JP4756415B2 - Gas processing method - Google Patents

Gas processing method Download PDF

Info

Publication number
JP4756415B2
JP4756415B2 JP2001236568A JP2001236568A JP4756415B2 JP 4756415 B2 JP4756415 B2 JP 4756415B2 JP 2001236568 A JP2001236568 A JP 2001236568A JP 2001236568 A JP2001236568 A JP 2001236568A JP 4756415 B2 JP4756415 B2 JP 4756415B2
Authority
JP
Japan
Prior art keywords
aqueous solution
water
product salt
chelating agent
heavy metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001236568A
Other languages
Japanese (ja)
Other versions
JP2003047828A (en
Inventor
茂 桜井
八朗 平野
真太郎 菊地
義直 平野
富男 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
AGC Inc
Mitsui E&S Holdings Co Ltd
Original Assignee
Asahi Glass Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001236568A priority Critical patent/JP4756415B2/en
Publication of JP2003047828A publication Critical patent/JP2003047828A/en
Application granted granted Critical
Publication of JP4756415B2 publication Critical patent/JP4756415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、都市ゴミ及び/又は産業廃棄物焼却炉等から排出されるガスの処理方法に関する。
【0002】
【従来の技術】
従来、産業廃棄物焼却炉等の排ガス等に含まれる、塩化水素、フッ化水素又は硫黄酸化物等の酸性成分を中和除去するために、酸性成分除去剤として消石灰を使用することが知られている。この場合、消石灰は反応当量に対して3〜4倍と過剰に使用する必要があるために、中和処理の際に発生する反応生成物及び未反応の酸性成分除去剤等の固形廃棄物(以下、本明細書では副生塩という)の増加や、これらの副生塩を水溶液として処理する場合にはカルシウム塩のスケールを生成する等の欠点を有していた。
【0003】
また、廃棄物焼却炉等から排出される燃焼排ガス中には、酸性成分以外に、被処理物によっては、水銀をはじめとして複数の重金属成分が含有されることがある。このため、排ガスを処理した際にも、副生塩に重金属類が含まれることがあり、したがって、副生塩を水に溶解して廃棄する場合、重金属成分の濃度を、少なくとも排水基準を満たす値にまで低減させるための重金属類の処理が必要となる。
【0004】
水質の排水基準が規定されている有害な重金属類としては、水銀、クロム、カドミウム、セレン、ヒ素、鉛であり、それらの排水中での基準値は、水銀が0.005mg/L、クロムが0.5mg/L、その他の重金属類は0.1mg/Lであり、基準値未満であることが必要である。
【0005】
水溶液中の重金属類を除去する方法としては、例えば、水溶液にキレート剤を添加して難溶性の沈殿を生成してこれを分離する方法が知られている。しかし、従来より使用されている低分子量のキレート剤は、除去能力が低く、生成されるフロックが小さいという欠点があった。除去能力が低いと、多くの添加量が必要であり、流入する水溶液の重金属類濃度の振れに対する許容度も低くなる。また、生成されるフロックが小さいと沈降分離しにくく、後工程への流出のおそれやおおがかりな設備の設置が必要となる。したがって、副生塩水溶液に低分子量のキレート剤を使用した場合、特に排水基準が厳しい水銀において、効果が不充分で溶液中の残留重金属類濃度を基準値以下に効率的に低減することが難しく、後段にキレート樹脂塔を設置する必要があった。すなわち、従来のキレート剤はジエチルジチオカルバミン酸ナトリウムに代表されるような分子量が100〜数100程度の低分子量のキレート剤であり、後段に、水銀用のキレート樹脂(商品名:エポラスZ−7、ミヨシ油脂社製)等の充填塔の設置が必須であった。また、キレート剤は一般に高価であり、使用量の削減が課題であった。
【0006】
【発明が解決しようとする課題】
本発明は、中和処理の際、発生する副生塩を溶解した水溶液中の重金属類、とりわけ水銀について、少量のキレート剤で効率よく除去し、水溶液中の残留濃度を低減させる、ガスの処理方法の提供を目的とする。
【0007】
【課題を解決するための手段】
