JP2006341139A - Harmful inorganic anion fixing and removing method, and fixing agent used therefor - Google Patents

Harmful inorganic anion fixing and removing method, and fixing agent used therefor Download PDF

Info

Publication number
JP2006341139A
JP2006341139A JP2005166331A JP2005166331A JP2006341139A JP 2006341139 A JP2006341139 A JP 2006341139A JP 2005166331 A JP2005166331 A JP 2005166331A JP 2005166331 A JP2005166331 A JP 2005166331A JP 2006341139 A JP2006341139 A JP 2006341139A
Authority
JP
Japan
Prior art keywords
ions
inorganic anions
rare earth
magnesium hydroxide
immobilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166331A
Other languages
Japanese (ja)
Inventor
Junji Nomura
順治 野村
Toshio Yotsumoto
利夫 四元
Haruhiko Ito
晴彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KAISUI KK
Nihon Kaisui Co Ltd
Original Assignee
NIHON KAISUI KK
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KAISUI KK, Nihon Kaisui Co Ltd filed Critical NIHON KAISUI KK
Priority to JP2005166331A priority Critical patent/JP2006341139A/en
Publication of JP2006341139A publication Critical patent/JP2006341139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily, inexpensively, and efficiently removing harmful inorganic anions, such as phosphate ions, borate ions, fluoride ions, and arsenate ions, from water containing these anions at relatively low concentrations, and a fixing agent used for the method. <P>SOLUTION: In this removal method, a solution of salts of rare earth elements, containing at least a salt of cerium as a main component, and magnesium hydroxide are added to the water containing the harmful inorganic anions, such as phosphate ions, borate ions, fluoride ions, and arsenate ions, to generate precipitates at a pH of 8-11, and solid-liquid separation is carried out, which can fix the inorganic anions and remove them promptly. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機性陰イオン、特にリン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンなどの有害な無機性陰イオンを簡便且つ効率よく固定し、スラッジの発生量を少なくする固定化方法およびそれに使用する薬剤に関する。   The present invention provides an immobilization method for easily and efficiently immobilizing inorganic anions, particularly harmful inorganic anions such as phosphate ions, borate ions, fluorine ions, and arsenate ions, and reducing the generation of sludge. It relates to the drug used for it.

リン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンなどの有害な無機性陰イオンを含有する排水は、環境基準に管理すべき基準値が定められている。従来、これらの有害な無機性イオン含有水の処理方法としては、イオン交換樹脂により吸着させる方法や、硫酸アルミニウム、塩化アルミニュウムなどのアルミニュウム化合物及び、塩化第二鉄、水酸化カルシウムを組み合わせて凝集沈澱法により沈澱分離する方法等が知られているが、いずれも効率的な方法とはいえず、また、多量のスラッジを生成するという問題があった。   For wastewater containing harmful inorganic anions such as phosphate ions, borate ions, fluorine ions, arsenate ions, etc., a standard value to be managed in accordance with environmental standards is set. Conventionally, as treatment methods for these harmful inorganic ion-containing waters, a method of adsorbing with an ion exchange resin, an aluminum compound such as aluminum sulfate or aluminum chloride, and ferric chloride or calcium hydroxide in combination are used for coagulation precipitation. There are known methods for separating precipitates by the method, but none of them are efficient methods, and there is a problem that a large amount of sludge is generated.

ホウ素イオンの除去に関して、凝集沈殿法と陰イオン交換樹脂又は選択性イオン交換樹脂を組み合わせた方法が提案されている(特許文献1参照)が、前段の凝集沈殿法の除去効率が悪いため後段の吸着樹脂に負荷が掛かり、そのためコストが掛かりすぎる問題と、吸着樹脂の再生液の処理の問題がある。さらに、低濃度のホウ素含有排水を希土類元素の含水酸化物を用いて処理する方法も提案されている(特許文献2参照)が、固体を用いるため吸着性能が低く多くの使用量を必要とし、処理に時間が掛かる等の問題がある。一方、ホウ素含有排水をホウ素選択吸着性イオン交換樹脂等に一旦吸着させ、その濃縮された脱離液に、希土類元素イオン及び/又はIVB族元素イオンを放出する化合物を添加するホウ素の除去法が提案されている(特許文献3参照)が、新たに吸着装置を必要とし、さらに煩雑な吸着及び脱離の操作を必要とする。また、一般に希土類元素とホウ素が反応して生成するフロックは嵩高く、沈降性が良くない。これらの問題点を改良するために、ホウ素含有水中に多価陰イオン性物質と希土類元素イオンを存在させた状態でpHを9〜13に調整することにより、ホウ素を難溶性物質として沈殿分離させる方法が提案されている(特許文献4参照)。しかし、得られたスラッジの含水率が70〜80%と高い問題があり、また、リン酸イオンや砒酸イオンなど他の有害なイオンに対する作用は開示されていない。   Regarding the removal of boron ions, a method combining a coagulation precipitation method with an anion exchange resin or a selective ion exchange resin has been proposed (see Patent Document 1). There is a problem that a load is applied to the adsorbent resin, which is too costly, and a problem with the treatment of the regenerated solution of the adsorbent resin. Furthermore, a method for treating low-concentration boron-containing wastewater with a rare earth element hydrous oxide has also been proposed (see Patent Document 2). However, since solid is used, the adsorption performance is low and a large amount of use is required. There is a problem that processing takes time. On the other hand, there is a boron removal method in which boron-containing wastewater is once adsorbed on a boron-selective adsorptive ion exchange resin or the like, and a compound that releases rare earth element ions and / or group IVB element ions is added to the concentrated desorbed liquid. Although it has been proposed (see Patent Document 3), a new adsorption device is required, and more complicated adsorption and desorption operations are required. In general, flocs produced by the reaction of rare earth elements and boron are bulky and have poor sedimentation properties. In order to improve these problems, boron is precipitated and separated as a hardly soluble substance by adjusting the pH to 9 to 13 in the presence of a polyvalent anionic substance and rare earth element ions in boron-containing water. A method has been proposed (see Patent Document 4). However, there is a problem that the water content of the obtained sludge is as high as 70 to 80%, and the action on other harmful ions such as phosphate ions and arsenate ions is not disclosed.

