JP6008455B1 - How to handle hazardous substances - Google Patents

How to handle hazardous substances Download PDF

Info

Publication number
JP6008455B1
JP6008455B1 JP2015081754A JP2015081754A JP6008455B1 JP 6008455 B1 JP6008455 B1 JP 6008455B1 JP 2015081754 A JP2015081754 A JP 2015081754A JP 2015081754 A JP2015081754 A JP 2015081754A JP 6008455 B1 JP6008455 B1 JP 6008455B1
Authority
JP
Japan
Prior art keywords
harmful substance
water
treated
harmful substances
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015081754A
Other languages
Japanese (ja)
Other versions
JP2016198740A (en
Inventor
伊藤 晴彦
晴彦 伊藤
伊藤 智彦
智彦 伊藤
渋谷 徹
徹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kaisui Co Ltd
Original Assignee
Nihon Kaisui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kaisui Co Ltd filed Critical Nihon Kaisui Co Ltd
Priority to JP2015081754A priority Critical patent/JP6008455B1/en
Application granted granted Critical
Publication of JP6008455B1 publication Critical patent/JP6008455B1/en
Publication of JP2016198740A publication Critical patent/JP2016198740A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

【課題】本発明は、被処理水に含有される有害物質を、簡便な方法で、効率良く除去することができ、更に処理時に発生する沈殿物を減容化及び減量化できる有害物質の処理方法を提供することを目的とする。【解決手段】有害物質を含有する被処理水にセリウム化合物を添加し、アルカリ金属の水酸化物を用いてpHを8〜10に調整し、前記有害物質を不溶性沈殿物として生成させる工程を有することを特徴とする有害物質の処理方法。前記有害物質を不溶性沈殿物として生成させる工程の後に、生成した不溶性沈殿物を分離し、脱水する工程を有することが好ましい。【選択図】なしDisclosed is a treatment of harmful substances that can efficiently remove harmful substances contained in water to be treated by a simple method, and that can reduce and reduce the amount of precipitates generated during the treatment. It aims to provide a method. The method includes adding a cerium compound to water to be treated containing a harmful substance, adjusting the pH to 8 to 10 using an alkali metal hydroxide, and generating the harmful substance as an insoluble precipitate. A method for treating harmful substances characterized by the above. It is preferable to have a step of separating and dewatering the generated insoluble precipitate after the step of generating the harmful substance as an insoluble precipitate. [Selection figure] None

Description

本発明は、セレン、ヒ素、六価クロム、フッ素、ホウ素、リン等の有害物質を含む被処理水における有害物質の処理方法に関する。   The present invention relates to a method for treating harmful substances in water to be treated containing harmful substances such as selenium, arsenic, hexavalent chromium, fluorine, boron and phosphorus.

セレン、ヒ素、六価クロム、フッ素、ホウ素、リン等の有害物質を含む排水は、環境基準、及び排水基準により遵守すべき基準値が定められている。従来、これらの有害物質を含む排水の処理方法としてはイオン交換体による吸着法、薬品、及び電解による還元処理法、鉄塩による共沈法、アルミニウム塩、及びカルシウム塩による凝集沈殿法が知られている。   For wastewater containing toxic substances such as selenium, arsenic, hexavalent chromium, fluorine, boron, phosphorus, etc., the standard value that should be observed is defined by the environmental standards and wastewater standards. Conventionally, methods for treating wastewater containing these harmful substances include adsorption methods using ion exchangers, reduction treatment methods using chemicals and electrolysis, coprecipitation methods using iron salts, and coagulation precipitation methods using aluminum salts and calcium salts. ing.

これらの有害物質が複数混在する排水が排出されるものとして、石炭火力発電所の脱硫排水や廃棄物処分場の浸出水等が挙げられる。石炭火力発電所から排出される排水は、排出される石炭火力発電所により或いは使用される石炭の産地により含有される有害物質が異なり、浄化処理を必要とする有害物質も多種にわたり、水量も多い。これらの異なる排水に含有される有害物質を合理的に効率良く処理することが環境保全の面から必要である。
一方、廃棄物処分場の浸出水の組成は埋立物に由来することが多いが、周辺pHの変化や埋立層の環境変化に対する各種成分の物理化学的、生物化学的特性が関係し、有害物質が複数混在する状況もある。
Examples of wastewater that contains a mixture of these harmful substances include desulfurization wastewater from coal-fired power plants and leachate from waste disposal sites. Wastewater discharged from coal-fired power plants differs depending on the discharged coal-fired power plant or the locality of the coal used, and there are many types of harmful materials that require purification treatment, and the amount of water is large. . From the viewpoint of environmental conservation, it is necessary to reasonably and efficiently treat harmful substances contained in these different wastewaters.
On the other hand, the composition of leachate in waste disposal sites is often derived from landfills, but the physicochemical and biochemical characteristics of various components with respect to changes in the surrounding pH and environmental changes in the landfill layer are related to hazardous substances. There is also a situation where there is a mixture of two or more.

前記有害物質を含む排水の処理方法としては、例えば特許文献1では半焼成ドロマイトを用いた凝集沈殿法、又はカラム吸着法による重金属イオン、及びリン酸イオンの処理方法が提案されているが、半焼成ドロマイトを用いることで処理水のpHがpH=11程度まで上昇する。そのため、放流前には酸等を添加し、再度pHを下げる工程が必要となる。又、半焼成ドロマイトは粉末状として添加しており、二段凝沈も必要となる場合もあるため、処理時に発生する汚泥量も膨大となる。   For example, Patent Document 1 proposes a method for treating heavy metal ions and phosphate ions by a coagulation-precipitation method using semi-baked dolomite or a column adsorption method as a method for treating waste water containing harmful substances. By using calcined dolomite, the pH of the treated water rises to about pH = 11. Therefore, a step of adding an acid or the like and lowering the pH again before discharging is necessary. Moreover, since the semi-baked dolomite is added as a powder and two-stage coagulation may be required, the amount of sludge generated during the treatment becomes enormous.

