JP2003320376A - Treatment method for fluorine-containing wastewater and chemical agent used therein - Google Patents

Treatment method for fluorine-containing wastewater and chemical agent used therein

Info

Publication number
JP2003320376A
JP2003320376A JP2003050152A JP2003050152A JP2003320376A JP 2003320376 A JP2003320376 A JP 2003320376A JP 2003050152 A JP2003050152 A JP 2003050152A JP 2003050152 A JP2003050152 A JP 2003050152A JP 2003320376 A JP2003320376 A JP 2003320376A
Authority
JP
Japan
Prior art keywords
rare earth
ion
earth element
drug
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003050152A
Other languages
Japanese (ja)
Other versions
JP4289451B2 (en
Inventor
Kenji Tatsumi
憲司 辰巳
Shinji Wada
愼二 和田
Yasuhiro Yugawa
恭啓 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Corp
Priority to JP2003050152A priority Critical patent/JP4289451B2/en
Publication of JP2003320376A publication Critical patent/JP2003320376A/en
Application granted granted Critical
Publication of JP4289451B2 publication Critical patent/JP4289451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for almost efficiently and perfectly removing dissolved fluorine in water to be treated. <P>SOLUTION: In the method for removing dissolved fluorine in water to be treated, a liquid additive of a rare-earth element and a harmless polyvalent metal is added to water to be treated to sediment and remove fluorine ions. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被処理水中に含ま
れる溶存フッ素イオンの除去方法および除去剤に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for removing dissolved fluorine ions contained in water to be treated and a removing agent.

【0002】[0002]

【従来の技術】従来から、被処理水中に含まれるフッ素
イオンの除去方法としては、水中に塩化カルシウム又は
消石灰等を添加して、フッ素イオンをフッ化カルシウム
として沈殿させるカルシウム凝集沈殿法が最も一般的に
行われてきた(特許文献1参照)。この方法では、被処
理水中のフッ素イオンを高濃度(100mg/l以上)
から中濃度(10〜20mg/l)になるまで除去する
ことは可能であるものの、フッ化カルシウムの溶解度が
約15mg/lであるためフッ素イオンを平成13年度
に制定された新たな排水基準である8mg/l以下まで
除去することは、大量のカルシウム塩を使用しても殆ん
ど不可能である。
2. Description of the Related Art Conventionally, the most common method for removing the fluorine ions contained in the water to be treated is the calcium coagulation precipitation method in which calcium chloride or slaked lime is added to the water to precipitate the fluorine ions as calcium fluoride. Has been performed (see Patent Document 1). In this method, the concentration of fluorine ions in the water to be treated is high (100 mg / l or more)
Although it is possible to remove it to a medium concentration (10 to 20 mg / l), since the solubility of calcium fluoride is about 15 mg / l, the fluoride ion is a new drainage standard established in 2001. Removal up to some 8 mg / l or less is almost impossible even with the use of large amounts of calcium salt.

【0003】カルシウム凝集沈殿法では、前記のように
フッ素イオンを8mg/l以下には除去できないので、
フッ素イオンを低濃度(8mg/l以下)に除去する方
法としていくつかの方法が検討されている。また、水酸
化アルミニウム形成剤を添加し、難水溶性のゲル状の水
酸化アルミニウムを生成させるとともに、水中のフッ素
イオンをその水酸化アルミニウムゲルに吸着除去するア
ルミニウム法があるが(特許文献2参照)、この処理方
法では大量のアルミニウム化合物を加えなければなら
ず、しかも沈降性及び/又は脱水性のよいフロックが得
られないため、脱水が困難であり、また大量のスラッジ
が発生する問題がある。また、フッ素を特異的に吸着す
るフッ素吸着樹脂を使用する方法があるが(特許文献3
参照)、高価な吸着樹脂を使用しなければならない。
In the calcium coagulation-precipitation method, as described above, fluorine ions cannot be removed to 8 mg / l or less,
Several methods have been studied as methods for removing fluoride ions to a low concentration (8 mg / l or less). Further, there is an aluminum method in which an aluminum hydroxide-forming agent is added to form a sparingly water-soluble gel-like aluminum hydroxide and fluorine ions in water are adsorbed and removed by the aluminum hydroxide gel (see Patent Document 2). ), A large amount of aluminum compound must be added in this treatment method, and since flocs having good sedimentation and / or dehydration properties cannot be obtained, dehydration is difficult and a large amount of sludge is generated. . There is also a method of using a fluorine-adsorbing resin that specifically adsorbs fluorine (Patent Document 3).
), Expensive adsorbent resins must be used.

【0004】一方、水溶液中でフッ素と希土類元素を反
応させて得られる化合物、例えばフッ化ランタン(La
)は、水に溶けないのでフッ素を8mg/l以下に
除去するのに有効であると考えられ、希土類化合物とア
ルカリ土類金属化合物及びアルカリ金属化合物からなる
水溶性組成物を加える方法が提案されている(特許文献
4参照)。しかし、一般に希土類元素とフッ素が反応し
て生成する結晶のフロックは細かく、さらに凝集剤を添
加しても沈降性の良いフロックが得られず、また、緻密
な脱水性の良いフロックが得られないという問題があ
る。沈降性の良いフロックが得られないと固液分離のた
め砂ろ過や膜処理等の新たな処理設備を必要とし、コス
トの面でも設置場所の確保の点でも大きな問題となって
いる。
On the other hand, a compound obtained by reacting fluorine with a rare earth element in an aqueous solution, such as lanthanum fluoride (La)
F 3 ) is insoluble in water and is therefore considered to be effective in removing fluorine to 8 mg / l or less. A method of adding a water-soluble composition consisting of a rare earth compound, an alkaline earth metal compound and an alkali metal compound is It has been proposed (see Patent Document 4). However, generally, the flocs of crystals formed by the reaction of rare earth elements and fluorine are fine, and even if a flocculant is added, flocs with good sedimentation cannot be obtained, and dense flocs with good dehydration cannot be obtained. There is a problem. If flocs with good sedimentation cannot be obtained, solid-liquid separation requires new treatment equipment such as sand filtration and membrane treatment, which is a major problem in terms of cost and securing the installation site.