リン酸イオンの吸着剤として、希土類元素の水和酸化物が知られている(特許文献5参照)が、固体を用いるため吸着容量が低く使用量を多く必要とし、また処理に時間が掛かる等の問題がある。また特定の粒子径を有する酸化マグネシュウムを吸着剤とするリン酸イオンの吸着剤が開示されている(特許文献6参照)が、リン酸イオンは吸着するが、ホウ酸イオンや砒酸イオンに対する作用は開示されていなく、又該吸着剤は、ホウ酸イオンや砒酸イオンに対しては吸着性能が極めて低いため有効ではない。   As a phosphate ion adsorbent, a rare earth element hydrated oxide is known (see Patent Document 5). However, since a solid is used, the adsorption capacity is low, a large amount of use is required, and processing takes time. There is a problem. Further, an adsorbent of phosphate ion using magnesium oxide having a specific particle size as an adsorbent is disclosed (see Patent Document 6), but phosphate ion is adsorbed, but its action on borate ion and arsenate ion is It is not disclosed, and the adsorbent is not effective for borate ions and arsenate ions because of its extremely low adsorption performance.

特開昭57−180493号公報JP-A-57-180493 特公平3−22238号公報Japanese Patent Publication No. 3-22238 特開平11−235595号公報JP 11-235595 A 特開2004−963号公報JP 2004-963 A 特開昭61−4529号公報JP 61-4529 A 特開2005−28272号公報JP 2005-28272 A

本発明は、リン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンなどの有害な無機性陰イオンが単独で又は2種以上共存する被処理水中から効率よく、低量で且つ低含水率のスラッジとしてこれらの無機性陰イオンを除去する方法を提供することを目的とする。また、それに用いる薬剤を提供することを目的とする。   The present invention is an efficient, low-volume, low-water-content sludge containing undesired inorganic anions such as phosphate ions, borate ions, fluorine ions, and arsenate ions, alone or in combination of two or more. An object of the present invention is to provide a method for removing these inorganic anions. Moreover, it aims at providing the chemical | medical agent used for it.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、被処理水中にセリウムを主成分とする希土類元素塩溶液と水酸化マグネシュウムを存在させ、好適なpHに管理することによって、被処理水中に溶存する、リン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンなどの有害な無機性陰イオンを一挙に難溶性物質として沈殿分離させることができることを見い出し、この知見に基づき本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have present a rare earth element salt solution containing cerium as a main component and magnesium hydroxide in the water to be treated, and by controlling to a suitable pH, It was found that harmful inorganic anions such as phosphate ions, borate ions, fluorine ions and arsenate ions dissolved in the water to be treated can be precipitated and separated as hardly soluble substances all at once. It came to complete.

すなわち、本発明は、
[1]有害な無機性陰イオンを含有する被処理水に、該処理水のpHが8を超えているときは8以下に調整した後、少なくともセリウムの塩を主成分として含有する希土類元素の塩溶液及び水酸化マグネシュウムを存在させ、pH8〜11にて該無機性イオンを難溶性沈澱として生成させ、固液分離することを特徴とする有害な無機性陰イオンの固定化除去方法。
[2] 有害な無機性陰イオンがリン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンの一種又は2種以上である[1]に記載の有害な無機性陰イオンの固定化除去方法。
[3] 希土類元素の塩が少なくともセリウムの塩を90質量%以上含有する[1]又は[2]に記載の有害な無機性陰イオンの固定化除去方法。
[4] 水酸化マグネシュウムが濃度25〜45質量%の水スラリーである[1]〜[3]のいずれか1項に記載の有害な無機性陰イオンの固定化除去方法。
[5] pH調整剤を使用する[1]〜[4]のいずれか1項に記載の有害な無機性陰イオンの固定化除去方法。
[6] pH調整剤が水酸化カルシウムである[5]記載の有害な無機性陰イオンの固定化除去方法。
[7] 少なくともセリウムの塩を主成分として含む希土類元素の塩及び水酸化マグネシュウムからなる、有害な無機性陰イオンを含有する被処理水からそれらイオンを固定化除去するための薬剤。
[8] 希土類元素の塩が少なくともセリウムの塩を90質量%以上含有する[7]に記載の薬剤。
[9] 水酸化マグネシュウムが濃度25〜45質量%の水スラリーである[7]に記載の薬剤。
に関する。
That is, the present invention
[1] To the treated water containing harmful inorganic anions, when the pH of the treated water exceeds 8, the pH is adjusted to 8 or less, and then the rare earth element containing at least a cerium salt as a main component. A method for immobilizing and removing harmful inorganic anions, wherein a salt solution and magnesium hydroxide are present, the inorganic ions are generated as hardly soluble precipitates at a pH of 8 to 11, and solid-liquid separation is performed.
[2] The method for immobilizing and removing harmful inorganic anions according to [1], wherein the harmful inorganic anions are one or more of phosphate ions, borate ions, fluorine ions, and arsenate ions.
[3] The method for immobilizing and removing harmful inorganic anions according to [1] or [2], wherein the rare earth element salt contains at least 90% by mass of a cerium salt.
[4] The method for immobilizing and removing harmful inorganic anions according to any one of [1] to [3], wherein magnesium hydroxide is a water slurry having a concentration of 25 to 45% by mass.
[5] The method for immobilizing and removing harmful inorganic anions according to any one of [1] to [4], wherein a pH adjuster is used.
[6] The method for immobilizing and removing harmful inorganic anions according to [5], wherein the pH adjuster is calcium hydroxide.
[7] A drug for immobilizing and removing ions from a water to be treated containing a harmful inorganic anion, comprising a rare earth element salt containing at least a cerium salt as a main component and magnesium hydroxide.
[8] The agent according to [7], wherein the rare earth element salt contains at least 90% by mass of a cerium salt.
[9] The drug according to [7], wherein magnesium hydroxide is a water slurry having a concentration of 25 to 45% by mass.
About.

本発明の方法によれば、被処理水中に含まれるリン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンなどの有害な無機性陰イオンを含有する水に、本発明の薬剤を添加してpHを調節することで、沈澱を生成させ、濾過する簡単な方法により、それら有害イオンを効率良く沈澱として除去することができる。また、生成するスラッジは、低含水率で少量であることから、汚泥の処理コストを低減させることができる。   According to the method of the present invention, the agent of the present invention is added to water containing harmful inorganic anions such as phosphate ions, borate ions, fluorine ions, arsenate ions, etc. contained in the water to be treated to adjust the pH. By adjusting the pH, these harmful ions can be efficiently removed as a precipitate by a simple method of producing a precipitate and filtering. Moreover, since the sludge produced | generated is a small amount with a low moisture content, the process cost of sludge can be reduced.

