JPH0252558B2 - - Google Patents

Info

Publication number
JPH0252558B2
JPH0252558B2 JP4017283A JP4017283A JPH0252558B2 JP H0252558 B2 JPH0252558 B2 JP H0252558B2 JP 4017283 A JP4017283 A JP 4017283A JP 4017283 A JP4017283 A JP 4017283A JP H0252558 B2 JPH0252558 B2 JP H0252558B2
Authority
JP
Japan
Prior art keywords
magnesium
fluorine
boron
wastewater
harmful components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4017283A
Other languages
Japanese (ja)
Other versions
JPS59166290A (en
Inventor
Taku Inoe
Atsue Mitsutoku
Takeo Niimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP4017283A priority Critical patent/JPS59166290A/en
Publication of JPS59166290A publication Critical patent/JPS59166290A/en
Publication of JPH0252558B2 publication Critical patent/JPH0252558B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゴミ焼却場などから排出される洗煙排
水中に含まれる有害成分の除去法に関するもので
ある。 近年、都市ゴミや産業廃棄物を焼却する工場の
排ガス中には塩化水素、イオウ酸化物、重金属
類、フツ素、ホウ素など人体及び動植物の生育を
妨げる成分が含まれて環境汚染の原因となつてい
る。これがために排ガスを苛性ソーダなどのアル
カリ性水溶液で洗浄して処理する方法が広く行わ
れている。しかしながら、この処理の後に排出す
る洗煙拝水中には、なお水銀、カドミウム、鉛、
亜鉛、クロム、銅などの重金属類の他に、フツ
素、ホウ素などの有害成分が含まれているので、
そのままでは河川などに放流することはできな
い。 これがために、従来は洗煙排水中に含まれる重
金属類の除去については塩化第二鉄などを加えて
処理する重金属水酸化物法や、硫化ソーダなどを
加えて処理する重金属硫化物法が一般的に採用さ
れており、技術的にほぼ確立されている。フツ素
成分の除去についてはリン酸と塩化カルシウムな
どを加えて処理するフツ素リン灰石法(特願昭55
−147263号)などがあり、またホウ素成分の除去
についてはアミノポリオール基を有するキレート
樹脂吸着法(特願昭57−124845号参照)などがあ
る。しかしながら、かかる従来法で洗煙排水中に
含まれる重金属類、フツ素、ホウ素等の成分を除
去しようとすれば、前述の各方法を組み合わせて
処理しなければならず、著しく工程が複雑となる
欠点を有するものである。 本発明者等は上記のごとき欠点を解消して前記
有害諸成分を同時に効率良く除去できる洗煙排水
中の有害成分除去法を確立することを目的として
鋭意研究した結果、洗煙排水に硫化物薬剤及びマ
グネシウム薬剤を加えて巧みに処理すると、上記
目的が達成し得ることを見出し、本発明を完成し
た。 すなわち本発明は、排ガスをアルカリ性水溶液
で洗浄して排出するゴミ焼却場などろ洗煙排水
に、硫化物薬剤及びマグネシウム薬剤を加えて重
金属類、フツ素、ホウ素などの含有有害成分を不
溶化せしめたる後、固液分離することを特徴とす
る洗煙排水中の有害成分除却法である。 以下本発明の方法を詳細に説明する。 本発明の除去法によつてゴミ焼却場の洗煙排水
を処理するには、例えば以下のごとき方法を採用
することができる。まず70〜80℃となつている洗
煙排水を、好ましくはクーリングタワーあるいは
熱交換器で30〜40℃に冷却した後、硫化物薬剤を
加えて、主として排水中の重金属類を硫化物とな
して不溶化せしめる。その際に用いる硫化物薬剤
としては、例えば、硫化ソーダ、多硫化ソーダ、
多硫化カルシウムなどがあげられるが、この内硫
化ソーダ、水硫化ソーダが好ましい。その使用量
に洗煙排水中に含まれる重金属イオンの総モル数
に対して0.1〜3モルが好ましく、0.1モルより少
ないと重金属イオンの不溶化率が悪くなる傾向が
あり、一方、3モルより多いと過剰の硫化物薬剤
が液中に残存するために色や臭気などに支障をき
たす傾向がある。次いで上記排水にマグネシウム
薬剤を加えて、主としてフツ素及びホウ素を不溶
化せしめる。この反応は明らかではないが、おそ
らくマグネシウム薬剤とフツ素及びホウ素とが比
較的高分子の不溶性複合化合物を形成しているも
のと考えられる。ここで使用するマグネシウム薬
剤としては酸化マグネシウム、水酸化マグネシウ
ム、硫酸マグネシウム、塩化マグネシウム、炭酸
マグネシウム、ケイ酸マグネシウム、リン酸マグ
ネシウム、硝酸マグネシウムなどがあげられる
が、この内酸化マグネシウム、水酸化マグネシウ
ムが好ましい。その使用量は、洗煙排水中に含ま
れるフツ素及びホウ素イオンの合計量に対して、
Mgとして100〜1000倍量(重量)が好ましく、
100倍量より少ないとフツ素及びホウ素イオンの
不溶化率が悪くなる傾向があり、一方、1000倍量
より多いとスラツジ生成量が著しく多くなり、固
液分離が因難となる傾向がある。本発明において
は上記のごとく硫化物薬剤を添加したのちマグネ
シウム薬剤を加える方法が好ましく採用される
が、薬剤の添加順序を逆にしたり、両薬剤を同時
に添加することもできる。 有害成分を不溶化せしめる液のPHは9以上であ
ることが好ましい。PHが9より低い場合にはフツ
素イオン及びホウ素イオンの不溶化率が低くなる
傾向があるので、苛性ソーダなどのアルカリ性薬
剤でPHを9以上に調整すればよい。 本発明においては、不溶化成分を凝集させて固
液分離を容易にするため、必要に応じて塩化第2
鉄やポリ塩化アルミニウムなどの無機凝集剤を
100〜500mg/、ポリアクリルアミドなどの高分
子凝集剤を2〜5mg/加えることもできる。 上記の薬剤類は液状としてポンプで注入し、反
応は撹拌機などで混合しながら行い、反応時間は
それぞれ5〜30分でよく、最後に不溶化せしめた
重金属類、フツ素及びホウ素化合物などを沈殿、
濾過、脱水処理などで固液分離する。 本発明の方法は上記のごとき構成によりなるの
で従来除去因難であつた洗煙排水中の重金属類、
フツ素、ホウ素などの含有有害成分を簡単な処理
で効率よく除去することができる。 以下に本発明を実施例によつて具体的に説明す
る。 実施例 1 ゴミ焼却場の排ガスを苛性ソーダ水溶液で洗浄
した洗煙排水を測定した結果、亜鉛260mg/
(3.977m mol/)、鉛38mg/(0.183m
mol/)、カドミウム3.9mg/(0.035m
mol/)、総水銀10mg/(0.050m mol/
)、鉄12mg/(0.215m mol/)、銅6.7
mg/(0.105m mol/)の重金属イオンを
含有しており、これらの総モル数は4.565×
10-3mol/であり、またフツ素62mg/、ホウ
素25mg/、その他、ナトリウム62000mg/、
カリウム11000mg/、カルシウム460mg/、マ
グネシウム63mg/、浮遊物質2100mg/などを
含有し、PHは7.0で温度は28℃であつた。 この洗煙排水1をビーカに採取し、ジヤーテ
スターで実験を行つた。まず、洗煙排水量に対し
て硫化物薬剤として30%水硫化ソーダ200mg/
(約0.23モル/重金属イオンの総モル数)を添加
