precipitate was filtered. The antimony concentration of the filtrate was 0.13 mg / L. Moreover, as a result of measuring the weight of the filtrate obtained in each step, the amount of cake per 1 L of water to be treated was 450 mg from the first step and 94 mg from the second step, and the total amount was 544 mg.

実施例2、対比例1
実施例1の第一工程で得たアンチモン濃度1.6mg/Lのろ液に、第二工程として、塩化セリウム溶液(比重1.59、CeO換算濃度29%)を0.01mL(CeO換算0.005g)/L(対比例―1)、0.06mL(CeO換算0.028g)/L (実施例2−1)、0.1mL(CeO換算0.05g)/L(実施例2−2)をそれぞれ添加した後、消石灰の添加によりpHを11に調整し、続いてアニオン系高分子凝集剤を1mg/L添加して静置後、沈殿物をろ過した。各ろ液のアンチモン濃度と、除去されたアンチモン量と添加した塩化セリウム量(CeO量に換算)から計算したアンチモン吸着量を表2に示す。また、この結果からセリウム(CeO2換算)のアンチモン吸着等温線を図1に示す。
Example 2, Comparative 1
Antimony concentration 1.6 mg / L filtrate obtained in the first step of Example 1, as a second step, cerium chloride solution (specific gravity 1.59, CeO 2 concentration in terms of 29%) and 0.01 mL (CeO 2 0.005 g) / L (comparative-1), 0.06 mL (0.028 g in terms of CeO 2 ) / L (Example 2-1), 0.1 mL (0.05 g in terms of CeO 2 ) / L (implementation) After each of Examples 2-2) was added, the pH was adjusted to 11 by the addition of slaked lime. Subsequently, 1 mg / L of an anionic polymer flocculant was added and allowed to stand, and then the precipitate was filtered. Table 2 shows the antimony concentration calculated from the antimony concentration of each filtrate, the amount of antimony removed, and the amount of cerium chloride added (converted to the amount of CeO 2 ). Further, from this result, an antimony adsorption isotherm of cerium (CeO 2 equivalent) is shown in FIG.

Figure 2010284570
Figure 2010284570

実施例3、対比例2
実施例1の第二工程において、塩化セリウム溶液を0.04mL(CeO換算0.018g)/L添加し、中和に使用する消石灰の量を変えて沈殿時のpHを変える以外は、実施例1と同様に行った試験の結果を表2に示す。この結果から、沈殿pHが10.5(実施例3−1)以上の時、低いアンチモン濃度の処理水が得られることが分かる。
Example 3, Comparative 2
In the second step of Example 1, 0.04 mL (0.018 g in terms of CeO 2 ) / L of cerium chloride solution was added, and the pH at the time of precipitation was changed by changing the amount of slaked lime used for neutralization. Table 2 shows the results of tests conducted in the same manner as in Example 1. From this result, it can be seen that when the precipitation pH is 10.5 (Example 3-1) or higher, treated water having a low antimony concentration can be obtained.

Figure 2010284570
Figure 2010284570

比較例1
実施例1に使用したアンチモン濃度32mg/Lの被処理水を用いて、被処理水に塩化第二鉄のみを凝集剤として、塩化第二鉄及び消石灰の添加量を変え、その後アニオン系高分子凝集剤を1mg/Lを添加して凝集沈殿処理を行い、ろ液のアンチモン濃度及び沈殿物の重量を測定した結果を表2に示す。この結果、塩化第二鉄のみでは多量の添加量(比較例1−5)でもアンチモン濃度を0.2mg/L以下に低下させることはできなかった。
Comparative Example 1
Using the water to be treated having an antimony concentration of 32 mg / L used in Example 1, using only ferric chloride as a flocculant in the water to be treated, the addition amount of ferric chloride and slaked lime was changed, and then an anionic polymer Table 2 shows the results of measuring the antimony concentration of the filtrate and the weight of the precipitate by adding 1 mg / L of the flocculant and performing the aggregation precipitation treatment. As a result, with only ferric chloride, the antimony concentration could not be reduced to 0.2 mg / L or less even with a large addition amount (Comparative Example 1-5).