以下、本発明について詳細に説明する。
本発明では、少なくともセリウムの塩を主成分として含有する希土類元素の塩溶液に水酸化マグネシュウムを併用してpH8〜11に調整することによって被処理水中の無機性陰イオンと結合して効率的に沈殿を生成させる。このうち、被処理水中の希土類元素イオンが主にリン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンなどの有害な無機性陰イオンの固定剤としての役割を果たす。被処理水へ添加する際の希土類元素の塩溶液は塩酸塩、硫酸塩又は硝酸塩として被処理水に添加するのが好ましい。その塩水溶液の濃度は特に限定されるものではないが、操作性を考慮すると、希土類元素酸化物として10〜40質量%、好ましくは20〜35質量%である。
Hereinafter, the present invention will be described in detail.
In the present invention, a rare earth element salt solution containing at least a cerium salt as a main component is combined with magnesium hydroxide and adjusted to pH 8 to 11 to efficiently bind to inorganic anions in the water to be treated. A precipitate is formed. Among these, rare earth element ions in the water to be treated mainly serve as a fixing agent for harmful inorganic anions such as phosphate ions, borate ions, fluorine ions, and arsenate ions. The salt solution of the rare earth element when added to the water to be treated is preferably added to the water to be treated as a hydrochloride, sulfate or nitrate. Although the density | concentration of the salt aqueous solution is not specifically limited, In consideration of operativity, it is 10-40 mass% as a rare earth element oxide, Preferably it is 20-35 mass%.

本発明に使用する少なくともセリウムの塩を主成分として含有する希土類元素の塩は、希土類元素中、セリウムを75質量%以上、好ましくは90質量%以上含有する希土類元素の塩の混合物である。セリウムイオンは、併せて使用する水酸化マグネシウムの存在下PH8〜11に調整されることで、効率的に被処理水中の無機性陰イオンと結合して沈殿を生成する。水酸化マグネシウムの共存下でpHがこの範囲以外の時は、pH調整剤を使用して前記pHの範囲になるように調整する。セリウム以外の希土類元素が多く含まれていると陰イオンと結合された化合物の溶解度により被処理水中の有害イオンの除去率が低下する問題がある。セリウム以外に混合されて良い物質としては、セリウム以外の希土類元素およびIVb元素である、スカンジウム、イットリウム、プラセオジウム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニユム、テリビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、チタン、ジルコニウム、ハフニウムを含む化合物等が挙げられる。   The rare earth element salt containing at least a cerium salt as a main component for use in the present invention is a mixture of rare earth element salts containing cerium in an amount of 75 mass% or more, preferably 90 mass% or more. Cerium ions are adjusted to PH 8 to 11 in the presence of magnesium hydroxide to be used together, thereby efficiently combining with inorganic anions in the water to be treated to form precipitates. When the pH is outside this range in the presence of magnesium hydroxide, the pH is adjusted using the pH adjuster. If a large amount of rare earth elements other than cerium is contained, there is a problem that the removal rate of harmful ions in the water to be treated decreases due to the solubility of the compound combined with the anion. Substances that may be mixed in addition to cerium include rare earth elements and IVb elements other than cerium, scandium, yttrium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, Examples thereof include compounds containing lutetium, titanium, zirconium and hafnium.

本発明において、希土類元素イオンの添加量は、被処理水中の無機性陰イオンの種類、組成と濃度にもよるが、リン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンなどの有害な無機性陰イオン1モル当たり、0.1〜30モル、好ましくは0.5〜15モルである。被処理水中に共存する塩素イオン、硝酸イオン及び硫酸イオンは希土類元素の水酸化物に殆ど吸着しないので、考慮する必要はない。吸着性が高い陰イオンとして考慮する必要がある陰イオン種は、リン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンの他、重炭酸イオン、珪酸イオン、亜砒素酸イオン、六フッ化珪酸イオンなどである。   In the present invention, the amount of rare earth element ions added depends on the type, composition and concentration of inorganic anions in the water to be treated, but harmful inorganic properties such as phosphate ions, borate ions, fluorine ions, arsenate ions, etc. The amount is 0.1 to 30 mol, preferably 0.5 to 15 mol, per mol of anion. Chlorine ions, nitrate ions, and sulfate ions that coexist in the water to be treated hardly adsorb to the rare earth element hydroxides, and thus need not be considered. Anionic species that need to be considered as anions with high adsorptivity are phosphate ion, borate ion, fluorine ion, arsenate ion, bicarbonate ion, silicate ion, arsenite ion, hexafluorosilicate ion Etc.

本発明で使用する水酸化マグネシュウムはそれ自体がこれらの陰イオンを吸着し、希土類元素イオンとの組み合わせで相乗効果を奏するのみならず、沈澱時の粒子径を肥大化させ沈降性、脱水性のよい沈殿を生成して沈殿物の固液分離をしやすくすると同時に、ろ過スラッジ中の含水率を低下させる効果を奏する。水酸化マグネシュウムは粉末状、水スラリー状で添加することができるが、好ましくは、海水から析出させた水酸化マグネシュウムスラリーを使用することが簡便である。該水酸化マグネシュウムスラリーは、一般に工業用途として、海水を原料として、純分25〜45質量%の濃度のものを入手することができる。水酸化マグネシュウムの使用量は純分として、被処理水の容量に対して、0.01〜10質量%、好ましくは0.05〜2質量%である。   Magnesium hydroxide used in the present invention itself adsorbs these anions, and not only has a synergistic effect in combination with rare earth element ions, but also enlarges the particle size at the time of precipitation, and has sedimentation and dehydration properties. It produces a good precipitate to facilitate the solid-liquid separation of the precipitate, and at the same time, has the effect of reducing the water content in the filtered sludge. Magnesium hydroxide can be added in the form of powder or water slurry, but it is preferable to use a magnesium hydroxide slurry precipitated from seawater. The magnesium hydroxide slurry is generally available for industrial use, with seawater as a raw material and a concentration of 25 to 45 mass% pure. The amount of magnesium hydroxide used is 0.01 to 10% by mass, preferably 0.05 to 2% by mass, based on the volume of water to be treated, as a pure component.