【0005】[0005]

【特許文献1】特開2001−54791号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 2001-54791

【特許文献2】特開平9−276875号公報[Patent Document 2] Japanese Patent Laid-Open No. 9-276875

【特許文献3】特開平7−195071号公報[Patent Document 3] Japanese Patent Laid-Open No. 7-195071

【特許文献4】特開平3−186393号公報[Patent Document 4] Japanese Patent Laid-Open No. 3-186393

【0006】[0006]

【発明が解決しようとする課題】本発明は、該水中から
溶存フッ素イオンを新たな排水基準の8mg/l以下に
除去でき、しかも実排水の処理においても重力沈降のみ
の簡単な方法で固液分離を可能とする効率的な処理方
法、及びそれに用いるフッ素イオンの除去剤を提供する
ことをその課題とする。
DISCLOSURE OF THE INVENTION The present invention is capable of removing dissolved fluorine ions from the water to 8 mg / l or less, which is a new standard for waste water, and is a solid-liquid method by a simple method of gravity sedimentation even when treating actual waste water. It is an object of the present invention to provide an efficient treatment method that enables separation and a fluorine ion remover used therefor.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。すなわち、本発明は、(1)被処理水中に含
まれる溶存フッ素イオンを除去する方法において、該水
中に希土類元素イオン及び無害性多価金属イオンを存在
させた状態で、pHを5〜9に調整することによって該
溶存フッ素イオンを難溶性物質として沈殿分離させるこ
とを特徴とするフッ素イオンの除去方法、(2)該被処
理水中に、カルシウム化合物を添加する(1)項に記載
の除去方法、(3)該無害性多価金属イオンがアルミニ
ウムイオンで、該アルミニウムイオンを存在させるため
にアルミニウム化合物を添加する(1)項に記載の除去
方法、(4)該無害性多価金属イオンが硫酸アルミニウ
ムによって供給される(1)〜(3)のいずれか1項に
記載の除去方法、(5)該無害性多価金属イオンが鉄イ
オンである(1)又は(2)項に記載の除去方法、
(6)該希土類元素イオンが、希土類元素の酸化物、水
酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の
水溶液、塩酸溶液又は硫酸溶液として被処理水中に添加
される(1)〜(5)のいずれか1項に記載の除去方
法、(7)凝集剤を添加する(1)〜(6)のいずれか
1項に記載の除去方法、
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, the present invention provides (1) a method for removing dissolved fluorine ions contained in water to be treated, in which a rare earth element ion and a harmless polyvalent metal ion are present in the water, and the pH is adjusted to 5 to 9. A method for removing fluoride ions, characterized by precipitating and separating the dissolved fluoride ions as a sparingly soluble substance by adjustment, (2) a method for removing calcium ions in the water to be treated (1) (3) The harmless polyvalent metal ion is an aluminum ion, and an aluminum compound is added to allow the aluminum ion to be present, (4) The removal method according to item (4), wherein the harmless polyvalent metal ion is The removal method according to any one of (1) to (3), which is supplied by aluminum sulfate, (5) the harmless polyvalent metal ion is an iron ion (1) or (2). Method of removing described in,
(6) The rare earth element ion is added to the water to be treated as an aqueous solution of a rare earth element oxide, hydroxide, carbonate, phosphate, acetate or halide, hydrochloric acid solution or sulfuric acid solution (1) To (5), the removal method according to any one of (5), (7) the removal method according to any one of (1) to (6) of adding a coagulant,

【0008】(8)(1)〜(7)のいずれか1項に記
載の方法に使用される薬剤であって、供給される希土類
元素イオンが薬剤として構成されるものであり、その薬
剤が、希土類元素の酸化物、水酸化物、炭酸塩、リン酸
塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫
酸溶液からなる群から選択される少なくとも一種からな
ることを特徴とする薬剤、(9)(1)〜(4)、及び
(6)〜(7)のいずれか1項に記載の方法に使用され
る薬剤であって、供給される希土類元素イオンおよびア
ルミニウムイオンが薬剤として構成されるものであり、
その薬剤が、(i)希土類元素の酸化物、水酸化物、炭
酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩
酸溶液又は硫酸溶液からなる群から選択される少なくと
も一種と(ii)硫酸アルミニウム溶液、ポリ塩化アルミ
ニウム溶液又はそれらの混合物との混合物からなること
を特徴とする薬剤、および(10)(1)、(2)、及
び(5)〜(7)のいずれか1項に記載の方法に使用さ
れる薬剤であって、供給される希土類元素イオンおよび
鉄イオンが薬剤として構成されるものであり、その薬剤
が、(i)希土類元素の酸化物、水酸化物、炭酸塩、リ
ン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又
は硫酸溶液からなる群から選択される少なくとも一種と
(ii)塩化第二鉄溶液、ポリ鉄溶液又はそれらの混合物
との混合物からなることを特徴とする薬剤を提供するも
のである。
(8) A drug used in the method according to any one of (1) to (7), wherein the supplied rare earth element ion is constituted as a drug, and the drug is , A drug comprising at least one selected from the group consisting of an aqueous solution of a rare earth element oxide, hydroxide, carbonate, phosphate, acetate or halide, a hydrochloric acid solution or a sulfuric acid solution, ( 9) A drug used in the method according to any one of (1) to (4) and (6) to (7), wherein the supplied rare earth element ion and aluminum ion are constituted as a drug. Is something
The agent is (i) at least one selected from the group consisting of oxides, hydroxides, carbonates, phosphates, acetates or halides of rare earth elements, hydrochloric acid solutions or sulfuric acid solutions; and (ii) A drug characterized by comprising a mixture with an aluminum sulfate solution, a polyaluminum chloride solution or a mixture thereof, and (10) (1), (2), and any one of (5) to (7). A drug used in the method as described, wherein the supplied rare earth element ion and iron ion are constituted as a drug, and the agent is (i) a rare earth element oxide, hydroxide or carbonate. , A mixture of at least one selected from the group consisting of an aqueous solution of phosphate, acetate or halide, a hydrochloric acid solution or a sulfuric acid solution, and (ii) a ferric chloride solution, a polyiron solution or a mixture thereof. The present invention provides a drug characterized by the above.