本発明は、塩化水素、フッ化水素及び硫黄酸化物からなる群より選ばれる1種以上の酸性成分及び重金属類を含む排ガスを1段目の集塵器により飛灰除去を行った後、平均粒子径20μm以下の炭酸水素ナトリウム粉末を噴霧して重金属類を含む副生塩を生成させ、該副生塩を2段目の集塵器により分離し、得られた副生塩を水に溶解して水溶液とし、該水溶液をpH3〜7に調整した後、該水溶液に塩化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、硫酸アルミニウム、ポリ塩化アルミニウム及びアルミン酸ナトリウムからなる群より選ばれる1種以上の共沈剤及び水溶性高分子キレート剤を添加して、水溶液中の水銀濃度が0.005mg/L以下となるように重金属類を含む不溶性固形分を生成させるガスの処理方法を提供する。
【0008】
【発明の実施の形態】
本発明では、都市ゴミ焼却場等の排ガスに含まれる飛灰を1段目の集塵器により分離した後、排ガス中に炭酸水素ナトリウムの粉末を噴霧して、生成した副生塩を2段目の集塵器により分離する。
【0009】
本発明では、2段の集塵器の採用により、1段目の集塵器では飛灰のみを回収するために、これを灰溶融処理し路盤材料や建築材料のリサイクルすることに有利である。さらに2段目の集塵器では飛灰が除去された副生塩を集塵できるために、副生塩を溶解し無害化放流できる。1段目の集塵器及び2段目の集塵器としては、バグフィルタ、電気集塵器、サイクロン集塵器又はスクラバ等が使用できる。
【0010】
本発明では、ガス中の酸性成分除去剤として炭酸水素ナトリウム粉末を使用する。炭酸水素ナトリウム粉末の平均粒径は20μm以下であることが必要である。平均粒径が20μm超であると、ガス中に含まれる酸性成分との反応効率が低下し、注入量が増加するので好ましくない。平均粒径は10μm以下であることが好ましい。炭酸水素ナトリウム粉末は、約150〜300℃の被処理ガス中に分散し、ガス中の酸性成分と反応させて、2段目の集塵器にて捕集される。炭酸水素ナトリウム粉末は熱分解して炭酸ナトリウムとなり、これがガス中の酸性成分と反応する。炭酸水素ナトリウム粉末は、反応当量に対して過剰に排ガス中に注入されるため、副生塩中に炭酸ナトリウムとして残存する。
【0011】
炭酸水素ナトリウムは、排ガス中の塩化水素との反応生成物である塩化ナトリウム、フッ化水素との反応生成物であるフッ化ナトリウム及び硫黄酸化物との反応生成物である硫酸ナトリウム及び亜硫酸ナトリウムを生成するが、これらはいずれも水溶性である。また、炭酸ナトリウムも水溶性であるため、これらの副生塩は、水に溶解して廃棄できるため、処理操作が簡素化できるばかりでなく、埋立てが必要な固形廃棄物の発生量を抑えることができる。
【0012】
本発明で得られる副生塩は、炭酸ナトリウムの含有量が30質量%以下であることが好ましい。炭酸ナトリウムの含有量が30質量%超であると、コスト的に無駄であることから好ましくなく、また、後述のpH調整の際、必要となる酸の量が増加するので好ましくない。
【0013】
本発明において、副生塩の水溶液を作成する場合、溶解濃度は10〜25質量%が好ましい。溶解濃度が10質量%未満であると、液量が増加し処理設備が大型化するので好ましくない。また、溶解濃度25質量%超であると、水溶液の粘度が高くなり、後述の生成される不溶性固形分の重力分離が困難となるので好ましくない。副生塩の溶解濃度は特には13〜20質量%が好ましい。
【0014】
本発明では、副生塩から得られた水溶液をpH3〜7に調整する。pHの調整は酸を添加して行うことが好ましい。副生塩水溶液のpHは、キレート剤と重金属類とのキレート形成能、重金属類の難溶性水酸化物の生成、重金属類を含む不溶性固形分からの重金属類の再溶出及び副生塩の水溶液への二酸化炭素の溶解度に影響する。副生塩の水溶液がpH3未満であると、最終的に中性領域の排水にするために必要なアルカリの量が多くなるので好ましくない。pH7超であると、キレート剤添加によって形成した不溶性固形分の分離操作の際、溶解している二酸化炭素が気泡を生成しやすく沈降操作を妨害する可能性があるので好ましくない。特に、炭酸水素ナトリウムを使用した場合、未反応分が溶解度の高い炭酸ナトリウムとなって存在しているために水溶液中の二酸化炭素濃度が高くなりやすいので好ましくない。水溶液のpHは4〜6が特に好ましい。なお、本明細書においてpHは、pH計により25℃で測定した値をいう。
【0015】
また、添加する酸の種類については特に限定されず、塩酸、硫酸等の無機酸が安価であることから好ましい。有機酸の場合、排水として処理する場合は廃水のBODやCODを上昇させる可能性があり工業原料として使用する場合でも最終製品における不純物となることがあるので好ましくなく、硝酸は排水した際に排水中の窒素成分を増加させるため好ましくない。
【0016】
本発明では、1段目の飛灰除去操作により大部分の重金属を除去しているため、キレート剤の使用量を大幅に削減できる。1段目で飛灰除去操作をした後、副生塩を水に溶解し、pHを3〜7に調整した後、特定のキレート剤及び共沈剤を添加することで重金属類及び、特に水銀を効果的に除去できる。
【0017】
本発明で使用するキレート剤は、水溶性高分子キレート剤である。具体的には、チオール基及びジチオカルバミン酸基を含む水溶性高分子からなるものが好ましい。平均分子量8万〜12万程度の高分子化合物であることが好ましい。例えば、ミヨシ油脂社製商品名エポフロックL−1、旭硝子エンジニアリング社製商品名アクリーンM等が挙げられる。
【0018】
キレート剤の注入には、一般の定量ポンプ等が使用できる。キレート剤の添加量は、水溶液の質量あたり10質量ppm以上が好ましく、30〜400質量ppmが特に好ましい。添加量が10質量ppm未満であると、含まれる重金属類の除去が不充分となるおそれがあるため好ましくなく、添加量が多いと無駄となり経済的に不利となるため好ましくない。