本発明では、被処理水に希土類元素の塩溶液と水酸化マグネシュウムを添加後、pHを調整して生成する沈澱に有害な無機性陰イオンを共沈させる。そのpHは、一般的には8〜11の範囲、好ましくは8.5〜10.5の範囲である。除去すべき陰イオンがリン酸イオン、フッ素イオン、砒酸イオンなどの場合にはpH8.5〜9.5が、またホウ酸イオンの場合はpH9〜10.5の範囲が特に好ましい。pHが8以下では沈澱が完全に生成しないか、析出粒子がコロイド状となり、ろ過性が極端に低下する。またpHが11を越えると希土類元素イオンとの共沈の効率が低下し、有害陰イオンの除去率が低下する。   In the present invention, a rare earth salt solution and magnesium hydroxide are added to the water to be treated, and then the pH is adjusted to coprecipitate inorganic anions harmful to the precipitate formed. The pH is generally in the range of 8-11, preferably in the range of 8.5-10.5. When the anion to be removed is phosphate ion, fluorine ion, arsenate ion, etc., pH 8.5 to 9.5 is particularly preferable, and borate ion is particularly preferably pH 9 to 10.5. When the pH is 8 or less, the precipitate is not completely formed, or the precipitated particles are colloidal, and the filterability is extremely lowered. On the other hand, if the pH exceeds 11, the efficiency of coprecipitation with rare earth ions decreases and the removal rate of harmful anions decreases.

被処理水に希土類元素の塩溶液と水酸化マグネシュウムを添加する順序は、希土類元素の塩溶液を添加した後に水酸化マグネシュウムを添加する。添加後の液のpHが前記pHの範囲に無い場合はpH調整剤を使用して所定のpHに調整する。例えば水酸化マグネシウムの添加後の液のpHが7以下の場合には水酸化カルシュウムを添加し、pHを8〜11の範囲に調節して沈澱生成を完結させる。
一般に被処理水がpH8を超えるアルカリ性の場合は、希土類元素の塩溶液を添加すると希土類元素の水酸化物の沈澱が生成するので、この場合には予め塩酸、硫酸、硝酸等の酸の添加により被処理水のpHを8以下、好ましくは5〜8に調整する。本発明の効果を奏するためには、被処理水に希土類元素の塩溶液が添加された状態では、沈澱を生成させないことが好ましく、その後水酸化マグネシュウムを添加して、希土類元素と水酸化マグネシュウムの共沈物を形成させる。水酸化マグネシュウムの添加により目標とするpHに到達しない場合は、pH調整剤として水酸化カルシュウムを用いて所定のpH値に調節する。目標のpH値を超えた場合は塩酸、硫酸、硝酸等の酸を使用して再調節することも出来る。水酸化マグネシュウムの添加前に析出した沈澱は、極めて微細なゲル状の粒子のため、ろ過操作を困難にするので好ましくない。
The order of adding the rare earth salt solution and magnesium hydroxide to the water to be treated is that the rare earth salt solution is added and then the magnesium hydroxide is added. When the pH of the solution after addition is not in the above pH range, the pH is adjusted to a predetermined pH using a pH adjuster. For example, when the pH of the solution after the addition of magnesium hydroxide is 7 or less, calcium hydroxide is added to adjust the pH to the range of 8 to 11 to complete the precipitation.
In general, when the water to be treated is alkaline exceeding pH 8, when a salt solution of rare earth element is added, precipitation of hydroxide of rare earth element is generated. In this case, by adding an acid such as hydrochloric acid, sulfuric acid, nitric acid in advance. The pH of the water to be treated is adjusted to 8 or less, preferably 5-8. In order to achieve the effects of the present invention, it is preferable that precipitates are not generated in the state where the salt solution of the rare earth element is added to the water to be treated. Then, magnesium hydroxide is added, and the rare earth element and magnesium hydroxide are added. A coprecipitate is formed. When the target pH is not reached due to the addition of magnesium hydroxide, the pH is adjusted to a predetermined value using calcium hydroxide as a pH adjusting agent. If the target pH value is exceeded, it can be readjusted using acids such as hydrochloric acid, sulfuric acid, and nitric acid. Precipitation deposited before the addition of magnesium hydroxide is not preferable because it makes the filtration operation difficult due to extremely fine gel particles.

さらに本発明においては、必要に応じて、凝集剤を使用することもできる。この場合の凝集剤は、希土類元素イオン及び水酸化マグネシュウムの添加後沈澱した無機性陰イオンの沈澱物を凝集させるのに用いられ、沈殿物の固液分離をより容易にすることができる。具体例としては、塩化第1鉄、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、ポリ硫酸第一鉄、ポリ硫酸第二鉄等の無機系凝集剤の他、ポリアクリルアミドのカチオン化変性物、ポリアクリル酸ジメチルアミノエチルエステル、ポリメタクリル酸ジメチルアミノエチルエステル、ポリエチレンイミン、キトサン等のカチオン性有機系凝集剤、ポリアクリルアミド等のノニオン性有機系凝集剤、ポリアクリル酸、アクリルアミドとアクリル酸との共重合体及び/その塩等のアニオン性有機系凝集剤等が挙げられる。   Furthermore, in the present invention, a flocculant can be used as necessary. In this case, the flocculant is used to agglomerate the precipitate of the inorganic anion precipitated after the addition of the rare earth element ion and magnesium hydroxide, and the solid-liquid separation of the precipitate can be made easier. Specific examples include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, polyferrous sulfate, polyferric sulfate, and other inorganic flocculants, as well as polyacrylamide cationization. Denatured products, polyacrylic acid dimethylaminoethyl ester, polymethacrylic acid dimethylaminoethyl ester, cationic organic flocculants such as polyethyleneimine and chitosan, nonionic organic flocculants such as polyacrylamide, polyacrylic acid, acrylamide and acrylic And anionic organic flocculants such as a copolymer with an acid and / or a salt thereof.

一連の工程終了後、被処理水を固液分離処理する。この固液分離は常法により行なうことができ、例として、濾過分離、遠心分離、沈降分離等が挙げられるが、通常の濾過装置で十分固液分離可能である。   After the series of steps is completed, the water to be treated is subjected to solid-liquid separation treatment. This solid-liquid separation can be performed by a conventional method, and examples thereof include filtration separation, centrifugal separation, sedimentation separation, and the like. However, solid-liquid separation can be sufficiently performed with an ordinary filtration device.