【0009】[0009]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明では、多価陰イオン及び/又は無害性多価
金属イオンと希土類元素イオンを被処理水中に存在させ
pHを5〜9に調整する。被処理水へ添加する際の希土
類元素イオンは本発明の目的を達成できればいかなる状
態であってもよいが希土類元素含有溶液として添加する
のが好ましく、希土類元素の酸化物、水酸化物、炭酸
塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸
溶液又は硫酸溶液として被処理水へ添加するのが好まし
い。その濃度は特に限定されるものではないが、操作性
を考慮すると、例えば希土類元素酸化物の塩酸溶液の場
合は、塩酸溶液中の希土類元素を酸化物として好ましく
は10〜60質量%、より好ましくは30〜50質量%
である。また、本発明のフッ素イオン除去剤(以下、単
に除去剤という)は、希土類元素イオンからなるもの、
希土類元素イオンとアルミニウムイオン、並びに希土類
元素イオンと鉄イオンからなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the present invention, a polyvalent anion and / or a harmless polyvalent metal ion and a rare earth element ion are present in the water to be treated to adjust the pH to 5-9. Rare earth element ions when added to the water to be treated may be in any state as long as the object of the present invention can be achieved, but it is preferable to add as a rare earth element-containing solution, oxides, hydroxides, carbonates of rare earth elements. , Phosphate, acetate or halide solution, hydrochloric acid solution or sulfuric acid solution is preferably added to the water to be treated. The concentration is not particularly limited, but in consideration of operability, for example, in the case of a hydrochloric acid solution of a rare earth element oxide, the rare earth element in the hydrochloric acid solution is preferably 10 to 60% by mass as an oxide, and more preferably Is 30 to 50% by mass
Is. Further, the fluorine ion removing agent of the present invention (hereinafter, simply referred to as a removing agent) comprises a rare earth element ion,
It is composed of rare earth element ions and aluminum ions, and rare earth element ions and iron ions.

【0010】希土類元素イオンの中でもランタンイオ
ン、セリウムイオンの使用が好ましく、ランタンイオン
の使用がより好ましい。また、本発明において除去剤主
体として用いる希土類元素含有溶液は、希土類元素の混
合物の溶液もしくは、希土類元素の単独又は混合液の形
態で用いることができる。ランタンとセリウム及び/又
はイッテルビウムとの混合溶液の使用が好ましく、ラン
タンとセリウムとの混合溶液がより好ましい。好ましい
具体例としては、ランタンとセリウムとイッテルビウム
との塩酸溶液(濃度は酸化物として50質量%、その中
の組成は、ランタン95質量%、セリウム4.9質量
%、イッテルビウム0.1質量%)である。
Among the rare earth element ions, lanthanum ions and cerium ions are preferably used, and lanthanum ions are more preferably used. In addition, the rare earth element-containing solution used mainly as a removing agent in the present invention can be used in the form of a solution of a mixture of rare earth elements, or a single or mixed solution of rare earth elements. The use of a mixed solution of lanthanum and cerium and / or ytterbium is preferable, and a mixed solution of lanthanum and cerium is more preferable. As a preferred specific example, a hydrochloric acid solution of lanthanum, cerium, and ytterbium (concentration is 50 mass% as an oxide, and the composition thereof is 95 mass% lanthanum, 4.9 mass% cerium, and 0.1 mass% ytterbium). Is.

【0011】本発明において、希土類元素イオンの添加
量は、被処理水中のフッ素イオンの濃度にもよるが、フ
ッ素イオン1モル当たり好ましくは0.01〜10モ
ル、より好ましくは0.1〜10モル、さらに好ましく
は0.1〜5モルである。希土類元素イオンの添加量が
少なすぎると沈殿物ができにくくなってフッ素の除去率
が低下してしまい、一方、多すぎると希土類元素が被処
理水中に残ってしまいその除去が必要となる。
In the present invention, the amount of the rare earth element ion added depends on the concentration of the fluorine ion in the water to be treated, but is preferably 0.01 to 10 moles, more preferably 0.1 to 10 moles per 1 mole of the fluorine ion. The amount is more preferably 0.1 to 5 mol. If the amount of the rare earth element ion added is too small, precipitates are less likely to be formed and the removal rate of fluorine decreases, while if it is too large, the rare earth element remains in the water to be treated and must be removed.

【0012】本発明では、希土類元素イオンに加えて、
無害性多価金属イオンを被処理水中に存在させることが
好ましい。無害性多価金属イオンとは、IIIB族、VIII
族の多価金属イオンであり、アルカリ土類金属(IIA
族)イオン以外のものをいう。具体的には、アルミニウ
ムイオン、鉄イオン等が挙げられ、本発明においては、
アルミニウムイオンの使用がより好ましい。また、無害
性多価金属イオンとは、上水処理でも用いられる意味で
無害である多価金属イオンをいう。無害性多価金属イオ
ンを被処理水中に存在させるには、無害性多価金属化合
物を添加する。それらには、具体例として、アルミニウ
ム化合物として硫酸アルミニウム、塩化アルミニウム、
ポリ塩化アルミニウム等が挙げられ、本発明の場合、硫
酸アルミニウムの使用が特に好ましい。また、鉄化合物
等として塩化第二鉄、硫酸第二鉄、ポリ鉄などが挙げら
れる。
In the present invention, in addition to the rare earth element ion,
The harmless polyvalent metal ion is preferably present in the water to be treated. Harmless polyvalent metal ions are IIIB group, VIII
Alkaline earth metal (IIA)
Group) means anything other than ions. Specific examples thereof include aluminum ion and iron ion, and in the present invention,
The use of aluminum ions is more preferred. Further, the harmless polyvalent metal ion means a polyvalent metal ion which is harmless in the sense that it is also used in water treatment. In order to make harmless polyvalent metal ions present in the water to be treated, a harmless polyvalent metal compound is added. Specific examples thereof include aluminum sulfate as an aluminum compound, aluminum chloride,
Examples include polyaluminum chloride, and in the case of the present invention, use of aluminum sulfate is particularly preferable. Further, examples of the iron compound and the like include ferric chloride, ferric sulfate, polyiron and the like.