一方、特許文献2では排水pHを酸性域に調整後、アルミニウム化合物を添加し、鉄材、及び酸素ガスを注入し、その後、カルシウム化合物を添加し、再度pHをアルカリ域に調整することで凝集沈殿させるセレン類、フッ素類、ホウ素類化合物の処理方法が提案されている。しかし、各種処理対象物の処理能力は十分なものではなく、処理工程も繁雑であるため、処理設備の規模が大きくなるという問題点がある。   On the other hand, in Patent Document 2, after adjusting the drainage pH to an acidic range, an aluminum compound is added, an iron material and oxygen gas are injected, and then a calcium compound is added, and the pH is adjusted to an alkaline range again to perform aggregation precipitation. A method for treating selenium, fluorine and boron compounds to be produced has been proposed. However, there is a problem in that the processing capacity of various objects to be processed is not sufficient and the processing steps are complicated, resulting in an increase in the size of the processing equipment.

又、特許文献3、及び特許文献4では還元性鉄化合物、又は生物脱窒処理による重金属イオン、及びフッ素イオンの処理方法が提案されているが、処理条件として窒素パージ、密閉構造による非酸化性雰囲気下とすること、液温を管理すること、生物訓養等の生物管理を必要とすることなど処理工程が繁雑、且つ難解であるという問題点がある。   Patent Document 3 and Patent Document 4 propose a method for treating a reducing iron compound or heavy metal ions and fluorine ions by biological denitrification treatment. There is a problem that the treatment process is complicated and difficult, such as the atmosphere, the liquid temperature management, and the biological management such as biological training.

特許文献5には、フッ素と重金属を含有する有害物質を含む処理対象物(ただし、リン酸を含まない)に、水酸化カルシウムを添加した後、塩化セリウムを添加して前記有害物質を含有する沈殿を生成する有害物質の不溶化処理方法が提案されている。しかし、この方法では、水酸化カルシウムを添加するため、生成する沈殿物質の発生量が多くなる。沈殿物質は、所定の含水率まで脱水後、産業廃棄物として処理されるのが一般的である。産業廃棄物の処理は、処分費用が高く、有害物質の含有量が多いと、特定化学物質扱いとなり、更に処分費用が高くなり、沈殿物質の発生量が多いと廃棄処理にコストがかかる等の問題がある。   In Patent Document 5, after adding calcium hydroxide to a treatment object (but not including phosphoric acid) containing a harmful substance containing fluorine and heavy metal, cerium chloride is added to contain the harmful substance. A method for insolubilizing harmful substances that generate precipitates has been proposed. However, in this method, since calcium hydroxide is added, the amount of generated precipitated substances increases. The precipitated substance is generally treated as industrial waste after dehydration to a predetermined moisture content. The disposal of industrial waste is high in disposal costs, and if the content of harmful substances is high, it becomes treated as a specified chemical substance.In addition, disposal costs increase, and if the amount of precipitated substances generated is high, the disposal processing costs high. There's a problem.

特開2011−240325号公報JP 2011-240325A 特開2011−200848号公報JP 2011-200848 特開2006−263699号公報JP 2006-263699 A 特開平9−290297号公報Japanese Patent Laid-Open No. 9-290297 特許第5608352号公報Japanese Patent No. 5608352

本発明は、被処理水に含有される有害物質を、簡便な方法で、効率良く除去することができ、更に処理時に発生する沈殿物を減容化及び減量化できる有害物質の処理方法を提供することを目的とする。   The present invention provides a method for treating harmful substances that can efficiently remove harmful substances contained in water to be treated by a simple method, and that can reduce and reduce the amount of sediment generated during treatment. The purpose is to do.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、被処理水中にセリウム化合物を添加し、特定のpH調整剤を用いてpHを8〜10に調整することで被処理水中に存在する有害物質を不溶性沈殿物として処理でき、また、処理時に発生する沈殿物を減容化及び減量化することができることを見いだし、この知見に基づき本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have added a cerium compound to the water to be treated, and adjusted the pH to 8 to 10 using a specific pH adjuster, thereby treating the water to be treated. The present inventors have found that harmful substances present in can be treated as insoluble precipitates, and that the precipitates generated during the treatment can be reduced in volume and volume. Based on this finding, the present invention has been completed.

すなわち、本発明は、以下のとおりである。
(1)有害物質を含有する被処理水にセリウム化合物を添加し、アルカリ金属の水酸化物を用いてpHを8〜10に調整し、前記有害物質を不溶性沈殿物として生成させる工程を有することを特徴とする有害物質の処理方法であって、前記有害物質を不溶性沈殿物として生成させる工程の後に、生成した不溶性沈殿物を分離し、脱水する工程を有し、前記セリウム化合物がセリウムの酸化物、水酸化物、炭酸塩、ハロゲン化物から選ばれるセリウム化合物であり、前記有害物質がセレン、ヒ素、六価クロム、フッ素、ホウ素、リンからなる群から選択される2種以上を少なくとも含み、前記有害物質を2種以上同時に処理することを特徴とする有害物質処理時に発生する沈殿物の減容化及び減量化処理方法。
(2)有害物質を含有する被処理水にセリウム化合物を添加し、アルカリ金属の水酸化物を用いてpHを8〜10に調整し、前記有害物質を不溶性沈殿物として生成させる工程を有することを特徴とする有害物質の処理方法であって、前記有害物質を不溶性沈殿物として生成させる工程の後に、生成した不溶性沈殿物を分離し、脱水する工程を有し、前記セリウム化合物がセリウムの酸化物、水酸化物、炭酸塩、ハロゲン化物から選ばれるセリウム化合物であり、前記有害物質がセレン、ヒ素、六価クロム、フッ素、ホウ素、リン、Cd、Pb、Mn、Cu、Znを少なくとも含み、前記有害物質を同時に処理することを特徴とする有害物質処理時に発生する沈殿物の減容化及び減量化処理方法。
That is, the present invention is as follows.
(1) having a step of adding a cerium compound to water to be treated containing a harmful substance, adjusting the pH to 8 to 10 using an alkali metal hydroxide, and generating the harmful substance as an insoluble precipitate; A method for treating harmful substances , comprising: a step of separating and dehydrating the generated insoluble precipitates after the step of generating the harmful substances as insoluble precipitates, wherein the cerium compound is an oxide of cerium. A cerium compound selected from an oxide, a hydroxide, a carbonate, and a halide, wherein the harmful substance includes at least two or more selected from the group consisting of selenium, arsenic, hexavalent chromium, fluorine, boron, and phosphorus, A method for reducing the volume and reducing the amount of precipitates generated during the treatment of harmful substances, wherein two or more kinds of the harmful substances are treated simultaneously .
(2) having a step of adding a cerium compound to the water to be treated containing a harmful substance, adjusting the pH to 8 to 10 using an alkali metal hydroxide, and generating the harmful substance as an insoluble precipitate; A method for treating harmful substances, comprising: a step of separating and dehydrating the generated insoluble precipitates after the step of generating the harmful substances as insoluble precipitates, wherein the cerium compound is an oxide of cerium. A cerium compound selected from an oxide, a hydroxide, a carbonate, and a halide, and the harmful substance includes at least selenium, arsenic, hexavalent chromium, fluorine, boron, phosphorus, Cd, Pb, Mn, Cu, Zn, A method for reducing the volume and reducing the amount of precipitate generated during the hazardous substance treatment, wherein the harmful substances are treated simultaneously .