【0019】
本発明では、共沈剤として、塩化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、硫酸アルミニウム、ポリ塩化アルミニウム及びアルミン酸ナトリウムからなる群より選ばれる1種以上である。塩化鉄(III)又は硫酸アルミニウムが特に好ましい。共沈剤の添加量は、副生塩水溶液の質量あたり50質量ppm以上が好ましい。添加する共沈剤の添加量が50質量ppm未満であると、含まれる重金属類の除去が不充分になるおそれがあるため好ましくなく、添加量が多いと無駄となるため好ましくない。添加量は、100〜500質量ppmが特に好ましく、100〜200質量ppmがさらに好ましい。
【0020】
本発明では、不溶性固形分の沈降を促進するために高分子凝集剤を使用することが好ましい。高分子凝集剤としては、例えば、ポリアクリル酸ナトリウム等のアニオン系高分子凝集剤、ポリアクリルアミド等のノニオン系高分子凝集剤、ポリアクリル酸エステル等のカチオン系高分子凝集剤等が挙げられる。具体的には栗田工業社製商品名クリフィックスCP−933等が挙げられる。高分子凝集剤の具体的な効果は、分離速度の上昇や分離液の清澄度の向上が挙げられ、これらの効果により設備の小型化、簡素化を図ることができる。凝集剤の添加量は、副生塩水溶液に対して、濃度1〜20質量ppmが好ましく、濃度2〜15質量ppmが特に好ましい。
【0021】
本発明において、副生塩の水溶液からの不溶性固形分の分離は、重力を利用した沈降分離及び遠心分離、又は濾過等の一般に公知な方法によりできる。重力分離のうち遠心力を利用したものとしては、バスケット式の遠心分離機、スクリューデカンタ式遠心分離機が、濾過を利用したものとしてはフィルタプレス、ベルト式脱水機、リーフフィルタ又はフンダバックフィルタ等が挙げられる。一般的には、設備費用の削減の点からシックナ式の分離方法が採用されることが多い。
【0022】
本発明では、重金属が除去された後の水溶液は、水質汚濁防止法に規定される方法により測定される。
【0023】
本発明では、重金属類は、水銀、クロム、カドミウム、セレン、ヒ素、鉛からなる群より選ばれる1種以上よりなる。本発明により、水銀は0.005mg/L以下となる。その他の金属は、クロムが0.5mg/L以下が好ましく、カドミウム、セレン、ヒ素及び鉛が0.1mg/L以下であることが好ましい。本発明により、重金属類は、水質に関する排水基準値を満足する。
【0024】
以下、図1に沿って、本発明の具体的態様を説明するが、本発明は、下記の例に限定されない。
【0025】
図1では、家庭等から排出される一般廃棄物を処理する廃棄物焼却炉について例示する。廃棄物焼却炉1より発生した酸性成分を含む排ガスは、廃熱ボイラ2で熱回収された後、1段目の集塵器3にて飛灰が除去される。次いで炭酸水素ナトリウム粉末を乾式で添加した後、2段目の集塵器4に導入される。2段目の集塵器4で濾過された排ガスは煙突5より大気中に空放される。1段目の集塵器3で捕捉された飛灰は、ガス化溶融炉に戻すか、灰溶融炉に投入するか、又は、路盤材や建材の原料にリサイクルすることが可能である。2段目の集塵器4で捕捉された副生塩は、溶解槽6において水に溶解され、塩酸によりpH3〜7に調整される。さらに、反応槽7にて、水溶性高分子キレート剤を副生塩水溶液に添加し、次いで塩化鉄又は硫酸アルミニウム等の共沈剤を添加して反応後、さらに、高分子凝集剤を添加した後に分離機8で不溶性固形分を除去し、最終的に水銀の濃度が水質に関する排水基準値を満足する0.005mg/L以下の処理液を得る。
【0026】
2段目の集塵器より回収された副生塩を溶解させる溶解槽の構造は特に限定されるものではないが、溶解を加速させるための撹拌機又はこれに代わるポンプや配管からなる外部循環装置等を備えていることが望ましい。溶解に使用する水は、水道水、工業用水、イオン交換水、脱塩水等種々使用することができる。さらに海水やプロセスの工程液や廃液等の、すでに塩類を溶解しているものであっても差し支えない。
【0027】
【実施例】
図1に例示される、二段の集塵器にそれぞれバグフィルタを採用したガス化溶融炉による都市廃棄物の燃焼処理工程において、焼却炉から排出される排ガスを1段目の集塵器により、飛灰を除去した後、平均粒子径9μmの炭酸水素ナトリウム粉末を注入し、2段目の集塵器のバグフィルタより回収して得られた副生塩を処理した。水銀の分析は、水質汚濁防止法施行規則に基づき定められている環境庁告示による方法に準じて、島津製作所社製還元気化装置MVU−1A型及びUV−1200用水銀分析ユニットを使用して還元気化原子吸光法により測定した。鉛の分析については、セイコー電子工業社製ICP発光分光分析装置SPS1500Rを使用してICP発光分析法により測定した。また、溶出試験は環境庁告示13号に示される方法にしたがって行った。
【0028】
[例1(実施例)]
副生塩150kgを水850kgに溶解させて1000kgの水溶液を得た。
これに濃度35質量%の塩酸を添加してpHを7.0に調整後、キレート剤(ミヨシ油脂社製、商品名:エポフロックL−1、以下同様)を100ppm添加して撹拌した。その後、濃度38質量%塩化鉄(III)溶液を有効成分換算で200ppmを添加、撹拌しその後、高分子凝集剤(栗田工業社製、商品名:クリフィックスCP−933、以下同じ)濃度0.1質量%水溶液を5000g、すなわち、副生塩溶液に対して、固形換算で5ppm添加した。添加して処理した液の上澄みを濾過し、その濾液と、濾別物の溶出試験による溶出液を分析した結果を表1に示す。
【0029】
【表1】