して、主に重金属イオンの不溶化を行つた。この
反応は10分間撹拌しながら行い、その結果PHは
7.3になつた。 次にマグネシウム薬剤として95%酸化マグネシ
ウム50g/(Mgとして約329倍量/洗煙排水
中のフツ素及びホウ素量)を添加して主にフツ素
及びホウ素の不溶化を行つた。この反応は20分間
撹拌しながら行いこの時のPHは10.4になつた。 さらに、無機凝集剤としてポリ塩化アルミニウ
ム300mg/、ポリアクリルアミド系高分子凝集
剤3mg/をそれぞれを添加して、重金属類、フ
ツ素及びホウ素などの不溶化物を固液分離しやす
いフロツク状とした。この反応は20分間撹拌しな
がら行い、この時のPHは10.3になつた。 最後に、不溶化せしめた重金属類、フツ素及び
ホウ素化合物を1時間静置沈殿させて固液分離し
た。その排水の分析結果を表1に示す。 表1に明瞭なごとく実施例1はフツ素除去率が
約99%で著しく優れており、排水基準も十分に満
足できるもので、ホウ素除去率も約93%と優れて
おり、大阪府と滋賀県の排水基準を満足してい
る。さらに重金属類の除去率も良好で排水基準を
満足しており、このように良好な結果を得たのは
排水中の重金属類、フツ素、ホウ素などが水硫化
ソーダ、硫化マグネシウムなどの安定な不溶性の
複合化合物を形成しているものと考えられる。 比較例 1 実施例1での30%水硫化ソーダ添加を省略した
以外は実施例1と全く同様に処理した。 この結果も表1に示す。表1から比較例1はフ
ツ素除去率が約90%で排水基準は満足してはいる
が実施例1に比し、やや悪くなつており、ホウ素
除去率においては約64%と低下して排水基準をオ
ーバーしている。さらに重金属類除去率も低下し
て鉛、カドミウム、総水銀が排水基準をオーバー
している。このように不良の結果となつたのは水
硫化ソーダの添加を省略したために不溶性の複合
化合物が形成しなかつたものと考えられる。 比較例 2 実施例1での酸化マグネシウムの添加を省略
し、ポリ塩化アルミニウム300mg/を添加した
後に、24%苛性ソーダにてPH10.0に調整した以外
は実施例1と全く同様に処理した。 この結果も表1に示す。表1から比較例2は実
施例1に比し、フツ素除去率が約8%、ホウ素除
去率が約4%と両除去率共に著しく低く排水基準
を大きくオーバーしており、さらに重金属類の除
去もやや低下してカドミウムと総水銀は排水基準
をオーバーしている。このように不良の結果とな
つたのは酸化マグネシウムの添加を省略したため
に不溶性の複合化合物が形成しなかつたものと考
えられる。 比較例 3 実施例1でポリ塩化アルミニウムを添加した後
に、35%塩酸にてPH6.0に調整した以外は実施例
1と全く同様に処理した。その結果も表1に示
す。表1から明瞭なように比較例1は実施例1に
比し、フツ素除去率が約3%、ホウ素除去率が4
%と両者共に著しく低下しており、排水基準をオ
ーバーしており、さらに重金属類の除去も低下し
てカドニウムと総水銀は排水基準をオーバーして
いる。このように不良の結果となつたのも、PHが
6.0と低かつたために不溶性の複合化合物が形成
しがたかつたものと考えられる。 実施例 2 実施例1での95%酸化マグネシウム50g/の
代わりに30%水酸化マグネシウム100g/
(Mgとして約144倍量/排水中のフツ素及びホウ
素量)を添加することと、ポリ塩化アルミニウム
及びポリアクリルアミド系高分子凝集剤を添加せ
ずに、24%苛性ーダを加えてPH12.0に調整した以
外及び静置沈殿の代わりに東洋濾紙(株)製No.2定性
濾紙によつて濾過した以外は実施例1と全く同様
に処理した。 この結果を表1に示す。実施例2はフツ素除去
率が約99%、ホウ素除去率が約96%と両除去率共
に著しく優れており、さらに重金属類の除去率も
良好で、いずれの残存含有量共排水基準を満足し
得るものである。このように優れた結果を得たの
は排水中の重金属類、フツ素、ホウ素などが前例
同様に水硫化ソーダ、水酸化マグネシウムなどと
安定な不溶性の複合化合物を形成しているものと
考えられる。
The present invention relates to a method for removing harmful components contained in smoke washing wastewater discharged from garbage incinerators and the like. In recent years, the exhaust gas from factories that incinerate municipal garbage and industrial waste has become a cause of environmental pollution because it contains components that hinder the growth of the human body, animals and plants, such as hydrogen chloride, sulfur oxides, heavy metals, fluorine, and boron. ing. For this reason, a method of cleaning and treating the exhaust gas with an alkaline aqueous solution such as caustic soda is widely used. However, the smoke washing water discharged after this treatment still contains mercury, cadmium, lead, etc.
In addition to heavy metals such as zinc, chromium, and copper, it also contains harmful components such as fluorine and boron.
It cannot be discharged into rivers as is. For this reason, the conventional methods for removing heavy metals contained in smoke washing wastewater have been the heavy metal hydroxide method, which involves adding ferric chloride, etc., and the heavy metal sulfide method, which involves adding sodium sulfide, etc. It has been widely adopted and is almost technically established. To remove fluorine components, the fluorine apatite method (patent application filed in 1983) is used to remove fluorine components by adding phosphoric acid, calcium chloride, etc.