本発明の方法によれば、被処理水中に単独で存在する、又は2種以上混在する有害物質を、簡便な方法により効率良く処理することができる。又、生成する不溶性沈殿物を減容化及び減量化できることから、特に固液分離のための沈殿池などは不要であり、処理施設を小型化でき、また沈殿物(汚泥スラッジ)の脱水、廃棄等の処理コストを低減させることができる。   According to the method of the present invention, it is possible to efficiently treat harmful substances that are present alone or in a mixture of two or more in treated water by a simple method. In addition, because the volume of insoluble precipitate produced can be reduced and reduced, there is no need for a sedimentation basin for solid-liquid separation in particular, the processing facility can be downsized, and sediment (sludge sludge) can be dehydrated and discarded The processing cost such as can be reduced.

以下、本発明について詳細に説明する。
本発明の処理方法は、被処理水中にセリウム化合物を添加し、アルカリ金属の水酸化物を用いてpHを8〜10に調整し、有害物質を不溶性沈殿物として生成させる工程を有する。セリウム化合物を添加し、pHを8〜10に調整することによって、被処理水中に単独で存在する、又は2種以上混在する有害物質とセリウムとが結合して効率的に不溶性沈殿物を生成させる。これは添加したセリウムが有害物質の固定剤としての役割を果たすためである。
Hereinafter, the present invention will be described in detail.
The treatment method of the present invention includes a step of adding a cerium compound to the water to be treated, adjusting the pH to 8 to 10 using an alkali metal hydroxide, and generating harmful substances as insoluble precipitates. By adding a cerium compound and adjusting the pH to 8 to 10, a harmful substance that is present alone or in a mixture of two or more types and cerium are combined, and an insoluble precipitate is efficiently generated. . This is because the added cerium serves as a fixing agent for harmful substances.

被処理水へ添加するセリウム化合物に特に制限はなく、適宜選択することができ、セリウムの酸化物、水酸化物、炭酸塩、硫酸塩、ハロゲン化物等が挙げられる。セリウム化合物は、溶液として使用することがハンドリング性が良く、好ましい。セリウム化合物の溶液としては、セリウムの酸化物、水酸化物、炭酸塩、硫酸塩、ハロゲン化物の水溶液、又は塩酸溶液等を用いることができる。   There is no restriction | limiting in particular in the cerium compound added to to-be-processed water, It can select suitably, A cerium oxide, a hydroxide, carbonate, a sulfate, a halide, etc. are mentioned. The cerium compound is preferably used as a solution because of its good handleability. As the cerium compound solution, cerium oxide, hydroxide, carbonate, sulfate, halide aqueous solution, hydrochloric acid solution, or the like can be used.

セリウム化合物の添加量は、被処理水に含有される有害物質の種類及び含有量に応じて調整することができる。一般に、有害物質の含有量が多い場合は、添加量を多くし、有害物質が少ない場合は添加量を少なくする。
セリウム化合物を溶液として使用する場合は、溶液におけるセリウム濃度を濃くすることで、添加する溶液の量を減らすことができる。セリウム化合物を含有する溶液の濃度はセリウム酸化物を20質量%以上含有することが好ましく、30質量%以上含有することがより好ましい。
The addition amount of a cerium compound can be adjusted according to the kind and content of the hazardous | toxic substance contained in to-be-processed water. Generally, when the content of harmful substances is large, the amount added is increased, and when the amount of harmful substances is small, the amount added is decreased.
When a cerium compound is used as a solution, the amount of the solution to be added can be reduced by increasing the cerium concentration in the solution. The concentration of the solution containing the cerium compound is preferably 20% by mass or more and more preferably 30% by mass or more of cerium oxide.