連続式の反応槽と沈澱槽を用いて処理を行う場合は、沈殿の一部を反応槽に一部循環することもできる。更に上記一連の処理を行うことにより、沈澱物中に含有している希土類元素イオンと水酸化マグネシュウムを効率的に利用することができる。これによって溶存無機性イオンを更に低濃度まで除去することが可能となる。循環する沈殿物は、発生する沈澱物の10〜50質量%、好ましくは15〜30質量%である。   In the case where the treatment is performed using a continuous reaction tank and a precipitation tank, a part of the precipitate can be partially circulated in the reaction tank. Furthermore, by performing the above series of treatments, the rare earth element ions and magnesium hydroxide contained in the precipitate can be used efficiently. This makes it possible to remove dissolved inorganic ions to a lower concentration. The circulating precipitate is 10 to 50% by mass, preferably 15 to 30% by mass of the generated precipitate.

本発明によれば、生成した沈澱物の沈降速度は数秒〜数分と早く、また通常のろ過機により脱水したろ過スラッジは、含水率が60〜70%と極めて低含水率のスラッジを得ることができる。   According to the present invention, the sedimentation rate of the generated precipitate is as fast as several seconds to several minutes, and the sludge dehydrated by a normal filter obtains a sludge having a very low moisture content of 60 to 70%. Can do.

次に本発明を実施例に基づき詳細に説明する。
実施例1
ホウ酸イオンをホウ素濃度として50mg/L含み(ホウ酸イオンとして4.63mM)、pH6.5のモデル排水1Lに、硝酸セリウム水溶液(希土類元素の99%以上がセリウムであるCeOとして28.3質量%含有し、比重1.68)を2.5ml(CeOとして6.75mM)添加し、続いて攪拌しながら市販の40%濃度の水酸化マグネシュウムスラリー(商品名S−40、日本海水社製)10gを加えた。15分間攪拌し、沈降性の良いフロックが生成した。混合液のpH値は8.9であった。減圧濾過により固液分離し、濾液中のホウ素濃度を測定したところ、4.6mg/Lであった。また、16.0gのろ過スラッジが得られ、その含水率は68%であった。
Next, the present invention will be described in detail based on examples.
Example 1
It contains boric acid ions at a boron concentration of 50 mg / L (4.63 mM as boric acid ions), 1 L of model drainage with a pH of 6.5, an aqueous cerium nitrate solution (28.3 as CeO 2 in which 99% or more of the rare earth elements are cerium). 2.5% (6.75 mM as CeO 2 ) containing 0.5% by weight and having a specific gravity of 1.68) was added, followed by a commercially available 40% strength magnesium hydroxide slurry (trade name S-40, Nihonkaikai) with stirring. 10 g) was added. After stirring for 15 minutes, flocs with good sedimentation were formed. The pH value of the mixed solution was 8.9. Solid-liquid separation was performed by filtration under reduced pressure, and the boron concentration in the filtrate was measured and found to be 4.6 mg / L. Moreover, 16.0 g of filtration sludge was obtained, and the water content was 68%.

実施例2
ホウ酸イオンをホウ素濃度として30mg/L(ホウ酸イオンとして2.78mM)とリン酸イオンをリン濃度として30mg/L(リン酸イオンとして0.97mM)を含むモデル排水1L(pH7.8)に、実施例1で用いた硝酸セリウム水溶液2.5ml(CeOとして6.75mM)を添加し、続いて攪拌しながら40%濃度の水酸化マグネシュウムスラリー5gを加えた。混合液のpH8.34であった。さらに水酸化カルシュウムを用いてpH9.5に調整し、15分間攪拌した。沈降性の良いフロックが生成し、減圧濾過により固液分離し、ろ液中のホウ素濃度とリン濃度を測定したところ、ホウ素濃度4.1mg/L、リン濃度0.01mg/Lであった。
Example 2
Model wastewater 1L (pH 7.8) containing 30 mg / L of borate ion as boron concentration (2.78 mM as borate ion) and 30 mg / L as phosphate concentration (0.97 mM as phosphate ion) Then, 2.5 ml of an aqueous cerium nitrate solution used in Example 1 (6.75 mM as CeO 2 ) was added, followed by addition of 5 g of 40% strength magnesium hydroxide slurry with stirring. The pH of the mixed solution was 8.34. Furthermore, it adjusted to pH9.5 using calcium hydroxide, and stirred for 15 minutes. A floc with good sedimentation was generated, and solid-liquid separation was performed by filtration under reduced pressure. When the boron concentration and phosphorus concentration in the filtrate were measured, the boron concentration was 4.1 mg / L and the phosphorus concentration was 0.01 mg / L.

比較例1
実施例1、2で、水酸化マグネシュウムスラリーを添加しない以外は実施例1、2と同様にして処理し、0.1N苛性ソーダ液でpH9.5に調整したところ、いずれの場合もコロイド状の超微粒子のフロックが生成したが、減圧濾過をすると濾紙(No.5A)の目を通過し、固液分離ができなかった。
Comparative Example 1
In Examples 1 and 2, treatment was carried out in the same manner as in Examples 1 and 2 except that no magnesium hydroxide slurry was added, and the pH was adjusted to 9.5 with 0.1N caustic soda solution. Fine particle flocs were generated, but when filtered under reduced pressure, the filter paper (No. 5A) passed through and solid-liquid separation could not be performed.

比較例2
実施例1で、ホウ酸イオンをホウ素濃度として50mg/L、pH6.5のモデル排水1L(ホウ素イオンとして4.63mM)に、硝酸セリウム水溶液の代わりに、塩化ランタン水溶液(Laとして32.5質量%)を3.4g(LaO1.5として6.86mM)添加し、沈澱助剤として、硫酸ナトリウム1.0gを添加、続いて0.1N水酸化ナトリウム水溶液でpH11.0に調整して、15分間攪拌した。ふわふわとしたフロッグを形成し、実施例1に比べ、約2倍量の沈降体積の沈殿が生成した。これを減圧濾過により固液分離し、濾液中のホウ素濃度を測定したところ12.1mg/Lであった。また、ろ過スラッジの収量は18.4gが得られ、その含水率は79%であった。
Comparative Example 2
In Example 1, boric acid ions as boron concentration 50 mg / L, pH 6.5 model wastewater 1 L (boron ions as 4.63 mM), instead of cerium nitrate aqueous solution, lanthanum chloride aqueous solution (La 2 O 3 as 32 .5 mass%) was added (3.4 g (6.86 mM as LaO 1.5 )), 1.0 g of sodium sulfate was added as a precipitation aid, and the pH was adjusted to 11.0 with 0.1N aqueous sodium hydroxide solution. And stirred for 15 minutes. A fluffy frog was formed, and a sediment having a sedimentation volume about twice as much as that of Example 1 was formed. This was subjected to solid-liquid separation by filtration under reduced pressure, and the boron concentration in the filtrate was measured to be 12.1 mg / L. Moreover, the yield of the filtration sludge was 18.4g, and the water content was 79%.