Figure 0004756415
【0030】
分析結果は、いずれも、水銀の分析値は基準値として定められている0.005mg/L、鉛の水質に関する排水基準値0.1mg/Lを超えておらず問題なかった。
【0031】
また、1段目の集塵器のバグフィルタより回収して得られた飛灰及び副生塩処理による凝集沈殿物は、溶融炉に戻しスラグ化した。これにより、飛灰及び副生塩処理による凝集沈殿物は路盤材にリサイクルできた。2段目の集塵器のバグフィルタより回収して得られた副生塩は、本例1により無害化されたので、下水に放流処分した。以上により、固形廃棄物をなくすことができた。
【0032】
[例2(比較例)]
例1と同じ副生塩150kgを水850kgに溶解させて1000kgの水溶液を得た。このときの水溶液のpHは9.2であった。液のpHを調整せず、キレート剤を100ppm添加して撹拌した。その後、濃度38質量%塩化鉄(III)溶液を有効成分換算で200ppm添加、撹拌し、その後、高分子凝集剤濃度0.1質量%の水溶液を5000g、すなわち、固形換算で副生塩溶液に対して、5ppm添加して処理した液の上澄みを濾過し、その濾液と、濾別物の溶出試験による溶出液を例1と同様にして分析した。結果を表2に示す。
【0033】
【表2】
Figure 0004756415
【0034】
分析結果より溶出試験については、定められている基準値0.005mg/Lを達成できなかった。同時に鉛の測定も例1と同様にして実施し、同様に基準値を達成できなかった。これは、重金属類の水酸化物や酸化物が再溶解したことによるものである。したがって、pH7超で液を処理する場合、分離固形分の埋め立て処分には、さらに分離固形分に重金属固定剤を充分に混合させる処置をとらない限り不適当であることがわかった。また、沈殿の沈降速度も例1よりも遅く、圧密性も弱かった。
【0035】
【発明の効果】
本発明のガスの処理方法により、廃棄物焼却炉等の排出ガスに、二段の集塵器を使用し、さらに、酸性成分の中和除去剤として炭酸水素ナトリウム粉末を使用することにより、中和処理の際、発生する副生塩中の重金属類、特に水銀を効果的に除去することができる。
【図面の簡単な説明】
【図1】廃棄物焼却炉の排ガスの処理工程を示す図。
【符号の説明】
1:廃棄物焼却炉
2:廃熱ボイラ
3:1段目の集塵器
4:2段目の集塵器
5:煙突
6:溶解槽
7:反応槽
8:分離機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating gas discharged from municipal waste and / or industrial waste incinerators.
[0002]
[Prior art]
Conventionally, in order to neutralize and remove acidic components such as hydrogen chloride, hydrogen fluoride or sulfur oxide contained in exhaust gas from industrial waste incinerators, it is known to use slaked lime as an acidic component remover. ing. In this case, since it is necessary to use slaked lime in excess of 3 to 4 times the reaction equivalent, solid waste such as reaction products generated during the neutralization treatment and unreacted acidic component remover ( Hereinafter, in the present specification, there are disadvantages such as an increase in by-product salts) and the production of calcium salt scales when these by-product salts are treated as an aqueous solution.
[0003]
In addition to the acidic components, the combustion exhaust gas discharged from a waste incinerator or the like may contain a plurality of heavy metal components including mercury depending on the object to be treated. For this reason, even when the exhaust gas is treated, heavy metals may be contained in the by-product salt. Therefore, when the by-product salt is dissolved in water and discarded, the concentration of the heavy metal component satisfies at least the drainage standard. It is necessary to treat heavy metals to reduce the value.
[0004]
Hazardous heavy metals whose water quality standards are regulated include mercury, chromium, cadmium, selenium, arsenic, and lead. The standard values in the wastewater are 0.005 mg / L for mercury and chromium. 0.5 mg / L and other heavy metals are 0.1 mg / L, and it is necessary to be less than the reference value.
[0005]
As a method for removing heavy metals in an aqueous solution, for example, a method is known in which a chelating agent is added to an aqueous solution to form a hardly soluble precipitate and then separated. However, conventionally used low molecular weight chelating agents have the disadvantages of low removal ability and small flocs produced. If the removal capability is low, a large amount of addition is required, and the tolerance for fluctuations in the concentration of heavy metals in the inflowing aqueous solution also decreases. In addition, if the generated floc is small, it is difficult to separate by sedimentation, and there is a risk of outflow to the subsequent process, and it is necessary to install important equipment. Therefore, when a low molecular weight chelating agent is used in the by-product salt aqueous solution, it is difficult to effectively reduce the concentration of residual heavy metals in the solution below the standard value, especially in mercury with strict drainage standards, and the effect is insufficient. It was necessary to install a chelate resin tower in the latter stage. That is, a conventional chelating agent is a low molecular weight chelating agent having a molecular weight of about 100 to several hundreds as typified by sodium diethyldithiocarbamate, and a chelating resin for mercury (trade name: Eporus Z-7, It was essential to install a packed tower such as Miyoshi Oil & Fats. In addition, chelating agents are generally expensive, and reducing the amount used has been a problem.
[0006]
[Problems to be solved by the invention]
The present invention is a gas treatment that efficiently removes heavy metals, particularly mercury, in an aqueous solution in which a by-product salt generated during the neutralization treatment is dissolved, with a small amount of a chelating agent and reduces the residual concentration in the aqueous solution. The purpose is to provide a method.
[0007]
[Means for Solving the Problems]
In the present invention, exhaust gas containing one or more acidic components and heavy metals selected from the group consisting of hydrogen chloride, hydrogen fluoride, and sulfur oxides is removed after fly ash removal using a first-stage dust collector. Sodium bicarbonate powder with a particle size of 20 μm or less is sprayed to produce a by-product salt containing heavy metals, the by-product salt is separated by a second-stage dust collector, and the resulting by-product salt is dissolved in water. After the aqueous solution is adjusted to pH 3-7, the aqueous solution is composed of iron (III) chloride, iron (II) sulfate, iron (III) sulfate, aluminum sulfate, polyaluminum chloride and sodium aluminate. One or more selected coprecipitation agents and a water-soluble polymer chelating agent are added to form an insoluble solid containing heavy metals so that the mercury concentration in the aqueous solution is 0.005 mg / L or less. Provide processing methods
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, fly ash contained in exhaust gas from a municipal waste incineration plant or the like is separated by a first-stage dust collector, and then sodium bicarbonate powder is sprayed into the exhaust gas to produce two-stage by-product salt. Separate with eye dust collector.
[0009]
In the present invention, the adoption of a two-stage dust collector is advantageous in that the first-stage dust collector collects only fly ash, so that it is ash-fused to recycle roadbed materials and building materials. . Furthermore, since the by-product salt from which fly ash has been removed can be collected in the second-stage dust collector, the by-product salt can be dissolved and detoxified. As the first-stage dust collector and the second-stage dust collector, a bag filter, an electric dust collector, a cyclone dust collector, a scrubber, or the like can be used.
[0010]
In the present invention, sodium hydrogen carbonate powder is used as an agent for removing acidic components in the gas. The average particle size of the sodium hydrogen carbonate powder needs to be 20 μm or less. If the average particle size exceeds 20 μm, the reaction efficiency with the acidic component contained in the gas is lowered, and the injection amount is increased, which is not preferable. The average particle size is preferably 10 μm or less. Sodium hydrogen carbonate powder is dispersed in a gas to be treated at about 150 to 300 ° C., reacted with an acidic component in the gas, and collected by a second-stage dust collector. Sodium hydrogen carbonate powder is thermally decomposed to sodium carbonate, which reacts with acidic components in the gas. Since sodium hydrogencarbonate powder is injected into the exhaust gas in excess of the reaction equivalent, it remains as sodium carbonate in the by-product salt.