セリウム化合物を添加後、被処理水のpHを8〜10に調整することで、効率的に被処理水中に単独で存在する、又は2種以上混在する有害物質とセリウムが結合して不溶性沈殿物を生成する。pHが8未満であると、有害物質の処理が不十分となる。pHが8未満であると、有害物質のうち、フッ素、ヒ素、セレンのように処理される物質もあるが、ホウ素、リン、鉛、マンガン、亜鉛等は除去されず、様々な有害物質を含有する被処理水に対応できない。pHは8〜10であれば、2種以上の有害物質を含有する被処理水においても十分な処理が可能となる。
pHは8〜10に調整するが、被処理水に含有される処理対象元素により適する処理pH域の好ましい値が異なる。例えば、六価セレン、フッ素はpH=8付近で処理性能が高く、ホウ素はpH=9付近で処理性能が高い。そのため、処理対象元素の濃度、及び処理目標に合わせたpH調整が有効である。
After adding the cerium compound, the pH of the water to be treated is adjusted to 8 to 10 so that the cerium is effectively combined with the harmful substance that is present alone or in a mixture of two or more insoluble precipitates. Is generated. When the pH is less than 8, the harmful substances are not sufficiently treated. If the pH is less than 8, some of the harmful substances are treated like fluorine, arsenic, selenium, but boron, phosphorus, lead, manganese, zinc, etc. are not removed and contain various harmful substances. Cannot handle the treated water. If the pH is 8 to 10, sufficient treatment is possible even in water to be treated containing two or more harmful substances.
Although pH is adjusted to 8-10, the preferable value of the process pH range suitable for the process target element contained in to-be-processed water differs. For example, hexavalent selenium and fluorine have high processing performance around pH = 8, and boron has high processing performance around pH = 9. For this reason, it is effective to adjust the pH according to the concentration of the element to be processed and the processing target.

この際、pH調整に使用する薬剤として、アルカリ金属の水酸化物を用いる。例えば水酸化ナトリウム、水酸化カリウムなどが挙げられる。
pH調整に使用する薬剤として、水酸化カルシウム、及び水酸化マグネシウム等を使用した場合、水酸化ナトリウム等を使用した場合と比較し、処理後の沈殿物(汚泥スラッジ)発生量が増加する。
At this time, an alkali metal hydroxide is used as a drug used for pH adjustment. Examples thereof include sodium hydroxide and potassium hydroxide.
When calcium hydroxide, magnesium hydroxide, or the like is used as a drug used for pH adjustment, the amount of precipitate (sludge sludge) generated after treatment is increased as compared with the case of using sodium hydroxide or the like.

これらpH調整に使用する薬剤は液状として使用すると、添加の際はポンプ等を使用することができ、簡便、且つ薬剤保管も容易である。粉末状の薬剤もpH調整用途として使用することが可能であるが、添加時には粉体供給装置が必要となり、設備費用が増加することの他、液状で使用した場合と比較し、往々に処理後の沈殿物(汚泥スラッジ)発生量が増加する。又、粉末状の薬剤を保管する場合、薬剤の吸湿防止、ブリッジ防止など管理項目が増え、管理が煩雑となる。
pH調整は、水酸化ナトリウム水溶液、水酸化カリウム水溶液を用いることが好ましい。
When these chemicals used for pH adjustment are used in liquid form, a pump or the like can be used for addition, and the chemicals can be stored easily. Powdered chemicals can also be used for pH adjustment, but a powder supply device is required at the time of addition, which increases equipment costs and is often after treatment compared to when used in liquid form. The amount of sediment (sludge sludge) generated increases. In addition, when storing a powdered medicine, management items such as moisture absorption prevention and bridge prevention of the medicine increase, and management becomes complicated.
The pH adjustment is preferably performed using a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution.

本発明に於いては必要に応じて、凝集剤を使用し、生成する沈殿物の沈降速度を加速させることが可能である。被処理水中の浮遊物質が多い場合、生成する沈殿物の沈降速度は速く、分離に要する時間が短いため、凝集剤を必要としない場合が多い。比べて、被処理水中の浮遊物質が少ない場合、生成する沈殿物の沈降速度は遅く、分離に要する時間が長い場合が多く、高分子凝集剤を併用することができる。
使用する高分子凝集剤に制限はなく、一般的なアニオン系高分子凝集剤で十分な沈降速度の加速が可能である。
In the present invention, if necessary, it is possible to use a flocculant to accelerate the sedimentation rate of the resulting precipitate. When the amount of suspended solids in the water to be treated is large, the sedimentation rate of the generated sediment is high and the time required for separation is short, so that a flocculant is often not required. In comparison, when the amount of suspended solids in the water to be treated is small, the sedimentation rate of the generated precipitate is slow and the time required for separation is often long, and a polymer flocculant can be used in combination.
The polymer flocculant to be used is not limited, and a general anionic polymer flocculant can sufficiently accelerate the sedimentation rate.

本発明の有害物質の処理方法における有害物質としては、セレン、ヒ素、六価クロム、フッ素、ホウ素、リン、カドミウム、鉛、マンガン、銅、亜鉛等を挙げることができる。
特に、セレン、ヒ素、六価クロム、フッ素、ホウ素、リンからなる群から選択される1種もしくは2種以上を少なくとも含む被処理液を、本発明の処理方法を用いて処理することにより、前記有害物質を単独で、または2種以上を同時に効率良く処理することができる。前記有害物質の2種以上を効率良く同時処理することが可能である。
本発明の処理方法における被処理水としては、石炭火力発電所の脱硫排水や、廃棄処分場の浸出水、ほうろう製造業や電気メッキ業等の工場排水等が挙げられる。これらの被処理水は、排出される所により含有される有害物質の種類や含有量が異なり、また有害物質が多種にわたり、水量も多いが、本発明の処理方法により、合理的に効率良く、有害物質を同時処理することができる。
Examples of harmful substances in the method for treating harmful substances of the present invention include selenium, arsenic, hexavalent chromium, fluorine, boron, phosphorus, cadmium, lead, manganese, copper, zinc and the like.
In particular, the treatment liquid containing at least one or more selected from the group consisting of selenium, arsenic, hexavalent chromium, fluorine, boron, and phosphorus is treated using the treatment method of the present invention. It is possible to efficiently treat harmful substances alone or in combination of two or more. It is possible to efficiently treat two or more of the harmful substances simultaneously.
Examples of water to be treated in the treatment method of the present invention include desulfurization effluent from a coal-fired power plant, leachate from a disposal site, factory effluent from enamel manufacturing industry, electroplating industry, and the like. These treated waters have different types and contents of harmful substances depending on where they are discharged, and there are many kinds of harmful substances and a large amount of water, but with the treatment method of the present invention, it is reasonably efficient, Hazardous substances can be processed simultaneously.