For the removal of boron components, there is a chelate resin adsorption method having an aminopolyol group (see Japanese Patent Application No. 124845/1983). However, if such conventional methods are used to remove components such as heavy metals, fluorine, and boron contained in smoke washing wastewater, the above-mentioned methods must be combined, making the process extremely complicated. It has its drawbacks. The inventors of the present invention have conducted intensive research with the aim of establishing a method for removing harmful components from smoke washing wastewater that can eliminate the above-mentioned drawbacks and efficiently remove the various harmful components at the same time. The present invention has been completed based on the discovery that the above object can be achieved by skillfully processing by adding a drug and a magnesium drug. That is, the present invention adds a sulfide agent and a magnesium agent to the smoke washing wastewater of a garbage incinerator, which washes exhaust gas with an alkaline aqueous solution and discharges it, to insolubilize harmful components such as heavy metals, fluorine, and boron. This is a method for removing harmful components from smoke washing wastewater, which is characterized by solid-liquid separation. The method of the present invention will be explained in detail below. In order to treat smoke washing wastewater from a garbage incinerator using the removal method of the present invention, the following method can be adopted, for example. First, the smoke washing wastewater, which is at a temperature of 70 to 80℃, is preferably cooled to 30 to 40℃ using a cooling tower or heat exchanger, and then a sulfide agent is added to convert the heavy metals mainly in the wastewater into sulfides. Make it insolubilized. Examples of sulfide agents used in this case include sodium sulfide, sodium polysulfide,
Examples include calcium polysulfide, among which sodium sulfide and sodium hydrogen sulfide are preferred. The amount used is preferably 0.1 to 3 moles based on the total number of moles of heavy metal ions contained in the smoke washing wastewater, and if it is less than 0.1 mole, the insolubilization rate of heavy metal ions tends to be poor, whereas if it is more than 3 moles. Excess sulfide chemicals remain in the liquid, which tends to cause problems with color and odor. Next, a magnesium agent is added to the waste water to insolubilize mainly fluorine and boron. Although this reaction is not clear, it is thought that the magnesium drug, fluorine, and boron probably form an insoluble complex compound with a relatively high molecular weight. Magnesium drugs used here include magnesium oxide, magnesium hydroxide, magnesium sulfate, magnesium chloride, magnesium carbonate, magnesium silicate, magnesium phosphate, and magnesium nitrate, of which magnesium oxide and magnesium hydroxide are preferred. . The amount used is based on the total amount of fluorine and boron ions contained in smoke washing wastewater.
The amount (weight) of Mg is preferably 100 to 1000 times,
If the amount is less than 100 times, the insolubilization rate of fluorine and boron ions tends to be poor, while if the amount is more than 1000 times, the amount of sludge produced is significantly increased, and solid-liquid separation tends to be difficult. In the present invention, the method of adding the magnesium agent after adding the sulfide agent as described above is preferably employed, but the order of addition of the agents may be reversed or both agents may be added at the same time. The pH of the liquid that insolubilizes harmful components is preferably 9 or higher. When the pH is lower than 9, the insolubilization rate of fluorine ions and boron ions tends to be low, so the pH may be adjusted to 9 or higher using an alkaline agent such as caustic soda. In the present invention, in order to aggregate the insolubilized components and facilitate solid-liquid separation, dichlorochloride is added as necessary.