[0011]
Sodium bicarbonate consists of sodium chloride, which is a reaction product with hydrogen chloride in exhaust gas, sodium fluoride, which is a reaction product with hydrogen fluoride, and sodium sulfate and sodium sulfite, which are reaction products with sulfur oxides. These are both water-soluble. In addition, since sodium carbonate is water-soluble, these by-product salts can be dissolved in water and discarded, which not only simplifies processing operations but also reduces the amount of solid waste that needs to be landfilled. be able to.
[0012]
The by-product salt obtained in the present invention preferably has a sodium carbonate content of 30% by mass or less. If the content of sodium carbonate is more than 30% by mass, it is not preferable because it is wasteful in cost, and it is not preferable because the amount of acid required during pH adjustment described later increases.
[0013]
In the present invention, when an aqueous solution of by-product salt is prepared, the dissolution concentration is preferably 10 to 25% by mass. If the dissolution concentration is less than 10% by mass, the amount of liquid increases and the processing equipment becomes larger, which is not preferable. On the other hand, if the dissolution concentration exceeds 25% by mass, the viscosity of the aqueous solution becomes high, and it becomes difficult to perform gravity separation of the insoluble solid content to be described later, which is not preferable. The dissolution concentration of by-product salt is particularly preferably 13 to 20% by mass.
[0014]
In the present invention, the aqueous solution obtained from the by-product salt is adjusted to pH 3-7. It is preferable to adjust the pH by adding an acid. The pH of the by-product salt aqueous solution is the ability to form a chelate between the chelating agent and heavy metals, the formation of sparingly soluble hydroxides of heavy metals, the re-elution of heavy metals from insoluble solids containing heavy metals, and the by-product salt aqueous solution. Affects the solubility of carbon dioxide. It is not preferable that the aqueous solution of the by-product salt is less than pH 3 because the amount of alkali necessary for finally making the waste water in the neutral region increases. When the pH is higher than 7, it is not preferable because dissolved carbon dioxide tends to generate bubbles during the separation operation of the insoluble solid formed by addition of the chelating agent and may interfere with the sedimentation operation. In particular, when sodium hydrogen carbonate is used, the unreacted component is present as sodium carbonate having high solubility, and therefore, the concentration of carbon dioxide in the aqueous solution tends to increase, which is not preferable. The pH of the aqueous solution is particularly preferably 4-6. In addition, in this specification, pH means the value measured at 25 degreeC with the pH meter.
[0015]
Moreover, it does not specifically limit about the kind of acid to add, Since inorganic acids, such as hydrochloric acid and a sulfuric acid, are cheap, they are preferable. In the case of organic acids, wastewater when treated as wastewater may raise the BOD and COD of wastewater and may be an impurity in the final product even when used as an industrial raw material. This is not preferable because it increases the nitrogen component.
[0016]
In the present invention, since most of the heavy metals are removed by the first stage fly ash removal operation, the amount of chelating agent used can be greatly reduced. After the fly ash removal operation in the first stage, after dissolving the by-product salt in water and adjusting the pH to 3-7, heavy metals and especially mercury are added by adding specific chelating agents and coprecipitation agents. Can be effectively removed.
[0017]
The chelating agent used in the present invention is a water-soluble polymer chelating agent. Specifically, those made of a water-soluble polymer containing a thiol group and a dithiocarbamic acid group are preferable. A polymer compound having an average molecular weight of about 80,000 to 120,000 is preferable. For example, trade name Epoflock L-1 manufactured by Miyoshi Oil & Fats Co., Ltd., trade name Aclean M manufactured by Asahi Glass Engineering Co., Ltd., and the like can be given.
[0018]
For injection of the chelating agent, a general metering pump or the like can be used. The addition amount of the chelating agent is preferably 10 ppm by mass or more, and particularly preferably 30 to 400 ppm by mass per mass of the aqueous solution. If the added amount is less than 10 ppm by mass, it is not preferable because the removal of heavy metals contained may be insufficient, and if the added amount is large, it is not preferable because it is wasteful and economically disadvantageous.
[0019]
In the present invention, the coprecipitation agent is at least one selected from the group consisting of iron (III) chloride, iron (II) sulfate, iron (III) sulfate, aluminum sulfate, polyaluminum chloride and sodium aluminate. Iron (III) chloride or aluminum sulfate is particularly preferred. The addition amount of the coprecipitation agent is preferably 50 ppm by mass or more per mass of the byproduct salt aqueous solution. If the amount of the coprecipitation agent to be added is less than 50 ppm by mass, it is not preferable because removal of the heavy metals contained may be insufficient. The amount added is particularly preferably 100 to 500 ppm by mass, and more preferably 100 to 200 ppm by mass.
[0020]
In the present invention, it is preferable to use a polymer flocculant to promote sedimentation of insoluble solids. Examples of the polymer flocculant include anionic polymer flocculants such as sodium polyacrylate, nonionic polymer flocculants such as polyacrylamide, and cationic polymer flocculants such as polyacrylic acid esters. Specifically, the Kurita Kogyo brand name Kurifix CP-933 etc. are mentioned. Specific effects of the polymer flocculant include an increase in the separation rate and an improvement in the clarification of the separated liquid, and these effects can reduce the size and simplify the equipment. The concentration of the flocculant is preferably 1 to 20 ppm by mass, and particularly preferably 2 to 15 ppm by mass with respect to the by-product salt aqueous solution.
[0021]
In the present invention, the insoluble solid content can be separated from the aqueous solution of the by-product salt by a generally known method such as sedimentation separation and centrifugation utilizing gravity, or filtration. Among gravity separations, those using centrifugal force include basket-type centrifuges and screw decanter centrifuges, and those using filtration include filter presses, belt-type dehydrators, leaf filters, and Hundback filters. Is mentioned. In general, a thickener type separation method is often employed from the viewpoint of reducing equipment costs.
[0022]
In the present invention, the aqueous solution after the heavy metal is removed is measured by a method defined in the Water Pollution Control Law.
[0023]