【0013】本発明において、無害性多価金属イオンの
添加量は、被処理水中のフッ素イオンの濃度にもよる
が、フッ素イオン1モル当たり好ましくは0.01〜2
0モル、より好ましくは0.05〜5モル、さらに好ま
しくは0.1〜3モルである。無害性多価金属イオンの
添加量が少なすぎるとフロックの形成が悪くなり、多す
ぎるとスラッジの量が多くなる等の問題がある。
In the present invention, the addition amount of the harmless polyvalent metal ion depends on the concentration of the fluorine ion in the water to be treated, but is preferably 0.01 to 2 per mol of the fluorine ion.
It is 0 mol, more preferably 0.05 to 5 mol, and further preferably 0.1 to 3 mol. If the amount of the harmless polyvalent metal ion added is too small, the formation of flocs becomes poor, and if it is too large, the amount of sludge increases.

【0014】本発明の特徴の一つは、除去剤への希土類
元素イオンの供給源として、高度に精製分離された高価
な希土類化合物を用いることは必要ではないことであ
る。すなわち、本発明で使用される除去剤(以下、除去
剤[I]ともいう)は、精製された希土類元素で調製す
る必要はない。例えば、希土類元素を含有している鉱石
から礫、及び鉛等の重金属や放射性元素を除いたものを
塩酸に溶解させた後に粗精製したものを使用することが
できる。このときの塩酸濃度は、0.1〜12規定が好
ましく、より好ましくは5〜12規定、さらに好ましく
は8〜12規定であり、希土類元素イオンの濃度は、特
に限定されるものではないが、操作性を考慮すると、酸
化物として好ましくは10〜60質量%、より好ましく
は20〜50質量%、さらに好ましくは30〜50質量
%である。溶解時間は、完全に溶解すればよく、特に限
定されないが、0.5時間から2時間程度で十分であ
る。
One of the features of the present invention is that it is not necessary to use a highly purified and expensive rare earth compound as a source of rare earth element ions to the scavenger. That is, the removing agent used in the present invention (hereinafter, also referred to as removing agent [I]) does not need to be prepared with a purified rare earth element. For example, an ore containing a rare earth element, from which gravel and heavy metals such as lead and radioactive elements have been removed, is dissolved in hydrochloric acid, and then roughly purified can be used. The hydrochloric acid concentration at this time is preferably 0.1 to 12 N, more preferably 5 to 12 N, further preferably 8 to 12 N, and the concentration of the rare earth element ion is not particularly limited, Considering operability, the oxide content is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and further preferably 30 to 50% by mass. The dissolution time is not particularly limited as long as it is completely dissolved, but 0.5 hours to 2 hours is sufficient.

【0015】得られた希土類溶液と硫酸アルミニウム溶
液もしくはポリ塩化アルミニウム溶液と混合することに
より除去剤(以下、除去剤[II]ともいう)を調製する
ことが出来る。アルミニウムイオンは、単独又は混合液
の形態で用いることができる。混合液としては、硫酸ア
ルミニウム又はポリ塩化アルミニウムとの混合液の使用
が好ましい。希土類溶液と硫酸アルミニウムもしくはポ
リ塩化アルミニウム溶液との混合割合は、希土類溶液中
の希土類1モルに対して、好ましくは硫酸アルミニウム
もしくはポリ塩化アルミニウム中のアルミニウム0.1
〜5モル、より好ましくは0.5〜3モル、さらに好ま
しくは1〜2モルの割合である。
A removing agent (hereinafter also referred to as a removing agent [II]) can be prepared by mixing the obtained rare earth solution with an aluminum sulfate solution or a polyaluminum chloride solution. Aluminum ions can be used alone or in the form of a mixed solution. As the mixed liquid, it is preferable to use a mixed liquid with aluminum sulfate or polyaluminum chloride. The mixing ratio of the rare earth solution and the aluminum sulfate or polyaluminum chloride solution is preferably 0.1 mol of aluminum in the rare earth solution or 1 mol of the rare earth in the rare earth solution.
The amount is -5 mol, more preferably 0.5-3 mol, still more preferably 1-2 mol.

【0016】得られた希土類溶液と塩化第二鉄溶液もし
くはポリ鉄溶液と混合することにより除去剤(以下、除
去剤[III]ともいう)を調製することが出来る。鉄イ
オンは、単独又は混合液の形態で用いることができる。
混合液としては、塩化第二鉄溶液又はポリ鉄溶液との混
合液の使用が好ましい。希土類溶液と塩化第二鉄溶液又
はポリ鉄溶液との混合割合は、希土類溶液中の希土類1
モルに対して、好ましくは塩化第二鉄溶液又はポリ鉄溶
液中の鉄0.1〜5モル、より好ましくは0.5〜3モ
ル、さらに好ましくは1〜2モルの割合である。
A scavenger (hereinafter also referred to as scavenger [III]) can be prepared by mixing the obtained rare earth solution with a ferric chloride solution or a polyiron solution. The iron ions can be used alone or in the form of a mixed solution.
As the mixed solution, it is preferable to use a mixed solution with a ferric chloride solution or a polyiron solution. The mixing ratio of the rare earth solution and the ferric chloride solution or the polyiron solution is 1% of the rare earth solution in the rare earth solution.
The amount of iron in the ferric chloride solution or the polyiron solution is preferably 0.1 to 5 mol, more preferably 0.5 to 3 mol, and further preferably 1 to 2 mol per mol.

【0017】本発明の除去剤を用いて排水中に溶存する
フッ素イオンを除去する場合、その排水が酸性や中性の
場合、除去剤の添加後、沈殿が生じるようにpH調整す
るのが好ましい。そのpHは、一般的には、5〜9の範
囲、好ましくは6〜8の範囲、より好ましくは7〜8の
範囲である。pHが低すぎるとフロックが生成せず、高
すぎるとアルミニウムを使用した場合フロックが再溶解
してしまう。
When the fluorine ion dissolved in the waste water is removed by using the removing agent of the present invention, when the waste water is acidic or neutral, it is preferable to adjust the pH so that precipitation may occur after adding the removing agent. . Its pH is generally in the range 5-9, preferably in the range 6-8, more preferably in the range 7-8. If the pH is too low, no flocs will be produced, and if it is too high, the flocs will be redissolved when aluminum is used.