実施例3
ホウ酸イオンをホウ素濃度として500mg/L含み、pH5.5のモデル排水1L(ホウ酸イオンとして46.3mM)に、塩化セリウム水溶液(希土類元素の95%以上がセリウムであるCeOとして31質量%含有)を25g(CeOとして45.0mM)添加し、続いて攪拌しながら40%濃度の水酸化マグネシュウムスラリー40gを加えた。15分間攪拌し、沈降性の良いフロックが生成した。混合液のpH値は9.6であった。減圧濾過により固液分離し、ろ液中のホウ素濃度を測定したところ、8.6mg/Lであった。また、76g(排水の7.6質量%相当)のろ過スラッジが得られ、その含水率は67%であった。
Example 3
Boron ion containing 500 mg / L as boron concentration, 1 L of model wastewater with pH 5.5 (46.3 mM as borate ion), 31% by mass as cerium chloride aqueous solution (CeO 2 in which 95% or more of rare earth elements are cerium) 25 g (45.0 mM as CeO 2 ) was added, followed by 40 g of magnesium hydroxide slurry of 40% concentration with stirring. After stirring for 15 minutes, flocs with good sedimentation were formed. The pH value of the mixed solution was 9.6. Solid-liquid separation was performed by vacuum filtration, and the boron concentration in the filtrate was measured and found to be 8.6 mg / L. Moreover, 76 g (equivalent to 7.6% by mass of the waste water) of filtered sludge was obtained, and the water content was 67%.

比較例3
実施例3のモデル排水1Lに、凝集沈澱剤として硫酸アルミニュウム20gと消石灰30gを添加し、15分攪拌した。沈降性は良くないが減圧濾過により固液分離し、ろ液中のホウ素濃度を測定したところ、14.1mg/Lであった。156g(排水の15.6質量%相当)のべとべとしたろ過スラッジを得、その含水率は72%であった。
Comparative Example 3
20 g of aluminum sulfate and 30 g of slaked lime were added to 1 L of the model waste water of Example 3 as a coagulating precipitant and stirred for 15 minutes. Although sedimentation was not good, solid-liquid separation was performed by filtration under reduced pressure, and the boron concentration in the filtrate was measured and found to be 14.1 mg / L. 156 g (corresponding to 15.6% by mass of the waste water) of sticky filtration sludge was obtained, and the water content was 72%.

実施例4
リン酸二水素カリウムをリン濃度で300mg/Lに溶解したリン酸イオン含有モデル排水(pH9.3)を0.1N塩酸により、pH7.5に調節した液、1L(リン酸イオンとして9.67mM)に、塩化セリウム水溶液(希土類元素の95%以上がセリウムであるCeOとして31質量%含有)を4.0g(CeOとして7.2mM)添加し、続いて攪拌しながら40%濃度の水酸化マグネシュウムスラリー10gを加えた。添加後のpH値は9.6であった。15分間攪拌し、沈降性の良いフロックが生成した。減圧濾過により固液分離し、ろ液中のリン濃度を測定したところ、1.2mg/Lであった。また、15.8g(排水の1.6質量%相当)のろ過スラッジが得られ、その含水率は65%であった。
Example 4
A phosphate ion-containing model waste water (pH 9.3) in which potassium dihydrogen phosphate is dissolved at a phosphorus concentration of 300 mg / L is adjusted to pH 7.5 with 0.1 N hydrochloric acid, 1 L (9.67 mM as phosphate ions) ) 4.0 g (7.2 mM as CeO 2 ) of an aqueous cerium chloride solution (containing 31% by mass as CeO 2 in which 95% or more of the rare earth element is cerium) is added, followed by 40% strength water with stirring. 10 g of magnesium oxide slurry was added. The pH value after addition was 9.6. After stirring for 15 minutes, flocs with good sedimentation were formed. Solid-liquid separation was performed by vacuum filtration, and the phosphorus concentration in the filtrate was measured and found to be 1.2 mg / L. Moreover, 15.8g (equivalent to 1.6 mass% of waste_water | drain) filtration sludge was obtained, and the moisture content was 65%.

比較例4
実施例4で、リン濃度で300mg/Lに溶解したリン酸含有モデル排水(pH9.3)のpH調整をしない以外は、実施例4と同様にして処理したところ、塩化セリウム水溶液を添加した直後に沈澱が生成し、続いて水酸化マグネシュウムスラリー10gを加えた後のpHは11.2を示した。このろ液中のリン濃度は13mg/Lであった。
Comparative Example 4
In Example 4, except that the pH of the phosphoric acid-containing model waste water (pH 9.3) dissolved at 300 mg / L in phosphorus concentration was not adjusted, the treatment was performed in the same manner as in Example 4, but immediately after the addition of the cerium chloride aqueous solution. A precipitate was formed, and the pH after adding 10 g of magnesium hydroxide slurry was 11.2. The phosphorus concentration in the filtrate was 13 mg / L.

比較例5
実施例4で、水酸化マグネシュウムスラリーを硫酸アルミニュウムに代えて4g添加して、pH調整剤として水酸化カルシュウムを使用してpH9.2に調節し、実施例4と同様にして処理したところ、ろ液中のリン濃度は26mg/Lであった。
Comparative Example 5
In Example 4, 4 g of the magnesium hydroxide slurry was added instead of aluminum sulfate, and the pH was adjusted to 9.2 using calcium hydroxide as a pH adjuster. The phosphorus concentration in the liquid was 26 mg / L.

実施例5
砒酸二水素カリウムを砒素濃度で5mg/Lに溶解した砒素イオン含有モデル排水(pH6.2)1L(砒酸イオンとして0.067mM)に、塩化セリウム水溶液(希土類元素の95%以上がセリウムであるCeOとして31質量%含有)を0.5g(CeOとして0.9mM)添加し、続いて攪拌しながら40%濃度の水酸化マグネシュウムスラリー2.5gを加えた。添加後のpH値は7.5であった。水酸化カルシュウムを用いてpH9.2に調整し、15分間攪拌し、沈降性の良いフロックが生成した。減圧濾過により固液分離し、ろ液中の砒素濃度を測定したところ、0.01mg/Lであった。
Example 5
1L of arsenic ion-containing model wastewater (pH 6.2) dissolved in potassium dihydrogen arsenide at 5mg / L in arsenic concentration (0.067mM as arsenic ion) (CeO in which 95% or more of rare earth elements are cerium) 2 as a 31 wt% content) was added 0.5 g (0.9 mM as CeO 2), followed by the addition with stirring of a 40% strength hydroxide magnesium slurry 2.5 g. The pH value after the addition was 7.5. The pH was adjusted to 9.2 using calcium hydroxide, and the mixture was stirred for 15 minutes to produce flocs with good sedimentation. Solid-liquid separation was performed by filtration under reduced pressure, and the arsenic concentration in the filtrate was measured and found to be 0.01 mg / L.