In the present invention, the heavy metal comprises at least one selected from the group consisting of mercury, chromium, cadmium, selenium, arsenic, and lead. According to the present invention, mercury is 0.005 mg / L or less. As for other metals, chromium is preferably 0.5 mg / L or less, and cadmium, selenium, arsenic and lead are preferably 0.1 mg / L or less. According to the present invention, heavy metals satisfy the drainage standard value for water quality.
[0024]
Hereinafter, although the specific aspect of this invention is demonstrated along FIG. 1, this invention is not limited to the following example.
[0025]
FIG. 1 illustrates a waste incinerator for treating general waste discharged from homes and the like. The exhaust gas containing acidic components generated from the waste incinerator 1 is heat recovered by the waste heat boiler 2 and then fly ash is removed by the first stage dust collector 3. Next, sodium hydrogen carbonate powder is added in a dry manner and then introduced into the second stage dust collector 4. The exhaust gas filtered by the second stage dust collector 4 is released from the chimney 5 into the atmosphere. The fly ash captured by the first-stage dust collector 3 can be returned to the gasification melting furnace, put into the ash melting furnace, or recycled to the raw material for roadbed materials and building materials. The by-product salt captured by the second-stage dust collector 4 is dissolved in water in the dissolution tank 6 and adjusted to pH 3 to 7 with hydrochloric acid. Furthermore, in the reaction vessel 7, a water-soluble polymer chelating agent was added to the by-product salt aqueous solution, then a coprecipitation agent such as iron chloride or aluminum sulfate was added, and after the reaction, a polymer flocculant was further added. Later, the insoluble solid content is removed by the separator 8 to finally obtain a treatment liquid having a mercury concentration of 0.005 mg / L or less that satisfies the effluent standard value for water quality.
[0026]
The structure of the dissolution tank for dissolving the by-product salt collected from the second stage dust collector is not particularly limited, but external circulation consisting of a stirrer for accelerating the dissolution or a pump or piping in place of it. It is desirable to have a device. Water used for dissolution can be variously used such as tap water, industrial water, ion exchange water, demineralized water and the like. Further, it may be a salt already dissolved in salt such as seawater, process liquid or waste liquid.
[0027]
【Example】
In the combustion treatment process of municipal waste by a gasification melting furnace that employs a bag filter in each of the two-stage dust collectors exemplified in FIG. 1, the exhaust gas discharged from the incinerator is discharged by the first-stage dust collector. After removing fly ash, sodium bicarbonate powder having an average particle size of 9 μm was injected, and the by-product salt obtained by collecting from the bag filter of the second stage dust collector was treated. Mercury is analyzed using a reduction vaporizer MVU-1A type manufactured by Shimadzu Corporation and a mercury analysis unit for UV-1200, in accordance with the method according to the Notification of the Environment Agency established in accordance with the Enforcement Regulations of the Water Pollution Control Law. Measured by vaporized atomic absorption. About the analysis of lead, it measured by the ICP emission spectrometry using ICP emission-spectral-analysis apparatus SPS1500R by Seiko Denshi Kogyo. In addition, the dissolution test was conducted according to the method shown in Notification No. 13 of the Environment Agency.
[0028]
[Example 1 (Example)]
150 kg of by-product salt was dissolved in 850 kg of water to obtain 1000 kg of an aqueous solution.
To this, hydrochloric acid having a concentration of 35% by mass was added to adjust the pH to 7.0, and then 100 ppm of a chelating agent (trade name: Epofloc L-1, manufactured by Miyoshi Oil & Fats Co., Ltd.) was added and stirred. Thereafter, 200 ppm iron chloride (III) solution having a concentration of 38% by mass in terms of active ingredient was added and stirred. 1 ppm by weight of a 1% by weight aqueous solution was added in an amount of 5 ppm in terms of solid to the by-product salt solution. Table 1 shows the results obtained by filtering the supernatant of the added and treated liquid and analyzing the filtrate and the eluate by the elution test of the filtered product.
[0029]
[Table 1]
Figure 0004756415
[0030]
As for the analysis result, in all cases, the analysis value of mercury did not exceed 0.005 mg / L defined as the standard value and the drainage standard value 0.1 mg / L for the water quality of lead, and there was no problem.
[0031]
Further, the fly ash collected from the bag filter of the first-stage dust collector and the aggregated precipitate by the by-product salt treatment were returned to the melting furnace and turned into slag. Thereby, the aggregate deposit by fly ash and byproduct salt treatment could be recycled to the roadbed material. By-product salt obtained by collecting from the bag filter of the second-stage dust collector was rendered harmless in this Example 1, and was discharged into sewage. As a result, solid waste could be eliminated.
[0032]
[Example 2 (comparative example)]
150 kg of the same by-product salt as in Example 1 was dissolved in 850 kg of water to obtain 1000 kg of an aqueous solution. The pH of the aqueous solution at this time was 9.2. Without adjusting the pH of the solution, 100 ppm of a chelating agent was added and stirred. Then, 200 ppm of 38 mass% iron chloride (III) solution in terms of active ingredient was added and stirred, and then 5000 g of an aqueous solution with a polymer flocculant concentration of 0.1 mass% was converted into a by-product salt solution in solid conversion. On the other hand, the supernatant obtained by adding 5 ppm was filtered, and the filtrate and the eluate obtained by the elution test of the separated product were analyzed in the same manner as in Example 1. The results are shown in Table 2.
[0033]
[Table 2]
Figure 0004756415
[0034]
From the analysis results, it was not possible to achieve the defined reference value of 0.005 mg / L for the dissolution test. At the same time, lead was measured in the same manner as in Example 1, and the reference value could not be achieved. This is due to the redissolution of hydroxides and oxides of heavy metals. Accordingly, it has been found that when the liquid is processed at a pH of more than 7, it is not suitable for landfill disposal of the separated solid content unless a treatment for sufficiently mixing the heavy metal fixing agent into the separated solid content is taken. Further, the sedimentation rate of the precipitate was slower than that of Example 1, and the compactness was weak.
[0035]
【The invention's effect】
By using a two-stage dust collector for exhaust gas from a waste incinerator or the like, and using sodium hydrogen carbonate powder as a neutralizing and removing agent for acidic components by the gas treatment method of the present invention, During the sum treatment, heavy metals, particularly mercury, in the by-product salt generated can be effectively removed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an exhaust gas treatment process in a waste incinerator.
[Explanation of symbols]
1: Waste incinerator 2: Waste heat boiler 3: First stage dust collector 4: Second stage dust collector 5: Chimney 6: Dissolution tank 7: Reaction tank 8: Separator

