JP5206455B2 - Cement kiln extraction dust processing method - Google Patents

Cement kiln extraction dust processing method Download PDF

Info

Publication number
JP5206455B2
JP5206455B2 JP2009022230A JP2009022230A JP5206455B2 JP 5206455 B2 JP5206455 B2 JP 5206455B2 JP 2009022230 A JP2009022230 A JP 2009022230A JP 2009022230 A JP2009022230 A JP 2009022230A JP 5206455 B2 JP5206455 B2 JP 5206455B2
Authority
JP
Japan
Prior art keywords
solid
added
liquid separation
water
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009022230A
Other languages
Japanese (ja)
Other versions
JP2009136873A (en
Inventor
澄夫 寺田
守久 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009022230A priority Critical patent/JP5206455B2/en
Publication of JP2009136873A publication Critical patent/JP2009136873A/en
Application granted granted Critical
Publication of JP5206455B2 publication Critical patent/JP5206455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、セメントキルンの塩素、アルカリ、及び硫黄の循環に低減するために、塩素バイパス等の抽気装置を用い焼成ガスの一部を抽気した際に同伴する、セレンを含むダスト(以下、抽気ダストと称す)の処理方法に関するものである。   In order to reduce the circulation of chlorine, alkali, and sulfur in a cement kiln, the present invention is a dust containing selenium (hereinafter referred to as extraction air) that accompanies extraction of a part of firing gas using an extraction device such as a chlorine bypass. (Referred to as dust).

塩素、アルカリ、硫黄含有物の多いセメント原料を使用した場合、セメントクリンカー中に含まれる塩素、アルカリ、硫黄の量が多くなり、セメントの品質に悪影響を与えるだけでなく、塩素、アルカリ、硫黄は蒸気圧の高い化合物を形成し、セメント装置内においてガス化して循環する前に、装置内の比較的温度の低い部分で凝縮してコーティングを形成するため、セメント製造上のトラブルの原因ともなっている。
この問題を解決するために、セメントキルンの窯尻部分から焼成ガスの一部を抽気して、セメント製造内を循環する塩素、アルカリ、硫黄の量を低減することが行われている。
When cement raw materials containing a large amount of chlorine, alkali, and sulfur are used, the amount of chlorine, alkali, and sulfur contained in the cement clinker increases, which not only adversely affects the quality of the cement, but also chlorine, alkali, and sulfur A compound with a high vapor pressure is formed, and before it is gasified and circulated in the cement equipment, it is condensed at a relatively low temperature in the equipment to form a coating. .
In order to solve this problem, part of the firing gas is extracted from the kiln bottom of the cement kiln to reduce the amount of chlorine, alkali, and sulfur circulating in the cement production.

しかし、このような焼成ガスの抽気を行うと、塩素、アルカリ、硫黄の含有量が多い抽気ダストが必然的に同伴し、このダストの処理方法が新たに問題になってくる。即ち、抽気ダストには塩素、アルカリ、硫黄以外にも鉛、カドミニウム、クロム、マンガン、鉄、セレンなど、水質汚濁防止法で規制された有害物質が含まれており、抽気ダストを未処理のまま埋め立て、廃棄を行えば環境汚染を引き起こすため、適切な方法で処理する必要がある。また、抽気ダストを廃棄するのではなく、セメント原料として再利用する場合にも、抽気ダスト中に含まれるアルカリ、塩素の量を低減した後に原料系に戻す必要がある。   However, when such calcination gas extraction is performed, extraction dust with a large content of chlorine, alkali and sulfur is inevitably accompanied, and this dust treatment method becomes a new problem. In other words, extraction dust contains harmful substances regulated by the Water Pollution Control Law, such as lead, cadmium, chromium, manganese, iron, selenium, etc. in addition to chlorine, alkali, and sulfur. Landfilling and disposal can cause environmental pollution and should be handled in an appropriate manner. Even when the extracted dust is not discarded but reused as a cement raw material, it is necessary to reduce the amount of alkali and chlorine contained in the extracted dust and then return to the raw material system.

抽気ダストに含まれるアルカリ、塩素化合物は水溶性であるから、除去するには水洗処理が最も適しているのは当然であり、既に公知である(例えば特許文献1及び2)。しかしながら、本文献では、第1鉄塩化物の添加量を制御する方法が明記されていなく、溶存している6価のセレン量が変動する抽気ダストの場合、実用化が困難になる恐れが生じる。   Since alkali and chlorine compounds contained in the bleed dust are water-soluble, it is a matter of course that a water washing treatment is most suitable for removal, and is already known (for example, Patent Documents 1 and 2). However, in this document, the method for controlling the addition amount of ferrous chloride is not specified, and in the case of extraction dust in which the amount of dissolved hexavalent selenium varies, there is a possibility that it may be difficult to put it to practical use. .