Figure 2010284570
Figure 2010284570

比較例2
実施例1に使用したアンチモン濃度32mg/Lの被処理水を使用して、被処理水に塩化第二鉄と塩化セリウム溶液を同時に添加し、続いて所定量の消石灰を添加して、その後アニオン系高分子凝集剤を1mg/L添加後凝集沈殿処理を行い、ろ液のアンチモン濃度及び沈殿物の重量を測定した結果を表4に示す。この結果、塩化第二鉄と塩化セリウムを併用した凝集沈殿分離では、実施例1に示す方法に比べ、アンチモンの除去効率が低いことが明らかである。
Comparative Example 2
Using the water to be treated having an antimony concentration of 32 mg / L used in Example 1, ferric chloride and cerium chloride solution were simultaneously added to the water to be treated, followed by addition of a predetermined amount of slaked lime, and then anion. Table 4 shows the results of coagulation-precipitation treatment after addition of 1 mg / L of the system polymer flocculant and measuring the antimony concentration of the filtrate and the weight of the precipitate. As a result, it is clear that the antimony removal efficiency is lower in the coagulation precipitation separation using ferric chloride and cerium chloride in comparison with the method shown in Example 1.

Figure 2010284570
Figure 2010284570

実施例4
実施例1で得られた第二工程のろ過物94mg/L―被処理水(含水率79%)をアンチモン廃水(pH7.1、アンチモン濃度32mg/L)に添加、攪拌分散し、これに第一工程として100mg/Lの塩化第二鉄を添加、続いて消石灰40mg/Lを添加して静置後ろ過した。ろ液はpH7.2、アンチモン濃度1.2mg/Lであった。続いて、第二工程として、このろ液に塩化セリウム溶液(比重1.59、CeO換算濃度29%)を0.03mL(CeO換算0.014g)/L添加し、その後消石灰を添加してpH11.0に調整し、アニオン系高分子凝集剤を1mg/L添加して沈殿物をろ過した。ろ液のアンチモン濃度は、0.06mg/Lであった。ここで得られた第一工程のろ過物は、含水率72%で、被処理水1L当り520mgであった。また、第二工程で得られたろ過物を次の第一工程の処理に使用することができることから、この方法によれば、実施例1の方法と比較して処理水のアンチモン濃度を0.12から0.06mg/Lに低下させ、またスラッジの発生量を544から520mg/Lに減らすことができた。
Example 4
94 mg / L of the second step filtrate obtained in Example 1-treated water (water content 79%) was added to antimony wastewater (pH 7.1, antimony concentration 32 mg / L), and dispersed by stirring. As a step, 100 mg / L of ferric chloride was added, followed by addition of slaked lime 40 mg / L, and allowed to stand, followed by filtration. The filtrate had a pH of 7.2 and an antimony concentration of 1.2 mg / L. Subsequently, as the second step, 0.03 mL (0.014 g in terms of CeO 2 ) / L of a cerium chloride solution (specific gravity 1.59, CeO 2 equivalent concentration 29%) is added to this filtrate, and then slaked lime is added. The pH was adjusted to 11.0, 1 mg / L of an anionic polymer flocculant was added, and the precipitate was filtered. The antimony concentration of the filtrate was 0.06 mg / L. The first step filtrate obtained here had a water content of 72% and was 520 mg per liter of water to be treated. Moreover, since the filtrate obtained in the second step can be used for the treatment in the next first step, according to this method, the antimony concentration of the treated water is set to 0. 0 compared with the method of Example 1. The amount of sludge was reduced from 544 to 520 mg / L.