Inorganic flocculants such as iron and polyaluminum chloride
It is also possible to add 100 to 500 mg/2 to 5 mg/of a polymer flocculant such as polyacrylamide. The above chemicals are injected as a liquid using a pump, and the reaction is carried out while being mixed using a stirrer, etc. The reaction time may be 5 to 30 minutes each, and finally the insolubilized heavy metals, fluorine, boron compounds, etc. are precipitated. ,
Separate solid and liquid by filtration, dehydration, etc. Since the method of the present invention has the above-mentioned structure, heavy metals in smoke washing wastewater, which were difficult to remove in the past, can be removed.
Harmful components such as fluorine and boron can be efficiently removed with simple treatment. The present invention will be specifically explained below using examples. Example 1 As a result of measuring smoke washing wastewater obtained by washing exhaust gas from a garbage incinerator with a caustic soda aqueous solution, zinc was found to be 260 mg/day.
(3.977m mol/), lead 38mg/(0.183m
mol/), cadmium 3.9mg/(0.035m
mol/), total mercury 10 mg/(0.050 m mol/
), iron 12 mg/(0.215 m mol/), copper 6.7
Contains heavy metal ions of mg/(0.105m mol/), and the total number of moles of these is 4.565×
10 -3 mol/, fluorine 62 mg/, boron 25 mg/, others, sodium 62000 mg/,
It contained 11,000 mg of potassium, 460 mg of calcium, 63 mg of magnesium, and 2,100 mg of suspended solids, and the pH was 7.0 and the temperature was 28°C. This smoke washing waste water 1 was collected in a beaker and tested using a jar tester. First, 200 mg of 30% sodium hydrogen sulfide was used as a sulfide agent for the amount of smoke washing wastewater.
(approximately 0.23 mol/total number of moles of heavy metal ions) was added to mainly insolubilize heavy metal ions. This reaction was carried out with stirring for 10 minutes, resulting in a pH of
It became 7.3. Next, 50 g of 95% magnesium oxide (approximately 329 times the amount of Mg/amount of fluorine and boron in the smoke washing wastewater) was added as a magnesium agent to mainly insolubilize fluorine and boron. This reaction was carried out with stirring for 20 minutes, and the pH at this time was 10.4. Further, 300 mg of polyaluminum chloride and 3 mg of a polyacrylamide polymer flocculant were added as an inorganic flocculant to form a floc that facilitates solid-liquid separation of insolubilized substances such as heavy metals, fluorine, and boron. This reaction was carried out with stirring for 20 minutes, and the pH at this time was 10.3. Finally, the insolubilized heavy metals, fluorine, and boron compounds were allowed to settle for 1 hour and separated into solid and liquid. Table 1 shows the analysis results of the wastewater. As is clear from Table 1, Example 1 has a significantly superior fluoride removal rate of approximately 99%, which fully satisfies the wastewater standards, and an excellent boron removal rate of approximately 93%. Satisfies prefectural wastewater standards. Furthermore, the removal rate of heavy metals was also good and satisfied the wastewater standards.The reason why such good results were obtained was that heavy metals such as fluorine and boron in the