本発明の有害物質の処理方法は、前記有害物質を不溶性沈殿物として生成させる工程の後に、生成した不溶性沈殿物を分離し、脱水する工程を有し、被処理水を固液分離することが好ましい。この固液分離は常法により行うことができ、例えば、ろ過分離、遠心分離、沈降分離等が挙げられるが、通常は重力による沈降分離で十分な固液分離が可能である。分離された沈殿物は、更に乾燥させてもよい。
生成した沈殿物は、産業廃棄物であり、有害物質の含有量が多いと、特定化学物質扱いとなり、特定の廃棄処理が必要となる。本発明においては、生成する不溶性沈殿物を減容化及び減量化できることから、沈殿物(汚泥スラッジ)の処理コストを低減させることができる。
The method for treating a hazardous substance of the present invention includes a step of separating and dewatering the produced insoluble precipitate after the step of producing the harmful substance as an insoluble precipitate, and subjecting the water to be treated to solid-liquid separation. preferable. This solid-liquid separation can be performed by a conventional method, and examples thereof include filtration separation, centrifugal separation, sedimentation separation, and the like. Usually, sufficient solid-liquid separation is possible by sedimentation separation by gravity. The separated precipitate may be further dried.
The generated precipitate is an industrial waste, and if the content of harmful substances is large, it is treated as a specific chemical substance and requires a specific disposal process. In the present invention, the generated insoluble precipitate can be reduced in volume and reduced in weight, so that the processing cost of the precipitate (sludge sludge) can be reduced.

次に本発明を実施例に基づき詳細に説明する。又、実施例、及び比較例に使用する薬剤、及び試験機器の概要は以下の通り。
・セリウム溶液・・・・・・・・・・CeO2として30質量%を含有し、含まれる
希土類元素の97質量%がCeである塩酸溶液
・水酸化ナトリウム溶液・・・・・・25%NaOH水溶液
・水酸化カルシウム溶液・・・・・・20%Ca(OH)2スラリー
・高分子凝集剤・・・・・・・・・・ハイモ株式会社製ハイモロックAP105
・硫酸アルミニウム溶液・・・・・・Al23として8%含有水溶液
・塩化第二鉄溶液・・・・・・・・・38%含有水溶液
・ジャーテスター・・・・・・・・・通常撹拌速度250rpm
緩速撹拌速度100rpmで試験実施
又、被処理水、及び処理水の組成分析方法は以下の通り。
・B、P、Mn、Cu、Zn・・・・ICP発光分光分析法
・Se、Pb、Cd・・・・・・・・電気加熱原子吸光法
・As・・・・・・・・・・・・・・水素化物発生ICP発光分光分析法
・F・・・・・・・・・・・・・・・イオン電極法(蒸留分離実施後)
・Cr(VI)・・・・・・・・・・・・ジフェニルカルバジド吸光光度法
Next, the present invention will be described in detail based on examples. Moreover, the outline | summary of the chemical | medical agent and test equipment which are used for an Example and a comparative example is as follows.
・ Cerium solution …… Contains 30% by mass as CeO 2
Hydrochloric acid solution in which 97% by mass of rare earth element is Ce ・ Sodium hydroxide solution ・ ・ ・ ・ ・ ・ 25% NaOH aqueous solution ・ Calcium hydroxide solution ・ ・ ・ ・ ・ ・ 20% Ca (OH) 2 slurry ・ Polymer aggregation Agent Hymo Lock AP105 manufactured by Hymo Co., Ltd.
・ Aluminum sulfate solution ・ ・ ・ ・ ・ ・ 8% aqueous solution as Al 2 O 3・ Ferric chloride solution ・ ・ ・ ・ 38% aqueous solution ・ Jar tester ・ ・ ・ ・ ・ ・Normal stirring speed 250rpm
The test was conducted at a slow stirring speed of 100 rpm. The composition analysis method of the water to be treated and the treated water is as follows.
・ B, P, Mn, Cu, Zn ・ ・ ・ ・ ICP emission spectroscopy ・ Se, Pb, Cd ・ ・ ・ ・ ・ ・ Electric heating atomic absorption method ・ As ・ ・ ・ ・ ・ ・・ ・ ・ ・ Hydride generation ICP emission spectroscopic analysis ・ F ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Ion electrode method (after distillation separation)
・ Cr (VI) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Diphenylcarbazide absorptiometry

純水に各種試薬を溶解し、表1に示す各有害物質を含有する模擬排水を調製した。

Figure 0006008455
Various reagents were dissolved in pure water to prepare simulated waste water containing each harmful substance shown in Table 1.
Figure 0006008455