Claims (5)

塩化水素、フッ化水素及び硫黄酸化物からなる群より選ばれる1種以上の酸性成分及び重金属類を含む排ガスを1段目の集塵器により飛灰除去を行った後、平均粒子径20μm以下の炭酸水素ナトリウム粉末を噴霧して重金属類を含む副生塩を生成させ、該副生塩を2段目の集塵器により分離し、得られた副生塩を水に溶解して水溶液とし、該水溶液をpH3〜7に調整した後、該水溶液に塩化鉄(III)、硫酸鉄(II)、硫酸鉄(III)、硫酸アルミニウム、ポリ塩化アルミニウム及びアルミン酸ナトリウムからなる群より選ばれる1種以上の共沈剤及び水溶性高分子キレート剤を添加して、水溶液中の水銀濃度が0.005mg/L以下となるように重金属類を含む不溶性固形分を生成させるガスの処理方法。After removing fly ash from an exhaust gas containing one or more acidic components selected from the group consisting of hydrogen chloride, hydrogen fluoride and sulfur oxides and heavy metals using a first stage dust collector, the average particle size is 20 μm or less. The sodium bicarbonate powder is sprayed to produce a by-product salt containing heavy metals, the by-product salt is separated by a second stage dust collector, and the resulting by-product salt is dissolved in water to form an aqueous solution. After the aqueous solution is adjusted to pH 3-7, the aqueous solution is selected from the group consisting of iron (III) chloride, iron (II) sulfate, iron (III) sulfate, aluminum sulfate, polyaluminum chloride and sodium aluminate. A method for treating a gas, which comprises adding a coprecipitate of at least seeds and a water-soluble polymer chelating agent to generate an insoluble solid containing heavy metals so that the mercury concentration in the aqueous solution is 0.005 mg / L or less. 前記水溶性高分子キレート剤が、チオール基及びジチオカルバミン酸基を含む水溶性高分子からなる請求項1に記載のガスの処理方法。The gas treatment method according to claim 1, wherein the water-soluble polymer chelating agent comprises a water-soluble polymer containing a thiol group and a dithiocarbamic acid group. 前記水溶性高分子キレート剤の添加量が前記水溶液に対して10質量ppm以上、かつ、前記共沈剤の添加量が前記水溶液に対して50質量ppm以上である請求項1又は2に記載のガスの処理方法。The addition amount of the said water-soluble polymer chelating agent is 10 mass ppm or more with respect to the said aqueous solution, and the addition amount of the said coprecipitation agent is 50 mass ppm or more with respect to the said aqueous solution. Gas processing method. 前記水溶液に、前記水溶性高分子キレート剤及び前記共沈剤とともに、高分子凝集剤を添加する請求項1〜3のいずれかに記載のガスの処理方法。The gas treatment method according to claim 1, wherein a polymer flocculant is added to the aqueous solution together with the water-soluble polymer chelating agent and the coprecipitation agent. 前記重金属類が、水銀、クロム、カドミウム、セレン、ヒ素及び鉛からなる群より選ばれる1種以上である請求項1〜4のいずれかに記載のガスの処理方法。The gas treatment method according to any one of claims 1 to 4, wherein the heavy metal is at least one selected from the group consisting of mercury, chromium, cadmium, selenium, arsenic, and lead.
JP2001236568A 2001-08-03 2001-08-03 Gas processing method Expired - Lifetime JP4756415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001236568A JP4756415B2 (en) 2001-08-03 2001-08-03 Gas processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001236568A JP4756415B2 (en) 2001-08-03 2001-08-03 Gas processing method