wastewater were removed by stable substances such as sodium hydrogen sulfide and magnesium sulfide. It is thought that they form an insoluble complex compound. Comparative Example 1 The same procedure as in Example 1 was carried out except that the addition of 30% sodium hydrogen sulfide was omitted. The results are also shown in Table 1. From Table 1, Comparative Example 1 has a fluorine removal rate of approximately 90%, which satisfies the wastewater standards, but it is slightly worse than Example 1, and the boron removal rate has decreased to approximately 64%. Exceeds wastewater standards. Furthermore, the removal rate of heavy metals has decreased, and lead, cadmium, and total mercury exceed wastewater standards. The reason for this poor result is considered to be that the addition of sodium hydrogen sulfide was omitted, so that no insoluble composite compound was formed. Comparative Example 2 The same procedure as in Example 1 was carried out except that the addition of magnesium oxide in Example 1 was omitted, 300 mg of polyaluminum chloride was added, and the pH was adjusted to 10.0 with 24% caustic soda. The results are also shown in Table 1. From Table 1, compared to Example 1, Comparative Example 2 had a fluorine removal rate of about 8% and a boron removal rate of about 4%, both of which were extremely low and far exceeding the wastewater standards. Removal has also decreased slightly, and cadmium and total mercury exceed wastewater standards. The reason for this poor result is considered to be that the addition of magnesium oxide was omitted, so that an insoluble composite compound was not formed. Comparative Example 3 The same process as in Example 1 was carried out except that after adding polyaluminum chloride in Example 1, the pH was adjusted to 6.0 with 35% hydrochloric acid. The results are also shown in Table 1. As is clear from Table 1, compared to Example 1, Comparative Example 1 had a fluorine removal rate of about 3% and a boron removal rate of 4%.
% and both have decreased significantly, exceeding the wastewater standards.Furthermore, removal of heavy metals has also decreased, and cadmium and total mercury exceed the wastewater standards. The reason for this poor result was the PH.
It is thought that the low value of 6.0 made it difficult to form an insoluble complex compound. Example 2 30% magnesium hydroxide 100g/instead of 95% magnesium oxide 50g/in Example 1
(approximately 144 times the amount of Mg/amount of fluorine and boron in waste water) and 24% caustic soda without adding polyaluminum chloride or polyacrylamide-based polymer flocculants to achieve a pH of 12. The treatment was carried out in exactly the same manner as in Example 1, except that the concentration was adjusted to 0 and that filtration was performed using No. 2 qualitative filter paper manufactured by Toyo Roshi Co., Ltd. instead of static precipitation. The results are shown in Table 1. In Example 2, the fluorine removal rate was approximately 99%, the boron removal rate was approximately 96%, and both removal rates were extremely excellent. Furthermore, the removal rate of heavy metals was also good, and both residual contents satisfied the wastewater standards. It is possible. The reason why such excellent results were obtained is thought to be that heavy metals, fluorine, boron, etc. in the wastewater form stable insoluble complex compounds with sodium hydrogen sulfide, magnesium hydroxide, etc., as in the previous example. .