実施例6
フッ素イオンとリン酸イオンを含有するモデル排水として、フッ素3mg/Lとリン6mg/Lを含有するモデル排水(pH5.8)1L(F:0.15mM、P:0.19mM)に、塩化セリウム水溶液(希土類元素の95%以上がセリウムであるCeOとして31質量%含有)を2g(CeOとして3.6mM)添加し、続いて攪拌しながら40%濃度の水酸化マグネシュウムスラリー5gを加えた。添加後のpH値は7.5であった。水酸化カルシュウムを用いてpH9.5に調整し、15分間攪拌し、沈降性の良いフロックが生成した。減圧濾過により固液分離し、ろ液中のフッ素濃度とリン濃度を測定したところ、フッ素0.2mg/L、リン0.01mg/Lであった。
Example 6
As model wastewater containing fluorine ions and phosphate ions, 1 L of model wastewater (pH 5.8) containing fluorine 3 mg / L and phosphorus 6 mg / L (F: 0.15 mM, P: 0.19 mM) was added to cerium chloride. 2 g of an aqueous solution (containing 31% by mass as CeO 2 in which 95% or more of the rare earth element is cerium) was added (3.6 mM as CeO 2 ), and then 5 g of 40% strength magnesium hydroxide slurry was added with stirring. . The pH value after the addition was 7.5. The pH was adjusted to 9.5 using calcium hydroxide, and the mixture was stirred for 15 minutes to produce a floc with good sedimentation. Solid-liquid separation was performed by filtration under reduced pressure, and the fluorine concentration and phosphorus concentration in the filtrate were measured. The results were 0.2 mg / L fluorine and 0.01 mg / L phosphorus.

実施例7
ホウ酸イオンとしてホウ素濃度30mg/L(ホウ酸イオンとして2.78mM)のモデル排水(pH5.8)に、硝酸セリウム水溶液(希土類元素の99%以上がセリウムであるCeOとして28.3質量%含有し、比重1.68)を2.0ml(CeOとして3.50mM)添加し、続いて攪拌しながら40%濃度の水酸化マグネシュウムスラリー5gを加えた。混合液のpH7.9であった。さらに水酸化カルシュウムを用いてpH9.5に調整し、15分間攪拌し、沈降性の良いフロックが生成した。減圧濾過により固液分離し、濾液中のホウ素濃度を測定したところ、1.6mg/Lであった。
Example 7
To a model waste water (pH 5.8) having a boron concentration of 30 mg / L as borate ion (2.78 mM as borate ion), an aqueous cerium nitrate solution (28.3 mass% as CeO 2 in which 99% or more of the rare earth element is cerium). Containing, specific gravity 1.68) was added 2.0 ml (3.50 mM as CeO 2 ), followed by addition of 5 g of 40% strength magnesium hydroxide slurry with stirring. The pH of the mixed solution was 7.9. Further, the pH was adjusted to 9.5 using calcium hydroxide, and the mixture was stirred for 15 minutes to produce a floc with good sedimentation. Solid-liquid separation was performed by vacuum filtration, and the boron concentration in the filtrate was measured and found to be 1.6 mg / L.

比較例6
実施例7で、水酸化カルシュウムによるpH調整を行わない(pH7.9)以外は、実施例7と同様に処理をした場合、及び水酸化カルシュウムを用いてpH11.5に調整した以外は実施例7と同様に処理した場合の濾液中のホウ素濃度は、それぞれ6.9mg/Lと8.2mg/Lであった。
Comparative Example 6
In Example 7, except that pH adjustment with calcium hydroxide was not performed (pH 7.9), the treatment was performed in the same manner as in Example 7, and the pH value was adjusted to 11.5 using calcium hydroxide. The boron concentrations in the filtrate when treated in the same manner as in No. 7 were 6.9 mg / L and 8.2 mg / L, respectively.

Claims (9)

有害な無機性陰イオンを含有する被処理水に、該処理水のpHが8を超えているときは8以下に調整した後、少なくともセリウムの塩を主成分として含有する希土類元素の塩溶液及び水酸化マグネシュウムを存在させ、pH8〜11にて該無機性イオンを難溶性沈澱として生成させ、固液分離することを特徴とする有害な無機性陰イオンの固定化除去方法。 A rare earth element salt solution containing at least a cerium salt as a main component after adjusting to pH 8 or less when the pH of the treated water exceeds 8 when the treated water containing harmful inorganic anions A method for immobilizing and removing harmful inorganic anions, characterized in that magnesium hydroxide is present, the inorganic ions are produced as hardly soluble precipitates at a pH of 8 to 11, and solid-liquid separation is performed. 有害な無機性陰イオンがリン酸イオン、ホウ酸イオン、フッ素イオン、砒酸イオンの一種又は2種以上である請求項1に記載の無機性陰イオンの固定化除去方法。 The method for immobilizing and removing inorganic anions according to claim 1, wherein the harmful inorganic anions are one or more of phosphate ions, borate ions, fluorine ions and arsenate ions. 希土類元素の塩が少なくともセリウムの塩を90質量%以上含有する請求項1又は2に記載の有害な無機性陰イオンの固定化除去方法。 The method for immobilizing and removing harmful inorganic anions according to claim 1 or 2, wherein the rare earth element salt contains at least 90% by mass of a cerium salt. 水酸化マグネシュウムが濃度25〜45質量%の水スラリーである請求項1〜3のいずれか1項に記載の有害な無機性陰イオンの固定化除去方法。 The method for immobilizing and removing harmful inorganic anions according to any one of claims 1 to 3, wherein the magnesium hydroxide is a water slurry having a concentration of 25 to 45 mass%. pH調整剤を使用する請求項1〜4のいずれか1項に記載の有害な無機性陰イオンの固定化除去方法。 The method for immobilizing and removing harmful inorganic anions according to any one of claims 1 to 4, wherein a pH adjuster is used. pH調整剤が水酸化カルシウムである請求項5記載の有害な無機性陰イオンの固定化除去方法。 6. The method for immobilizing and removing harmful inorganic anions according to claim 5, wherein the pH adjusting agent is calcium hydroxide. 少なくともセリウムの塩を主成分として含む希土類元素の塩及び水酸化マグネシュウムからなる、有害な無機性陰イオンを含有する被処理水からそれらイオンを固定化除去するための薬剤。 An agent for immobilizing and removing ions from water to be treated containing harmful inorganic anions, comprising a rare earth element salt containing at least a cerium salt as a main component and magnesium hydroxide. 希土類元素の塩が少なくともセリウムの塩を90質量%以上含有する請求項7に記載の薬剤。 The drug according to claim 7, wherein the rare earth element salt contains at least 90% by mass of a cerium salt. 水酸化マグネシュウムが濃度25〜45質量%の水スラリーである請求項7に記載の薬剤。 The drug according to claim 7, wherein the magnesium hydroxide is a water slurry having a concentration of 25 to 45 mass%.
JP2005166331A 2005-06-07 2005-06-07 Harmful inorganic anion fixing and removing method, and fixing agent used therefor Pending JP2006341139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166331A JP2006341139A (en) 2005-06-07 2005-06-07 Harmful inorganic anion fixing and removing method, and fixing agent used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166331A JP2006341139A (en) 2005-06-07 2005-06-07 Harmful inorganic anion fixing and removing method, and fixing agent used therefor