Publications (2)

Publication Number Publication Date
JP2003047828A JP2003047828A (en) 2003-02-18
JP4756415B2 true JP4756415B2 (en) 2011-08-24

Family

ID=19067811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001236568A Expired - Lifetime JP4756415B2 (en) 2001-08-03 2001-08-03 Gas processing method

Country Status (1)

Country Link
JP (1) JP4756415B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714478B2 (en) * 2005-02-18 2011-06-29 パナソニック株式会社 Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment
JP2008190950A (en) * 2007-02-02 2008-08-21 Horiba Ltd Removing method and removing device for selenium oxide in sample, and measuring method and measuring device for mercury in coal combustion exhaust gas using them
JP2017194602A (en) * 2016-04-21 2017-10-26 コニカミノルタ株式会社 Fine particle removal device, image forming apparatus, and image forming method
JP2019027672A (en) * 2017-07-31 2019-02-21 日立造船株式会社 Processing apparatus for flue gas
CN110368800A (en) * 2019-08-09 2019-10-25 浙江大学 Sodium base flue gas desulfurization byproduct processing unit and processing method
CN113894135B (en) * 2020-06-22 2023-10-24 内蒙古岱海发电有限责任公司 Method for removing mercury from fly ash and purifying mercury-removing liquid
CN112044259B (en) * 2020-09-07 2022-06-21 中建材环保研究院(江苏)有限公司 Sodium-based dry desulphurization and desulphurization byproduct recycling device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062275B2 (en) * 1987-05-11 1994-01-12 大阪市 Method of detoxifying fly ash
JPH0775767A (en) * 1993-09-08 1995-03-20 Takuma Co Ltd Device for making dust harmless
JP3948075B2 (en) * 1997-10-01 2007-07-25 旭硝子株式会社 Acid component removal agent and acid component removal method
JP4033420B2 (en) * 1998-04-23 2008-01-16 三井造船株式会社 Method and apparatus for dry removal of hydrogen chloride in exhaust gas
JP4597283B2 (en) * 1999-04-07 2010-12-15 旭硝子株式会社 By-product salt processing method

Also Published As

Publication number Publication date
JP2003047828A (en) 2003-02-18

Similar Documents

Publication Publication Date Title
US8603344B2 (en) Method and apparatus for removing metal from waste water
JP2003001218A (en) Method for treating waste having high chlorine and lead contents
JP3911538B2 (en) Heavy metal recovery from fly ash
CA3087017A1 (en) Method of treating wastewater
JP4756415B2 (en) Gas processing method
JP6826950B2 (en) Heavy metal immobilization method in fly ash
JP2010036107A (en) Sewage treatment method
JPH1099817A (en) Treatment of extraction dust of cement manufacturing apparatus
JPH09187752A (en) Method for treating waste incineration ash and molten fly ash
JPH0252558B2 (en)
CN111542499B (en) Method for treating waste water
US5762807A (en) Composition and process for treating water and gas streams containing heavy metals and other pollutants
JP4525014B2 (en) By-product salt purification method, by-product salt and snow melting agent
JP3851206B2 (en) Fly ash treatment method
JP4231935B2 (en) Effective use of fly ash
JPH07214029A (en) Recycling method of heavy metal by making incineration ash or fly ash harmless
JP7083782B2 (en) Treatment method of wastewater containing fluorine
JP2758607B2 (en) Treatment method for desulfurization wastewater from wet exhaust gas desulfurization equipment
JP3896442B2 (en) Method for treating fly ash containing heavy metals
JP4617637B2 (en) Method for neutralizing acidic waste liquid containing metal ions
JP3733452B2 (en) Waste disposal method
JPH11267662A (en) Method of removing fluorine in waste water of flue gas desulfurization
JP2002126694A (en) Method for treatment waste
KR100573184B1 (en) Scale Preventer for Wastewater Disposal Facility in Flue Gas Desulfurization System
JP5754819B2 (en) Calcium elution prevention method at final disposal site

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Ref document number: 4756415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term