アンチモン含有水からアンチモンを除去する方法として、凝集剤として第二鉄塩を用いる第一工程とセリウム塩を用いる第二工程からなる本発明の二段階凝集沈殿分離法は、少ない薬剤の使用量と少ないスラッジ発生量で、効率的にアンチモンを低濃度に処理できるので、アンチモン及びその化合物を利用している産業から排出される排水及び、土壌や地下水から溶出するアンチモン含有水の処理に有効である。 As a method for removing antimony from antimony-containing water, the two-step coagulation precipitation separation method of the present invention comprising a first step using a ferric salt as a flocculant and a second step using a cerium salt is a method of using a small amount of drug. Since antimony can be efficiently processed at a low concentration with a small amount of sludge generation, it is effective for the treatment of wastewater discharged from industries that use antimony and its compounds, and antimony-containing water eluted from soil and groundwater. .

本発明の第二工程にセリウム塩を使用して、沈殿セリウム水酸化物(CeO換算量)へのアンチモン吸着量と液相のアンチモン濃度との関係を示す。The relationship between the antimony adsorption amount to the precipitated cerium hydroxide (CeO 2 equivalent amount) and the antimony concentration in the liquid phase is shown using a cerium salt in the second step of the present invention.

本発明のアンチモン処理システムの参考例を示す。A reference example of the antimony treatment system of the present invention is shown.

1 被処理水
2 第二鉄塩及びアルカリ剤
3 高分子凝集剤
4 希土類塩溶液及びアルカリ剤
5 処理水
6 第一工程凝集スラリー
7 第二工程凝集スラリー
A 第一反応糟
B 高速凝沈糟
C 第二反応糟
D 加圧浮上糟
E 循環汚泥ピット
F 廃棄汚泥ピット
G 加圧タンク
DESCRIPTION OF SYMBOLS 1 Water to be treated 2 Ferric salt and alkali agent 3 Polymer flocculant 4 Rare earth salt solution and alkali agent 5 Treated water 6 First step agglomerated slurry 7 Second step agglomerated slurry A First reaction tank B High-speed coagulation C Second reaction tank D Pressurized floating tank E Circulating sludge pit F Waste sludge pit G Pressure tank

Claims (4)

アンチモンを含有する被処理水に第二鉄塩及びアルカリ剤を添加して不溶性のアンチモン粒子及び溶解しているアンチモンを沈殿分離する第一工程、続いてこの分離液にセリウムを主成分とする希土類塩溶液及びアルカリ剤を添加して残余の溶解アンチモンを難容性沈殿として分離する第二工程からなるアンチモン含有水の処理方法。 A first step in which ferric salt and an alkaline agent are added to water to be treated containing antimony to precipitate and separate insoluble antimony particles and dissolved antimony, followed by a rare earth mainly composed of cerium in the separated liquid A method for treating antimony-containing water, comprising a second step of adding a salt solution and an alkaline agent to separate the remaining dissolved antimony as a difficult-to-hold precipitate. アンチモン含有水のアンチモン濃度が2mg/リットル以上の被処理水を第一工程で2mg/リットル以下に処理し、続いて第二工程で0.2mg/リットル以下に処理する請求項1に記載のアンチモン含有水の処理方法。 The antimony according to claim 1, wherein the water to be treated having an antimony concentration of antimony-containing water of 2 mg / liter or more is treated in the first step to 2 mg / liter or less, and subsequently treated in the second step to 0.2 mg / liter or less. Treatment method of contained water. 第一工程の凝集沈殿をpH6〜11で行い、続いて第二工程として、セリウムを主成分とする希土類塩溶液に続いて消石灰を添加して、pH9〜12に調整する請求項1又は2に記載のアンチモン含有水の処理方法。 The flocculation and precipitation in the first step is performed at pH 6 to 11, and subsequently, as the second step, slaked lime is added to the rare earth salt solution mainly containing cerium to adjust the pH to 9 to 12. The method for treating antimony-containing water as described. 第二工程で生成した沈殿物を第一工程に返送して第一工程を行う請求項1〜3のいずれかに記載のアンチモン含有水の処理方法。 The method for treating antimony-containing water according to any one of claims 1 to 3, wherein the precipitate produced in the second step is returned to the first step and the first step is performed.
JP2009138283A 2009-06-09 2009-06-09 Method of treating antimony-containing water Ceased JP2010284570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138283A JP2010284570A (en) 2009-06-09 2009-06-09 Method of treating antimony-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138283A JP2010284570A (en) 2009-06-09 2009-06-09 Method of treating antimony-containing water