【0018】被処理水のpHをアルカリ性領域や酸性領
域に調節する場合、pH調節剤が用いられるが、このよ
うなpH調節剤としては、水酸化ナトリウム、水酸化カ
リウム、炭酸ナトリウム、炭酸カリウム、水酸化カルシ
ウム等のアルカリ性物質、もしくは塩酸、硫酸、硝酸等
の酸性物質が用いられる。
When the pH of the water to be treated is adjusted to an alkaline range or an acidic range, a pH adjusting agent is used. Examples of such a pH adjusting agent include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, An alkaline substance such as calcium hydroxide or an acidic substance such as hydrochloric acid, sulfuric acid or nitric acid is used.

【0019】本発明における、希土類元素イオンの存
在、pH調整の順序は、いずれの順序でもよい。希土類
元素イオンを存在させてからpH調整をしてもよいし、
先にpH調整を行った後に希土類元素イオンを存在させ
てもよい。
In the present invention, the order of existence of rare earth element ions and pH adjustment may be any order. The pH may be adjusted after the rare earth ion is present,
The rare earth element ions may be allowed to exist after the pH is adjusted first.

【0020】本発明においては、カルシウム化合物を併
用することが好ましい。まず従来のカルシウム凝集沈殿
法により被処理水中のフッ素イオンを中濃度になるまで
除去し、その後に本発明の除去方法を適用することで、
本発明で用いられる除去剤の使用量を減らすことができ
る。カルシウム化合物としては塩化カルシウム、硫酸カ
ルシウム、硝酸カルシウム、酢酸カルシウム等が挙げら
れる。カルシウム化合物は、pH調整の前に被処理水中
に添加することが好ましい。カルシウム化合物の添加量
は、被処理水中のフッ素イオンの濃度にもよるが、フッ
素イオン1モル当たり好ましくは0.01〜20モル、
より好ましくは0.02〜5モル、さらに好ましくは
0.05〜3モルである。
In the present invention, it is preferable to use a calcium compound in combination. First by removing the fluorine ions in the water to be treated to a medium concentration by the conventional calcium coagulation precipitation method, by applying the removal method of the present invention after that,
The amount of the remover used in the present invention can be reduced. Examples of the calcium compound include calcium chloride, calcium sulfate, calcium nitrate, calcium acetate and the like. The calcium compound is preferably added to the water to be treated before pH adjustment. The addition amount of the calcium compound depends on the concentration of the fluorine ion in the water to be treated, but is preferably 0.01 to 20 moles per 1 mole of the fluorine ion,
The amount is more preferably 0.02 to 5 mol, and further preferably 0.05 to 3 mol.

【0021】さらに本発明においては、凝集剤を併用す
ることが好ましい。この場合の凝集剤は、フロックの凝
集に用いられているものであり、このようなものには、
塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、ポ
リ硫酸第一鉄、ポリ硫酸第二鉄等の無機系凝集剤の他、
ポリアクリルアミドのカチオン化変性物、ポリアクリル
酸ジメチルアミノエチルエステル、ポリメタクリル酸ジ
メチルアミノエチルエステル、ポリエチレンイミン、キ
トサン等のカチオン性有機系凝集剤、ポリアクリルアミ
ド等のノニオン性有機系凝集剤、ポリアクリル酸、アク
リルアミドとアクリル酸との共重合体及び/又はその塩
等のアニオン性有機系凝集剤が包含される。
Further, in the present invention, it is preferable to use a coagulant together. The aggregating agent in this case is used for floc aggregating, and in such a thing,
In addition to inorganic flocculants such as ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous polysulfate, and ferric polysulfate,
Cationic modified polyacrylamide, polyacrylic acid dimethylaminoethyl ester, polymethacrylic acid dimethylaminoethyl ester, polyethyleneimine, cationic organic flocculant such as chitosan, nonionic organic flocculant such as polyacrylamide, polyacrylic Anionic organic flocculants such as acids, copolymers of acrylamide and acrylic acid and / or salts thereof are included.

【0022】一連の工程終了後、被処理水を固液分離処
理する。この固液分離は常法により行うことができ、例
として、濾過分離、遠心分離、沈降分離等が挙げられ
る。
After completion of the series of steps, the water to be treated is subjected to solid-liquid separation treatment. This solid-liquid separation can be performed by a conventional method, and examples thereof include filtration separation, centrifugation, sedimentation separation and the like.

【0023】[0023]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0024】参考例1 希土類元素化合物の粗精製品を12Nの塩酸溶液に溶解
して調製した溶液(希土類元素の濃度は酸化物として5
0質量%である。希土類元素の組成は、ランタン95質
量%、セリウム4.9質量%、イッテルビウム0.1質
量%)を除去剤[I]とした。
Reference Example 1 A solution prepared by dissolving a crude refined product of a rare earth element compound in a 12N hydrochloric acid solution (the concentration of the rare earth element is 5 as an oxide.
It is 0 mass%. The composition of the rare earth element was lanthanum 95% by mass, cerium 4.9% by mass, ytterbium 0.1% by mass) as the removing agent [I].

【0025】参考例2 塩化ランタン水溶液(La23として32.5質量%)
と硫酸アルミニウム水溶液(硫酸バンド 67質量%)
を1:1で混合し撹拌した。これを除去剤[II]とし
た。
Reference Example 2 Aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 )
And aluminum sulfate aqueous solution (sulfate band 67 mass%)
Were mixed 1: 1 and stirred. This was designated as a remover [II].

【0026】参考例3 塩化ランタン水溶液(La23として32.5質量%)
と塩化第二鉄水溶液(工業用、37.5質量%)を1:
0.9で混合し撹拌した。これを除去剤[III]とし
た。
Reference Example 3 Lanthanum chloride aqueous solution (32.5 mass% as La 2 O 3 )
And ferric chloride aqueous solution (for industrial use, 37.5 mass%) 1:
The mixture was mixed at 0.9 and stirred. This was designated as a remover [III].