(実施例1〜3、及び比較例1〜4)
表1に示す各有害物質を含有する模擬排水にセリウム溶液を0.5〜2.5wt%添加し、水酸化ナトリウム溶液でpH=9に調整し、ジャーテスターを用いて、通常撹拌状態で10分間撹拌を行った。その後、高分子凝集剤を2ppmとなるよう添加し、緩速撹拌状態で5分間撹拌を行った(実施例1〜3)。
尚、比較例1〜4は、凝集沈殿法として硫酸アルミニウムと水酸化カルシウムによる凝集沈殿処理、及び塩化第二鉄を使用した凝集沈殿処理を実施した。
比較例1及び2において、表1における薬剤添加量は硫酸アルミニウム溶液の添加量であり、pH12以上を目標に水酸化カルシウムを添加した。
比較例3及び4において、表1における薬剤添加量は塩化第二鉄溶液の添加量であり、pH7を目標に水酸化ナトリウム溶液を添加した。
その後、沈降分離により固液分離し、得られた処理水中の組成分析を実施した。
沈降分離により固液分離した沈殿物は、脱水し、乾燥させて質量を測定し、沈殿物の発生量を、含水率60質量%として換算して求めた。
結果を表2に示す。
結果から、実施例1〜3では、模擬排水の各有害物質が同時処理されることが確認できる。又、硫酸アルミニウムによる凝集沈殿処理では処理が十分でなく沈殿物の発生量も増大であった。同様に塩化第二鉄による凝集沈殿でも十分な処理が確認されなかった。
(Examples 1-3 and Comparative Examples 1-4)
Add 0.5 to 2.5 wt% of cerium solution to the simulated waste water containing each harmful substance shown in Table 1, adjust to pH = 9 with sodium hydroxide solution, and use a jar tester in a normal stirring state. Stirring was performed for a minute. Then, the polymer flocculant was added so that it might become 2 ppm, and it stirred for 5 minutes in the slow stirring state (Examples 1-3).
In Comparative Examples 1 to 4, a coagulation precipitation process using aluminum sulfate and calcium hydroxide and a coagulation precipitation process using ferric chloride were performed as the coagulation precipitation method.
In Comparative Examples 1 and 2, the amount of drug added in Table 1 is the amount of aluminum sulfate solution added, and calcium hydroxide was added with a target of pH 12 or higher.
In Comparative Examples 3 and 4, the amount of drug added in Table 1 is the amount of ferric chloride solution added, and the sodium hydroxide solution was added with the goal of pH 7.
Thereafter, solid-liquid separation was performed by sedimentation separation, and composition analysis in the obtained treated water was performed.
The precipitate separated by solid-liquid separation by sedimentation separation was dehydrated, dried and measured for mass, and the amount of precipitate generated was determined by converting the moisture content to 60% by mass.
The results are shown in Table 2.
From the results, in Examples 1 to 3, it can be confirmed that the harmful substances of the simulated waste water are simultaneously processed. Further, the coagulation precipitation treatment with aluminum sulfate is not sufficient and the amount of precipitates generated is increased. Similarly, sufficient treatment was not confirmed even with coagulation precipitation with ferric chloride.

Figure 0006008455
Figure 0006008455

(実施例4〜6、及び比較例5)
表1に示す各有害物質を含有する模擬排水にセリウム溶液を1.0wt%添加し、水酸化ナトリウム溶液でpH=8、9、10に調整し、ジャーテスターを用いて、通常撹拌状態で10分間撹拌を行った。その後、高分子凝集剤を2ppmとなるよう添加し、緩速撹拌状態で5分間撹拌を行った(実施例4〜6)。
尚、比較例5は、実施例4において、水酸化ナトリウム溶液でpH=7に調整した以外は、実施例4と同様に行った。
その後、沈降分離により固液分離し、得られた処理水中の組成分析を実施した。
結果を表3に示す。
結果から、実施例4〜6では、模擬排水の各有害物質が同時処理されることがわかるが、処理対象元素により適する処理pH域が異なることが確認できる。特に六価セレン、フッ素はpH=8付近で処理性能が高く、ホウ素はpH=9付近で処理性能が高い。又、カドミウム、マンガンはpH=10付近で処理性能が高いため、処理対象元素の濃度、及び処理目標に合わせたpH調整が有効と考えられる。pH=7に調整した比較例5ではヒ素以外の有害物質に対する処理性能が低下することから、pHは8〜10であれば、2種以上の有害物質を含有する被処理水においても十分な処理が可能となることが確認できる。
(Examples 4 to 6 and Comparative Example 5)
Add 1.0 wt% of cerium solution to the simulated waste water containing each harmful substance shown in Table 1, adjust to pH = 8, 9, 10 with sodium hydroxide solution, and use a jar tester in a normal stirring state. Stirring was performed for a minute. Then, the polymer flocculant was added so that it might become 2 ppm, and it stirred for 5 minutes in the slow stirring state (Examples 4-6).
Comparative Example 5 was carried out in the same manner as in Example 4 except that the pH was adjusted to 7 with a sodium hydroxide solution in Example 4.
Thereafter, solid-liquid separation was performed by sedimentation separation, and composition analysis in the obtained treated water was performed.
The results are shown in Table 3.
From the results, it can be seen that in Examples 4 to 6, each harmful substance of the simulated waste water is simultaneously treated, but it can be confirmed that the suitable treatment pH range varies depending on the element to be treated. In particular, hexavalent selenium and fluorine have high treatment performance around pH = 8, and boron has high treatment performance around pH = 9. In addition, since cadmium and manganese have high processing performance around pH = 10, it is considered effective to adjust the concentration according to the concentration of the element to be processed and the processing target. In Comparative Example 5 adjusted to pH = 7, the treatment performance with respect to harmful substances other than arsenic deteriorates. Therefore, if the pH is 8 to 10, sufficient treatment can be performed even in water to be treated containing two or more kinds of harmful substances. Can be confirmed.

Figure 0006008455
Figure 0006008455

次に、入手した石炭火力発電所から排出される脱硫排水に各種試薬を溶解し、表4に示す各種有害物質を含有する実液系模擬排水を調製した。

Figure 0006008455
Next, various reagents were dissolved in the desulfurization effluent discharged from the obtained coal-fired power plant to prepare an actual liquid type simulated effluent containing various toxic substances shown in Table 4.
Figure 0006008455

(実施例7〜9)
表4に示す各有害物質を含有する実液系模擬排水にセリウム溶液を1.5〜2.5wt%添加し、水酸化ナトリウム溶液でpH=8に調整し、ジャーテスターを用いて、通常撹拌状態で10分間撹拌を行った。その後、高分子凝集剤を2ppmとなるよう添加し、緩速撹拌状態で5分間撹拌を行った。
その後、沈降分離により固液分離し、得られた処理水中の組成分析を実施した。
結果を表5に示す。
結果から、実施例7〜9において、実液系模擬排水の各有害物質が同時処理されることが確認できる。
(Examples 7 to 9)
Add 1.5 to 2.5 wt% of cerium solution to the simulated simulated wastewater containing each harmful substance shown in Table 4, adjust to pH = 8 with sodium hydroxide solution, and normally stir using a jar tester The mixture was stirred for 10 minutes. Thereafter, a polymer flocculant was added to 2 ppm, and the mixture was stirred for 5 minutes in a slow stirring state.
Thereafter, solid-liquid separation was performed by sedimentation separation, and composition analysis in the obtained treated water was performed.
The results are shown in Table 5.
From the results, in Examples 7 to 9, it can be confirmed that the harmful substances of the actual liquid system simulated waste water are simultaneously processed.