Publications (1)

Publication Number Publication Date
JP2006341139A true JP2006341139A (en) 2006-12-21

Family

ID=37638503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166331A Pending JP2006341139A (en) 2005-06-07 2005-06-07 Harmful inorganic anion fixing and removing method, and fixing agent used therefor

Country Status (1)

Country Link
JP (1) JP2006341139A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016103A (en) * 2009-07-10 2011-01-27 Kureha Ecology Management Co Ltd Method for detoxifying exhaust gas from incinerator
JP2012045461A (en) * 2010-08-25 2012-03-08 Shimizu Corp Method for treating boron-containing water
JP2017225964A (en) * 2016-06-15 2017-12-28 有限会社シングレット開発 Environmental cleanup tool using tennis ball, manufacturing method, use method and application thereof
US10040710B2 (en) 2009-07-06 2018-08-07 Dober Chemical Corporation Use of a dual polymer system for enhanced water recovery and improved separation of suspended solids and other substances from an aqueous media
JP2020081951A (en) * 2018-11-22 2020-06-04 オルガノ株式会社 Water treatment method and water treatment apparatus
US10865461B2 (en) 2015-09-02 2020-12-15 Molibdenos Y Metales S.A. Method for removing arsenic from materials containing same
JP2021053640A (en) * 2020-12-28 2021-04-08 株式会社日本海水 Hazardous substance remover and method for treating hazardous substance using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000962A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Process for removal and removing agent of fluorine ion
JP2004000963A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Treatment method of boron-containing drainage, and medicament used for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000962A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Process for removal and removing agent of fluorine ion
JP2004000963A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Treatment method of boron-containing drainage, and medicament used for the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040710B2 (en) 2009-07-06 2018-08-07 Dober Chemical Corporation Use of a dual polymer system for enhanced water recovery and improved separation of suspended solids and other substances from an aqueous media
JP2011016103A (en) * 2009-07-10 2011-01-27 Kureha Ecology Management Co Ltd Method for detoxifying exhaust gas from incinerator
JP2012045461A (en) * 2010-08-25 2012-03-08 Shimizu Corp Method for treating boron-containing water
US10865461B2 (en) 2015-09-02 2020-12-15 Molibdenos Y Metales S.A. Method for removing arsenic from materials containing same
JP2017225964A (en) * 2016-06-15 2017-12-28 有限会社シングレット開発 Environmental cleanup tool using tennis ball, manufacturing method, use method and application thereof
JP2020081951A (en) * 2018-11-22 2020-06-04 オルガノ株式会社 Water treatment method and water treatment apparatus
JP7189744B2 (en) 2018-11-22 2022-12-14 オルガノ株式会社 Water treatment method and water treatment equipment
JP2021053640A (en) * 2020-12-28 2021-04-08 株式会社日本海水 Hazardous substance remover and method for treating hazardous substance using the same
WO2022145278A1 (en) * 2020-12-28 2022-07-07 株式会社日本海水 Harmful substance remover and method for treating harmful substance with use of same
JP7370312B2 (en) 2020-12-28 2023-10-27 株式会社日本海水 Hazardous substance remover, method for producing a hazardous substance remover, and method for treating hazardous substances using a hazardous substance remover

Similar Documents

Publication Publication Date Title
US6802980B1 (en) Arsenic removal in conjunction with lime softening
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
US20130118985A1 (en) Heavy metal removal from waste streams
CN108483682A (en) A kind of complexing agent removing calcium ions and magnesium ions in water removal
EP2792645B1 (en) Process for removing fluorides from water
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
WO2008082961A1 (en) Method and apparatus for removing arsenic from a solution
JP2013244481A (en) Method and apparatus for treating strontium-containing wastewater, and strontium adsorbent slurry
JP4293520B2 (en) Fluorine ion removal method and remover
JP4014276B2 (en) Treatment method for boron-containing wastewater
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JPH10128313A (en) Method for removing heavy metal from photographic waste solution
JP2006036995A (en) Soil conditioner and use thereof
JP4289451B2 (en) Fluorine-containing wastewater treatment method and chemicals used therefor
JP4210509B2 (en) Method for treating boron-containing water
JPH10146589A (en) Method for recovery of iron in photographic discharge liquid
JP2001232372A (en) Treatment process for water containing boron
JP6888798B2 (en) Boron removal method and boron removal device
JP2006263603A (en) Method for treating boron-containing water
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
CN106542672B (en) Method for removing fluorine in tungsten ion exchanged liquid
JP2737614B2 (en) Treatment of flue gas desulfurization wastewater
JP4393616B2 (en) Boron fixing agent and treatment method of boron-containing waste water
JP5483431B2 (en) Method for removing boron from boron-containing wastewater
JP2907158B2 (en) Treatment method for wastewater containing fluorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Effective date: 20090731

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110808

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20111005

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20111021

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120224

Free format text: JAPANESE INTERMEDIATE CODE: A02