Publications (1)

Publication Number Publication Date
JP2010284570A true JP2010284570A (en) 2010-12-24

Family

ID=43540706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138283A Ceased JP2010284570A (en) 2009-06-09 2009-06-09 Method of treating antimony-containing water

Country Status (1)

Country Link
JP (1) JP2010284570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085949A (en) * 2014-06-24 2014-10-08 中国科学院过程工程研究所 Method for removing vanadium from sodium chromate leaching solution by ferric hydroxide adsorption
CN107746154A (en) * 2017-11-01 2018-03-02 杭州开源环保工程有限公司 One kind printing and dyeing(Containing antimony)Sewage disposal system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291094A (en) * 1985-06-18 1986-12-20 Kurita Water Ind Ltd Treatment of water containing antimony
JP2005131457A (en) * 2003-10-28 2005-05-26 Ube Ind Ltd Antimony-containing wastewater treatment method
JP2006000778A (en) * 2004-06-18 2006-01-05 Miyoshi Oil & Fat Co Ltd Waste treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291094A (en) * 1985-06-18 1986-12-20 Kurita Water Ind Ltd Treatment of water containing antimony
JP2005131457A (en) * 2003-10-28 2005-05-26 Ube Ind Ltd Antimony-containing wastewater treatment method
JP2006000778A (en) * 2004-06-18 2006-01-05 Miyoshi Oil & Fat Co Ltd Waste treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104085949A (en) * 2014-06-24 2014-10-08 中国科学院过程工程研究所 Method for removing vanadium from sodium chromate leaching solution by ferric hydroxide adsorption
CN107746154A (en) * 2017-11-01 2018-03-02 杭州开源环保工程有限公司 One kind printing and dyeing(Containing antimony)Sewage disposal system

Similar Documents

Publication Publication Date Title
TWI626990B (en) Treatment method and treatment device for radioactive waste water
JP5794423B2 (en) Processing method and processing apparatus for removing harmful substances
CN101636356A (en) From solution, remove the method and apparatus of arsenic
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
JP4374636B2 (en) Treatment method of waste liquid containing heavy metal complex
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
WO2007057521A1 (en) Method for removing substances from aqueous solution
JP2010284570A (en) Method of treating antimony-containing water
JP2004008860A (en) Treatment method for harmful anion-containing wastewater and agent used therein
JP4293520B2 (en) Fluorine ion removal method and remover
JP4014276B2 (en) Treatment method for boron-containing wastewater
JP3949042B2 (en) Method for removing fluorine or phosphorus
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JP6607561B2 (en) Method for removing molybdenum from wastewater
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JP4014032B2 (en) Disposal method of wastewater containing dissolved copper complex compound and chemical used therefor
CN111072123B (en) Method for removing complex lead by ferrous phosphate under anoxic condition
CN112093830A (en) Ecological water purifying medicament and preparation method thereof
JP2010075805A (en) Water purification material and water purification method
JP3788782B2 (en) Method for removing and recovering copper by treating waste water and chemicals used therefor
JP2009136873A (en) Treatment method for dust in cement kiln extraction gas
JP7426520B1 (en) Recycled aqueous solution treated with an inorganic flocculant that is non-selective to iodide ions
JP2016040034A (en) Method of removing molybdenum from molybdenum containing waste water
JP4014277B2 (en) Treatment method for boron-containing wastewater
JP2022134521A (en) Processing method of fluorine-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20131003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20140708