Figure 0006008455
Figure 0006008455

(実施例10〜13、及び比較例6〜9)
表4に示す各有害物質を含有する実液系模擬排水にセリウム溶液を0.5〜2.0wt%添加し、水酸化ナトリウム溶液、又は水酸化カルシウムスラリーでpH=9に調整し、ジャーテスターを用いて、通常撹拌状態で10分間撹拌を行った。その後、高分子凝集剤を2ppmとなるよう添加し、緩速撹拌状態で5分間撹拌を行った(実施例10〜13、及び比較例6〜9)。
その後、沈降分離により固液分離し、得られた処理水中の組成分析を実施した。
沈降分離により固液分離した沈殿物は、脱水し、上記の方法により沈殿物の発生量を求めた。また、同じ量のセリウム溶液を添加した実施例10と比較例6、実施例11と比較例7、実施例12と比較例8、実施例13と比較例9について、実施例の沈殿物の発生量に対する比較例の沈殿物の発生量の割合を求めた。
結果を表6に示す。
結果から、pH調整薬剤として水酸化カルシウムスラリーを使用した場合、水酸化ナトリウム溶液を使用した場合と比較し、沈殿物発生量が1.5倍程度増加する傾向が見られた。尚、pH調整薬剤を水酸化カルシウムスラリーに変更した場合も有害物質処理性能に違いはない。
(Examples 10 to 13 and Comparative Examples 6 to 9)
Add 0.5 to 2.0 wt% of cerium solution to simulated liquid wastewater containing each harmful substance shown in Table 4 and adjust to pH = 9 with sodium hydroxide solution or calcium hydroxide slurry. Was stirred for 10 minutes under normal stirring conditions. Then, the polymer flocculant was added so that it might become 2 ppm, and it stirred for 5 minutes in the slow stirring state (Examples 10-13 and Comparative Examples 6-9).
Thereafter, solid-liquid separation was performed by sedimentation separation, and composition analysis in the obtained treated water was performed.
The precipitate separated by solid-liquid separation by sedimentation separation was dehydrated, and the amount of precipitate generated was determined by the above method. Moreover, about Example 10 and Comparative Example 6, Example 11 and Comparative Example 7, Example 12 and Comparative Example 8, and Example 13 and Comparative Example 9 to which the same amount of cerium solution was added, generation of precipitates of Examples The ratio of the generated amount of the precipitate of the comparative example to the amount was determined.
The results are shown in Table 6.
From the results, when calcium hydroxide slurry was used as the pH adjusting agent, the amount of precipitate generated tended to increase by about 1.5 times compared to the case where sodium hydroxide solution was used. Even when the pH adjusting agent is changed to calcium hydroxide slurry, there is no difference in the hazardous substance treatment performance.

Figure 0006008455
Figure 0006008455

Claims (2)

有害物質を含有する被処理水にセリウム化合物を添加し、アルカリ金属の水酸化物を用いてpHを8〜10に調整し、前記有害物質を不溶性沈殿物として生成させる工程を有することを特徴とする有害物質の処理方法であって、前記有害物質を不溶性沈殿物として生成させる工程の後に、生成した不溶性沈殿物を分離し、脱水する工程を有し、前記セリウム化合物がセリウムの酸化物、水酸化物、炭酸塩、ハロゲン化物から選ばれるセリウム化合物であり、前記有害物質がセレン、ヒ素、六価クロム、フッ素、ホウ素、リンからなる群から選択される2種以上を少なくとも含み、前記有害物質を2種以上同時に処理することを特徴とする有害物質処理時に発生する沈殿物の減容化及び減量化処理方法。 A step of adding a cerium compound to water to be treated containing a harmful substance, adjusting the pH to 8 to 10 using an alkali metal hydroxide, and generating the harmful substance as an insoluble precipitate. A method for treating harmful substances , comprising the step of separating and dehydrating the produced insoluble precipitate after the step of producing the harmful substance as an insoluble precipitate, wherein the cerium compound is an oxide of cerium, water A cerium compound selected from oxides, carbonates, and halides, wherein the harmful substance includes at least two or more selected from the group consisting of selenium, arsenic, hexavalent chromium, fluorine, boron, and phosphorus; A method for reducing the volume and reducing the amount of precipitates generated during the treatment of hazardous substances, characterized in that two or more of these are treated simultaneously . 有害物質を含有する被処理水にセリウム化合物を添加し、アルカリ金属の水酸化物を用いてpHを8〜10に調整し、前記有害物質を不溶性沈殿物として生成させる工程を有することを特徴とする有害物質の処理方法であって、前記有害物質を不溶性沈殿物として生成させる工程の後に、生成した不溶性沈殿物を分離し、脱水する工程を有し、前記セリウム化合物がセリウムの酸化物、水酸化物、炭酸塩、ハロゲン化物から選ばれるセリウム化合物であり、前記有害物質がセレン、ヒ素、六価クロム、フッ素、ホウ素、リン、Cd、Pb、Mn、Cu、Znを少なくとも含み、前記有害物質を同時に処理することを特徴とする有害物質処理時に発生する沈殿物の減容化及び減量化処理方法。
A step of adding a cerium compound to water to be treated containing a harmful substance, adjusting the pH to 8 to 10 using an alkali metal hydroxide, and generating the harmful substance as an insoluble precipitate. A method for treating harmful substances, comprising the step of separating and dehydrating the produced insoluble precipitate after the step of producing the harmful substance as an insoluble precipitate, wherein the cerium compound is an oxide of cerium, water A cerium compound selected from oxides, carbonates and halides, wherein the harmful substance includes at least selenium, arsenic, hexavalent chromium, fluorine, boron, phosphorus, Cd, Pb, Mn, Cu, Zn, and the harmful substance A method for reducing the volume and reducing the amount of sediment generated during the processing of hazardous substances, characterized in that
JP2015081754A 2015-04-13 2015-04-13 How to handle hazardous substances Active JP6008455B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015081754A JP6008455B1 (en) 2015-04-13 2015-04-13 How to handle hazardous substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081754A JP6008455B1 (en) 2015-04-13 2015-04-13 How to handle hazardous substances