【0027】実施例1 フッ素濃度20mg/l(1.05mM)、pH2.9
のフッ酸排水(500ml)に除去剤[II]を、ランタ
ンおよびアルミニウムいずれも0.35mMとなるよう
に添加し撹拌した。その後、水酸化ナトリウム溶液でp
H7に調整し5分間撹拌した後、固液分離し、処理水中
のフッ素濃度をイオンクロマトグラフ(日本ダイオネク
ス(株)製、カラムIon Pac AS11(商品名))で測定し
たところ、4.3ppmであった。得られたスラッジは
沈降性が良く、重力による沈降分離のみで固液分離する
ことができた。
Example 1 Fluorine concentration 20 mg / l (1.05 mM), pH 2.9
The removing agent [II] was added to the hydrofluoric acid waste water (500 ml) of (3) so that both lanthanum and aluminum had a concentration of 0.35 mM, and the mixture was stirred. After that, p with sodium hydroxide solution
After adjusting to H7 and stirring for 5 minutes, solid-liquid separation was performed, and the fluorine concentration in the treated water was measured by ion chromatography (column Ion Pac AS11 (trade name) manufactured by Nippon Dionex Co., Ltd.) to be 4.3 ppm. there were. The sludge obtained had good sedimentation properties, and solid-liquid separation was possible only by sedimentation separation by gravity.

【0028】実施例2 フッ素濃度100mg/l(5.26mM)、pH2.
3のフッ化ナトリウムモデル排水に除去剤[II]をラン
タンおよびアルミニウムいずれも1.75mMとなるよ
うに添加し撹拌した。その後、水酸化ナトリウム溶液で
pH7に調整し5分間撹拌した後、固液分離し、処理水
中のフッ素濃度を測定したところ、3.6ppmであっ
た。得られたスラッジは沈降性が良く、重力による沈降
分離のみで固液分離することができた。
Example 2 Fluorine concentration 100 mg / l (5.26 mM), pH 2.
The remover [II] was added to the sodium fluoride model waste water of No. 3 so that both lanthanum and aluminum had a concentration of 1.75 mM, and the mixture was stirred. Thereafter, the pH was adjusted to 7 with a sodium hydroxide solution, the mixture was stirred for 5 minutes, solid-liquid separated, and the fluorine concentration in the treated water was measured. As a result, it was 3.6 ppm. The sludge obtained had good sedimentation properties, and solid-liquid separation was possible only by sedimentation separation by gravity.

【0029】実施例3 フッ素濃度100mg/l(5.26mM)、pH2.
3のフッ化ナトリウムモデル排水に除去剤[III]をラ
ンタンおよび鉄としていずれも1.75mMとなるよう
に添加し撹拌した。その後、水酸化ナトリウム溶液でp
H7に調整し5分間撹拌した後、固液分離し、処理水中
のフッ素濃度を測定したところ、6.8ppmであっ
た。得られたスラッジは沈降性が良く、重力による沈降
分離のみで固液分離することができた。
Example 3 Fluorine concentration 100 mg / l (5.26 mM), pH 2.
The remover [III] was added to the sodium fluoride model waste water of No. 3 as lanthanum and iron so as to be 1.75 mM, and stirred. After that, p with sodium hydroxide solution
After adjusting to H7 and stirring for 5 minutes, solid-liquid separation was performed, and the fluorine concentration in the treated water was measured and found to be 6.8 ppm. The sludge obtained had good sedimentation properties, and solid-liquid separation was possible only by sedimentation separation by gravity.

【0030】実施例4 フッ素濃度100mg/l(5.26mM)、pH2.
3のフッ化ナトリウムモデル排水に除去剤[III]をラ
ンタンおよび鉄としていずれも1.75mMとなるよう
に添加し撹拌した。硫酸ナトリウム水溶液を硫酸根とし
て1.75mMとなるように添加し撹拌した。その後、
水酸化ナトリウム溶液でpH6に調整し5分間撹拌した
後、固液分離し、処理水中のフッ素濃度を測定したとこ
ろ、7.2ppmであった。得られたスラッジは沈降性
が良く、重力による沈降分離のみで固液分離することが
できた。
Example 4 Fluorine concentration 100 mg / l (5.26 mM), pH 2.
The remover [III] was added to the sodium fluoride model waste water of No. 3 as lanthanum and iron so as to be 1.75 mM, and stirred. An aqueous solution of sodium sulfate was added as sulfate radicals to a concentration of 1.75 mM, and the mixture was stirred. afterwards,
After adjusting the pH to 6 with a sodium hydroxide solution and stirring for 5 minutes, solid-liquid separation was performed and the fluorine concentration in the treated water was measured and found to be 7.2 ppm. The sludge obtained had good sedimentation properties, and solid-liquid separation was possible only by sedimentation separation by gravity.

【0031】実施例5 フッ素濃度20mg/l(1.05mM)、pH2.9
のフッ化ナトリウムモデル排水に除去剤[II]をランタ
ンおよびアルミニウムいずれも0.35mMとなるよう
に添加し撹拌した。その後、水酸化ナトリウム溶液でp
H7に調整し5分間撹拌した後、固液分離し、処理水中
のフッ素濃度を測定したところ、3.5ppmであっ
た。得られたスラッジは沈降性が良く、重力による沈降
分離のみで固液分離することができた。
Example 5 Fluorine concentration 20 mg / l (1.05 mM), pH 2.9
The removing agent [II] was added to the sodium fluoride model waste water so that the concentration of both lanthanum and aluminum was 0.35 mM, and the mixture was stirred. After that, p with sodium hydroxide solution
After adjusting to H7 and stirring for 5 minutes, solid-liquid separation was performed, and the fluorine concentration in the treated water was measured and found to be 3.5 ppm. The sludge obtained had good sedimentation properties, and solid-liquid separation was possible only by sedimentation separation by gravity.