特開2002−273455号公報JP 2002-273455 A 特開平6−79286号公報JP-A-6-79286

本発明は、セメントキルン抽気ダストを水洗処理し、固形分はセメント原料として再利用し、通常の3価の鉄イオンでは処理できないセレンが含有している水洗液を、水質汚濁防止法に係る排水基準値以下に除去して放流廃棄を可能にする処理方法を提供することを目的とする。   The present invention is a wastewater treatment method for water pollution treatment, wherein cereal kiln extraction dust is washed with water, the solid content is reused as a cement raw material, and selenium containing selenium that cannot be treated with ordinary trivalent iron ions is contained. It aims at providing the processing method which makes it possible to discharge and discard by removing below a reference value.

本発明者らは鋭意検討を行った結果、上記目的を達成し得ることを知見した。
すなわち、本発明は、以下の各工程からなることを特徴とするセメントキルン抽気ダストの処理方法に関する。
(1)セメントキルン抽気ダストに水を加えてスラリー化した後、固液分離する第1工程、
(2)第1工程で得られた固液分離後の液相(以下、原水と称す)に、該液相の酸化還元電位が−600mV以下になるまで第一鉄塩化合物を添加した後、pHを8〜10に調節し、高分子凝集剤を添加し、固液分離を行う第2工程であり、前記第2工程の第一鉄塩化合物が、塩化第一鉄、硫酸第一鉄、又はこれらの水和物であり、
(3)第2工程で得られた固液分離後の液相に、第二鉄塩化合物を添加し、pHを8〜12に調節した後、高分子凝集剤を添加し、固液分離を行う第3工程であり、
前記第3工程の第二鉄塩化合物が、塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄、又はこれらの水和物であり、該第二鉄塩化合物の添加量が、前記原水中の全セレンに対して50〜300倍モル量であり、
前記第2工程及び第3工程の高分子凝集剤が、ポリアクリルアミド又はポリアクリル酸ソーダを含む高分子凝集剤である。
As a result of intensive studies, the present inventors have found that the above object can be achieved.
That is, this invention relates to the processing method of the cement kiln extraction dust characterized by including the following processes.
(1) A first step in which water is added to cement kiln extraction dust to form a slurry, followed by solid-liquid separation,
(2) After adding the ferrous salt compound to the liquid phase after solid-liquid separation obtained in the first step (hereinafter referred to as raw water) until the oxidation-reduction potential of the liquid phase becomes −600 mV or less, It is a second step of adjusting the pH to 8 to 10, adding a polymer flocculant, and performing solid-liquid separation , and the ferrous salt compound of the second step is ferrous chloride, ferrous sulfate, Or these hydrates,
(3) The ferric salt compound is added to the liquid phase after the solid-liquid separation obtained in the second step, the pH is adjusted to 8 to 12, and then the polymer flocculant is added to perform the solid-liquid separation. A third step to be performed,
The ferric salt compound in the third step is ferric chloride, ferric sulfate, polyferric sulfate, or a hydrate thereof, and the added amount of the ferric salt compound is 50-300 times the molar amount with respect to all selenium in water,
The polymer flocculant in the second step and the third step is a polymer flocculant containing polyacrylamide or sodium polyacrylate.

本発明のセメントキルン抽気ダストの処理方法を実施すると、除去が極めて困難な6価セレンを4価に還元し固相として捕集し、固液分離後の液相中の全セレン(4価セレン、6価セレン)を水質汚濁防止法に係る排水基準値を充分クリアする程度まで低減することができ、放流が可能になる。
また、還元剤として用いる第一鉄塩化合物の必要量がその場で判断可能であり、過剰添加を避けられるため、少量の高分子凝集剤の添加で沈降分離が短時間で容易になる。その為、固相である含水量の多いスラッジ量が少なくなりスラッジの脱水処理も容易になる。
さらに、固形分は、セメント原料としての再利用が可能になる。
When the cement kiln extraction dust processing method of the present invention is carried out, hexavalent selenium, which is extremely difficult to remove, is reduced to tetravalent and collected as a solid phase, and all selenium (tetravalent selenium in the liquid phase after solid-liquid separation is collected. , Hexavalent selenium) can be reduced to a level that sufficiently satisfies the drainage standard value according to the Water Pollution Control Law, and can be discharged.
In addition, since the required amount of the ferrous salt compound used as the reducing agent can be determined on the spot and excessive addition can be avoided, sedimentation separation is facilitated in a short time by adding a small amount of the polymer flocculant. Therefore, the amount of sludge with a high water content which is a solid phase is reduced, and the sludge is easily dewatered.
Furthermore, the solid content can be reused as a cement raw material.

図1は本発明に係るセメントキルン抽気ダストの処理方法を示すフロー図である。FIG. 1 is a flowchart showing a method of treating cement kiln bleed dust according to the present invention.