【表】 (注) *1印の欄は大阪府と滋賀県が2以下、京
都府が1以下
[Table] (Note) Columns marked with *1 are 2 or less for Osaka and Shiga prefectures, and 1 or less for Kyoto prefecture.

Claims (1)

【特許請求の範囲】 1 排ガスをアルカリ性水溶液で洗浄して排出す
るゴミ焼却場などの洗煙排水に、硫化物薬剤及び
マグネシウム薬剤を添加して重金属類、フツ素、
ホウ素などの含有有害成分を不溶化せしめたる
後、固液分離することを特徴とする洗煙排水中の
有害成分除去法。 2 マグネシウム薬剤が酸化マグネシウムである
特許請求の範囲第1項記載の有害成分除去法。 3 マグネシウム薬剤が水酸化マグネシウムであ
る特許請求の範囲第1項記載の有害成分除去法。
[Scope of Claims] 1. Sulfide chemicals and magnesium chemicals are added to smoke washing wastewater from garbage incinerators, etc., where flue gas is washed with an alkaline aqueous solution and then discharged to remove heavy metals, fluorine,
A method for removing harmful components from smoke washing wastewater, which is characterized by solid-liquid separation after insolubilizing harmful components such as boron. 2. The method for removing harmful components according to claim 1, wherein the magnesium drug is magnesium oxide. 3. The method for removing harmful components according to claim 1, wherein the magnesium agent is magnesium hydroxide.
JP4017283A 1983-03-10 1983-03-10 Method for removing harmful component in waste water of smoke scrubbing Granted JPS59166290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4017283A JPS59166290A (en) 1983-03-10 1983-03-10 Method for removing harmful component in waste water of smoke scrubbing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4017283A JPS59166290A (en) 1983-03-10 1983-03-10 Method for removing harmful component in waste water of smoke scrubbing