【0032】実施例6 フッ素濃度99.73mg/l、pH3.2の実排水1
リットルに塩化カルシウム(35%)を5ml/l添加
し、次に除去剤[I]を0.1ml/l、硫酸バンド
(工業品;酸化アルミニウムとして8%)を0.28m
l/l添加した。その後、水酸化ナトリウム溶液でpH
8に調整し5分間撹拌した後、固液分離し、処理水中の
フッ素濃度をイオンクロマトグラフ(日本ダイオネクス
(株)製、カラムIon Pac AS11(商品名))で測定した
ところ、6.8ppmであった。得られたスラッジは沈
降性が良く、重力による沈降分離のみで固液分離するこ
とができた。
Example 6 Actual wastewater 1 having a fluorine concentration of 99.73 mg / l and a pH of 3.2
To the liter, 5 ml / l of calcium chloride (35%) was added, then 0.1 ml / l of the removing agent [I] and 0.28 m of a sulfuric acid band (industrial product; 8% as aluminum oxide).
1 / l was added. Then pH with sodium hydroxide solution
After adjusting to 8 and stirring for 5 minutes, solid-liquid separation was carried out, and the fluorine concentration in the treated water was measured by an ion chromatograph (manufactured by Nippon Dionex Co., Ltd., column Ion Pac AS11 (trade name)) and found to be 6.8 ppm. there were. The sludge obtained had good sedimentation properties, and solid-liquid separation was possible only by sedimentation separation by gravity.

【0033】比較例1 除去剤[I]を添加しないこと以外は実施例6と同様に
して処理を行った結果、フッ素の濃度は17.9ppm
であった。
Comparative Example 1 As a result of the same treatment as in Example 6 except that the removing agent [I] was not added, the fluorine concentration was 17.9 ppm.
Met.

【0034】[0034]

【発明の効果】本発明の方法によれば、被処理水として
の水中に含まれる溶存フッ素イオンを効率よく除去する
ことができる。本発明の方法によれば、フッ素イオンを
除去した後の処理水に含まれる溶存フッ素イオンを8p
pm以下にすることができる。
According to the method of the present invention, dissolved fluorine ions contained in water as water to be treated can be efficiently removed. According to the method of the present invention, the dissolved fluorine ion contained in the treated water after removing the fluorine ion is 8 p
It can be pm or less.

フロントページの続き (72)発明者 和田 愼二 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 湯川 恭啓 茨城県つくば市千現2−1−6 三菱商事 株式会社環境・開発プロジェクト本部環 境・ジェラニック事業ユニット環境資源研 究所内 Fターム(参考) 4D015 BA19 BA23 BB05 CA17 DA13 DA15 DA16 DB02 DB03 DB15 DB24 DB32 EA32 FA01 FA11 FA28 4D038 AA08 AB40 AB41 AB42 BB13 BB18 Continued front page    (72) Inventor Shinji Wada             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba center (72) Inventor, Yasuhiro Yukawa             2-1-6 Sengen, Tsukuba-shi, Ibaraki Mitsubishi Corporation             Environment & Development Project Co., Ltd.             Sakai / Jeronic Business Unit             Inside the laboratory F-term (reference) 4D015 BA19 BA23 BB05 CA17 DA13                       DA15 DA16 DB02 DB03 DB15                       DB24 DB32 EA32 FA01 FA11                       FA28                 4D038 AA08 AB40 AB41 AB42 BB13                       BB18

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被処理水中に含まれる溶存フッ素イオン
を除去する方法において、該水中に希土類元素イオン及
び無害性多価金属イオンを存在させた状態で、pHを5
〜9に調整することによって該溶存フッ素イオンを難溶
性物質として沈殿分離させることを特徴とするフッ素イ
オンの除去方法。
1. A method for removing dissolved fluorine ions contained in water to be treated, wherein the pH is set to 5 in the state where rare earth element ions and harmless polyvalent metal ions are present in the water.
A method for removing fluoride ions, wherein the dissolved fluoride ions are precipitated and separated as a hardly soluble substance by adjusting to 9 to 9.
【請求項2】 該被処理水中に、カルシウム化合物を添
加する請求項1記載の除去方法。
2. The removal method according to claim 1, wherein a calcium compound is added to the water to be treated.
【請求項3】 該無害性多価金属イオンがアルミニウム
イオンで、該アルミニウムイオンを存在させるためにア
ルミニウム化合物を添加する請求項1又は2に記載の除
去方法。
3. The removal method according to claim 1, wherein the harmless polyvalent metal ion is an aluminum ion, and an aluminum compound is added to allow the aluminum ion to exist.
【請求項4】 該無害性多価金属イオンが硫酸アルミニ
ウムによって供給される請求項1〜3のいずれか1項に
記載の除去方法。
4. The removal method according to claim 1, wherein the harmless polyvalent metal ion is supplied by aluminum sulfate.
【請求項5】 該無害性多価金属イオンが鉄イオンであ
る請求項1又は2に記載の除去方法。
5. The removing method according to claim 1, wherein the harmless polyvalent metal ion is an iron ion.
【請求項6】 該希土類元素イオンが、希土類元素の酸
化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲ
ン化物の水溶液、塩酸溶液又は硫酸溶液として被処理水
中に添加される請求項1〜5のいずれか1項に記載の除
去方法。
6. The rare earth element ion is added to the water to be treated as an aqueous solution of a rare earth element oxide, hydroxide, carbonate, phosphate, acetate or halide, hydrochloric acid solution or sulfuric acid solution. Item 6. The removal method according to any one of Items 1 to 5.
【請求項7】 凝集剤を添加する請求項1〜6のいずれ
か1項に記載の除去方法。
7. The removing method according to claim 1, wherein a flocculant is added.
【請求項8】 請求項1〜7のいずれか1項に記載の方
法に使用される薬剤であって、供給される希土類元素イ
オンが薬剤として構成されるものであり、その薬剤が、
希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢
酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液
からなる群から選択される少なくとも一種からなること
を特徴とする薬剤。
8. A drug used in the method according to any one of claims 1 to 7, wherein the supplied rare earth ion is constituted as a drug, and the drug is
A drug comprising at least one selected from the group consisting of an aqueous solution of a rare earth element oxide, hydroxide, carbonate, phosphate, acetate or halide, hydrochloric acid solution or sulfuric acid solution.
【請求項9】 請求項1〜4、及び6〜7のいずれか1
項に記載の方法に使用される薬剤であって、供給される
希土類元素イオンおよびアルミニウムイオンが薬剤とし
て構成されるものであり、その薬剤が、(i)希土類元
素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又は
ハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる
群から選択される少なくとも一種と(ii)硫酸アルミニ
ウム溶液、ポリ塩化アルミニウム溶液又はそれらの混合
物との混合物からなることを特徴とする薬剤。
9. Any one of claims 1 to 4 and 6 to 7
The drug used in the method according to the item (1), wherein the supplied rare earth element ion and aluminum ion are constituted as a drug, and the agent is (i) a rare earth element oxide, a hydroxide, Consists of a mixture of at least one selected from the group consisting of aqueous solutions of carbonates, phosphates, acetates or halides, hydrochloric acid solutions or sulfuric acid solutions, and (ii) aluminum sulfate solutions, polyaluminum chloride solutions or mixtures thereof. A drug characterized by the following.
【請求項10】 請求項1、2、及び5〜7のいずれか
1項に記載の方法に使用される薬剤であって、供給され
る希土類元素イオンおよび鉄イオンが薬剤として構成さ
れるものであり、その薬剤が、(i)希土類元素の酸化
物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン
化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選
択される少なくとも一種と(ii)塩化第二鉄溶液、ポリ
鉄溶液又はそれらの混合物との混合物からなることを特
徴とする薬剤。
10. A drug used in the method according to any one of claims 1, 2 and 5 to 7, wherein the supplied rare earth element ion and iron ion are constituted as a drug. And the agent is (i) at least one selected from the group consisting of oxides, hydroxides, carbonates, phosphates, acetates or halides of rare earth elements, hydrochloric acid solutions or sulfuric acid solutions ( ii) A drug characterized by comprising a mixture with a ferric chloride solution, a polyiron solution or a mixture thereof.
JP2003050152A 2002-02-26 2003-02-26 Fluorine-containing wastewater treatment method and chemicals used therefor Expired - Lifetime JP4289451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050152A JP4289451B2 (en) 2002-02-26 2003-02-26 Fluorine-containing wastewater treatment method and chemicals used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-50484 2002-02-26
JP2002050484 2002-02-26
JP2003050152A JP4289451B2 (en) 2002-02-26 2003-02-26 Fluorine-containing wastewater treatment method and chemicals used therefor