Publications (2)

Publication Number Publication Date
JP6008455B1 true JP6008455B1 (en) 2016-10-19
JP2016198740A JP2016198740A (en) 2016-12-01

Family

ID=57140144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081754A Active JP6008455B1 (en) 2015-04-13 2015-04-13 How to handle hazardous substances

Country Status (1)

Country Link
JP (1) JP6008455B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370312B2 (en) * 2020-12-28 2023-10-27 株式会社日本海水 Hazardous substance remover, method for producing a hazardous substance remover, and method for treating hazardous substances using a hazardous substance remover

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235595A (en) * 1998-02-24 1999-08-31 Unitika Ltd Treatment of boron-containing waste water
JP2003320376A (en) * 2002-02-26 2003-11-11 National Institute Of Advanced Industrial & Technology Treatment method for fluorine-containing wastewater and chemical agent used therein
JP2004000963A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Treatment method of boron-containing drainage, and medicament used for the same
JP2004008860A (en) * 2002-06-04 2004-01-15 National Institute Of Advanced Industrial & Technology Treatment method for harmful anion-containing wastewater and agent used therein
JP2004025131A (en) * 2002-06-28 2004-01-29 National Institute Of Advanced Industrial & Technology Treatment method of waste water containing dissolved copper complex compound and agent used for it
JP2004314058A (en) * 2003-03-28 2004-11-11 Miyoshi Oil & Fat Co Ltd Treatment method for waste
JP2005013913A (en) * 2003-06-27 2005-01-20 National Institute Of Advanced Industrial & Technology Method for treating resist-containing waste liquid, and chemical to be used in the method
JP2010253462A (en) * 2009-03-31 2010-11-11 Dowa Eco-System Co Ltd Method of insolubilizing harmful substance
JP2011156470A (en) * 2010-01-29 2011-08-18 Nippon Sheet Glass Co Ltd Method for treatment of contaminant components

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235595A (en) * 1998-02-24 1999-08-31 Unitika Ltd Treatment of boron-containing waste water
JP2003320376A (en) * 2002-02-26 2003-11-11 National Institute Of Advanced Industrial & Technology Treatment method for fluorine-containing wastewater and chemical agent used therein
JP2004000963A (en) * 2002-04-26 2004-01-08 National Institute Of Advanced Industrial & Technology Treatment method of boron-containing drainage, and medicament used for the same
JP2004008860A (en) * 2002-06-04 2004-01-15 National Institute Of Advanced Industrial & Technology Treatment method for harmful anion-containing wastewater and agent used therein
JP2004025131A (en) * 2002-06-28 2004-01-29 National Institute Of Advanced Industrial & Technology Treatment method of waste water containing dissolved copper complex compound and agent used for it
JP2004314058A (en) * 2003-03-28 2004-11-11 Miyoshi Oil & Fat Co Ltd Treatment method for waste
JP2005013913A (en) * 2003-06-27 2005-01-20 National Institute Of Advanced Industrial & Technology Method for treating resist-containing waste liquid, and chemical to be used in the method
JP2010253462A (en) * 2009-03-31 2010-11-11 Dowa Eco-System Co Ltd Method of insolubilizing harmful substance
JP2011156470A (en) * 2010-01-29 2011-08-18 Nippon Sheet Glass Co Ltd Method for treatment of contaminant components

Also Published As

Publication number Publication date
JP2016198740A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5187376B2 (en) Removal agent for heavy metal ions in waste water and method for removing heavy metal ions using the same
CN102001734A (en) Heavy metal settling agent for treating mercury-containing wastewater
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP5831914B2 (en) Water treatment method
JP5794422B2 (en) Treatment method and treatment apparatus for removing fluorine and harmful substances
CN105217836B (en) A kind of method using desulfurization wastewater removal phosphor in sewage
EP2792645A1 (en) Process for removing fluorides from water
JP5915834B2 (en) Method for producing purification treatment material
JP4306422B2 (en) Cement kiln extraction dust processing method
JP6008455B1 (en) How to handle hazardous substances
JP2018171554A (en) Phosphorus adsorbent in environmental water and manufacturing method therefor, quality control method of phosphorous adsorbent, and removal method of phosphorus in environmental water using phosphorus adsorbent
CN105293659A (en) Stabilization method for emergently treating sediment of heavy metal pollutants in water body
TWI263623B (en) Effluent water treatment method
JP6699388B2 (en) Mine wastewater treatment method
JP4756415B2 (en) Gas processing method
JP5206455B2 (en) Cement kiln extraction dust processing method
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
JP4210509B2 (en) Method for treating boron-containing water
JP5493903B2 (en) Mercury removal method
Puasa et al. Polynomial Regression Analysis for Removal of Heavy Metal Mixtures in Coagulation/Flocculation of Electroplating Wastewater
WO2022145278A1 (en) Harmful substance remover and method for treating harmful substance with use of same
US20210261452A1 (en) Sulfate and trace metal precipitation methods and compositions
Sapsford et al. The effect of aluminium source and sludge recycling on the properties of ettringite formed during water treatment
CN109019986B (en) Method for removing fluorine ions
JP2003136068A (en) Method of removing boron

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6008455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250