Publications (2)

Publication Number Publication Date
JPS59166290A JPS59166290A (en) 1984-09-19
JPH0252558B2 true JPH0252558B2 (en) 1990-11-13

Family

ID=12573347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4017283A Granted JPS59166290A (en) 1983-03-10 1983-03-10 Method for removing harmful component in waste water of smoke scrubbing

Country Status (1)

Country Link
JP (1) JPS59166290A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148389A (en) * 1987-12-01 1989-06-09 Kurita Water Ind Ltd Treatment of water containing heavy metal complex
JP2623616B2 (en) * 1987-12-01 1997-06-25 栗田工業株式会社 Treatment of concentrated alkaline solution
US6039789A (en) * 1998-03-27 2000-03-21 Barrick Gold Corporation Removal of boron and fluoride from water
JP4505877B2 (en) * 1999-05-26 2010-07-21 栗田工業株式会社 Wastewater treatment method
JP4543481B2 (en) * 2000-03-01 2010-09-15 栗田工業株式会社 Method for treating water containing boron and fluorine
JP2001340872A (en) * 2000-06-05 2001-12-11 Japan Organo Co Ltd Method for treating wastewater containing boron and/or fluorine
JP5129872B2 (en) * 2011-05-10 2013-01-30 三菱重工業株式会社 Mercury fixing method and gypsum production method using the same, mercury fixing device and flue gas desulfurization system using the same
JP6053260B2 (en) * 2011-07-07 2016-12-27 三菱瓦斯化学株式会社 Treatment method for wastewater containing boron and fluorine
JP6053261B2 (en) * 2011-07-07 2016-12-27 三菱瓦斯化学株式会社 Treatment method for boron-containing wastewater
JP6330186B2 (en) * 2013-07-22 2018-05-30 株式会社片山化学工業研究所 Zinc-containing waste liquid treatment agent
CN106630505A (en) * 2016-10-20 2017-05-10 郑州源冉生物技术有限公司 Heavy metal sludge treatment agent and preparation method thereof

Also Published As

Publication number Publication date
JPS59166290A (en) 1984-09-19

Similar Documents

Publication Publication Date Title
RU2238246C2 (en) Method for reducing of dissolved metal and non-metal concentration in aqueous solution
JPH0252558B2 (en)
TW412433B (en) Processes for the treatment of flue gas desulfurization waste water
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
JPH11137958A (en) Treatment of stack gas desulfurization waste water
JPH09187752A (en) Method for treating waste incineration ash and molten fly ash
US5762807A (en) Composition and process for treating water and gas streams containing heavy metals and other pollutants
JP4756415B2 (en) Gas processing method
JPS6328492A (en) Treatment of waste liquid of stack gas scrubbing
KR100318661B1 (en) Wastewater treatment agent and its treatment method
JP2000511865A (en) Method for producing industrial sodium chloride aqueous solution
JP2000263065A (en) Removal of phosphorus in industrial waste solution
JPS6121722A (en) Purification of exhaust gas containing mercury
JP4497385B2 (en) Metal collection method
JPH03186393A (en) Treatment of waste water containing fluorine
JPS62125894A (en) Treatment of fluorine-containing waste water
JP4761612B2 (en) Treatment method for boron-containing wastewater
JP4023928B2 (en) Metal scavenger
JP3470594B2 (en) Processing method of molten fly ash
JP2004330039A (en) Recovery method of phosphorus and coagulant
JP3346708B2 (en) Treatment method of boron-containing wastewater
JPS599237B2 (en) Method for treating wastewater containing poorly soluble solid-phase compounds
SU1096236A1 (en) Method for purifying waste liquors contaning fluorides and ammonia
JPH07116670A (en) Treatment of waste photographic developing solution, waste fixing solution and solution mixture of them
JPH10113675A (en) Trapping agent for heavy metal and trapping method of heavy metal