Publications (2)

Publication Number Publication Date
JP2003320376A true JP2003320376A (en) 2003-11-11
JP4289451B2 JP4289451B2 (en) 2009-07-01

Family

ID=29552004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050152A Expired - Lifetime JP4289451B2 (en) 2002-02-26 2003-02-26 Fluorine-containing wastewater treatment method and chemicals used therefor

Country Status (1)

Country Link
JP (1) JP4289451B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042041A (en) * 2002-07-08 2004-02-12 Asahi Glass Co Ltd Method of refining by-product salt, by-product salt, and snow melting agent
JP2006116389A (en) * 2004-10-20 2006-05-11 Miyoshi Oil & Fat Co Ltd Fixing method for boron and fluorine and fixing agent composition
JP6008455B1 (en) * 2015-04-13 2016-10-19 株式会社日本海水 How to handle hazardous substances
CN114988547A (en) * 2022-06-15 2022-09-02 江苏中电创新环境科技有限公司 Fluorine removal agent, preparation method thereof and method for deep fluorine removal by adopting fluorine removal agent
CN115259475A (en) * 2022-08-23 2022-11-01 四川大学 Method for removing fluorine by rare earth auxiliary precipitation
CN117534169A (en) * 2024-01-09 2024-02-09 中国科学院合肥物质科学研究院 Deep defluorination material and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042041A (en) * 2002-07-08 2004-02-12 Asahi Glass Co Ltd Method of refining by-product salt, by-product salt, and snow melting agent
JP4525014B2 (en) * 2002-07-08 2010-08-18 旭硝子株式会社 By-product salt purification method, by-product salt and snow melting agent
JP2006116389A (en) * 2004-10-20 2006-05-11 Miyoshi Oil & Fat Co Ltd Fixing method for boron and fluorine and fixing agent composition
JP6008455B1 (en) * 2015-04-13 2016-10-19 株式会社日本海水 How to handle hazardous substances
CN114988547A (en) * 2022-06-15 2022-09-02 江苏中电创新环境科技有限公司 Fluorine removal agent, preparation method thereof and method for deep fluorine removal by adopting fluorine removal agent
CN115259475A (en) * 2022-08-23 2022-11-01 四川大学 Method for removing fluorine by rare earth auxiliary precipitation
CN115259475B (en) * 2022-08-23 2023-06-16 四川大学 Method for removing fluorine by rare earth-assisted precipitation
CN117534169A (en) * 2024-01-09 2024-02-09 中国科学院合肥物质科学研究院 Deep defluorination material and preparation method and application thereof
CN117534169B (en) * 2024-01-09 2024-04-09 中国科学院合肥物质科学研究院 Deep defluorination material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4289451B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JPH09276875A (en) Treatment of waste water
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP4293520B2 (en) Fluorine ion removal method and remover
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP2003320376A (en) Treatment method for fluorine-containing wastewater and chemical agent used therein
JP2004008860A (en) Treatment method for harmful anion-containing wastewater and agent used therein
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JP2927255B2 (en) Treatment method for wastewater containing fluorine
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP2003245674A (en) Treatment method for waste water containing harmful metal ion and fluoride ion, and its treatment agent
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JP2911506B2 (en) Treatment method for fluorine-containing wastewater
JP2014200722A (en) Agglomeration deposition method of ferrocyanide and removal method of soluble cesium
JP2003260472A (en) Treatment method for fluorine-containing water
JP2003245675A (en) Fluoride-ion removing method and sludge reduction method
JP3493603B2 (en) Method for treating copper chloride-containing etching waste liquid, treatment agent, and method for recovering copper
JP2004025131A (en) Treatment method of waste water containing dissolved copper complex compound and agent used for it
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
JP2005144336A (en) Method for removing fluorine in wastewater and precipitate reducing method
JPH0315512B2 (en)
JP3081910B2 (en) Arsenic (V) ion removal method
JP3047833B2 (en) Hexavalent chromium treatment method
JPS5948154B2 (en) Wastewater purification method
JP2003010863A (en) Method for removing harmful heavy metal ion and scavenger used therein
JP3341835B2 (en) Treatment method for selenium-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

R150 Certificate of patent or registration of utility model

Ref document number: 4289451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term