以下に本発明を詳細に説明する。また、本発明に係るセメントキルン抽気ダストの処理方法のフローを図1に示す。
本発明の第1工程は、セメントキルン抽気ダストに水を加えてスラリー化した後、固液分離する工程である。この工程で、塩化カリウム、塩化ナトリウム、及び塩化カルシウム等のアルカリ金属塩を溶出させ固相として捕集する。抽気ダストの主成分は、アルカリ金属塩であることから、生成スラリーは高pH値を示す。水の添加量は固液分離した液相の塩素濃度が2質量%以下になるように加える。一般に海水の塩素濃度は0.005〜2質量%であり、液相の塩素濃度が2質量%以下であれば、処理排水をそのまま放流可能である。
The present invention is described in detail below. Moreover, the flow of the processing method of the cement kiln extraction dust which concerns on this invention is shown in FIG.
The first step of the present invention is a step of solid-liquid separation after adding water to the cement kiln bleed dust to form a slurry. In this step, alkali metal salts such as potassium chloride, sodium chloride, and calcium chloride are eluted and collected as a solid phase. Since the main component of the extracted dust is an alkali metal salt, the resulting slurry exhibits a high pH value. The amount of water added is such that the concentration of chlorine in the liquid phase after solid-liquid separation is 2% by mass or less. Generally, the chlorine concentration of seawater is 0.005 to 2% by mass, and the treated wastewater can be discharged as it is if the chlorine concentration of the liquid phase is 2% by mass or less.

本発明の第2工程は、第1工程で固液分離した液相(原水)に、該液相の酸化還元電位が−600mV以下になるまで第一鉄塩化合物を添加した後、pHを8〜10に調節し、高分子凝集剤を添加し、固液分離を行う工程である。この工程で、原水中の6価セレン(セレン酸)を3価の水酸化鉄と共沈し易い4価セレン(亜セレン酸)に還元させる。
第一鉄塩化合物としては、例えば、塩化第一鉄、塩化第一鉄・二水和物、硫酸第一鉄、硫酸第一鉄・四水和物、硫酸第一鉄・五水和物、硫酸第一鉄・七水和物、ポリ硫酸第一鉄等が挙げられる。
第一鉄塩化合物の添加量は、該液相の酸化還元電位が−600mV以下、好ましくは−650mV以下になるまで添加する。液相の酸化還元電位が−600mV以下でないと
6価のセレンが4価に還元され難くなり、第3工程で生成する3価の水酸化鉄と共沈され難い6価のセレンが上澄み液に残るため好ましくない。
液相のpH調節剤としては、例えば、水酸化ナトリウム、水酸化カルシウム等が挙げられる。pHは8〜10、好ましくは9〜10に調節する。
In the second step of the present invention, the ferrous salt compound is added to the liquid phase (raw water) separated in the first step until the oxidation-reduction potential of the liquid phase becomes −600 mV or less, and then the pH is adjusted to 8. 10 to 10 and adding a polymer flocculant to perform solid-liquid separation. In this step, hexavalent selenium (selenic acid) in the raw water is reduced to tetravalent selenium (selenous acid) that easily coprecipitates with trivalent iron hydroxide.
Examples of ferrous salt compounds include ferrous chloride, ferrous chloride and dihydrate, ferrous sulfate, ferrous sulfate and tetrahydrate, ferrous sulfate and pentahydrate, Examples thereof include ferrous sulfate and heptahydrate, polyferrous sulfate and the like.
The ferrous salt compound is added until the oxidation-reduction potential of the liquid phase is −600 mV or less, preferably −650 mV or less. If the redox potential of the liquid phase is not −600 mV or less, hexavalent selenium is difficult to be reduced to tetravalent, and hexavalent selenium difficult to coprecipitate with the trivalent iron hydroxide produced in the third step is added to the supernatant. Since it remains, it is not preferable.
Examples of the liquid phase pH adjuster include sodium hydroxide and calcium hydroxide. The pH is adjusted to 8-10, preferably 9-10.

本発明の第3工程では、第2工程で得られた固液分離後の液相に、第二鉄塩化合物を添加し、pHを8〜12に調節した後、高分子凝集剤を添加し、固液分離を行う工程である。
第二鉄塩化合物としては、例えば、塩化第二鉄、塩化第二鉄・六水和物、硫酸第二鉄、硫酸第二鉄・三水和物、硫酸第二鉄・六水和物、硫酸第二鉄・七水和物、ポリ硫酸第二鉄等が挙げられる。
第二鉄塩化合物の添加量は、原水に溶存している全セレン量に対し、鉄イオン換算で50〜300倍モル量、好ましくは100〜250倍モル量である。
液相のpH調節剤としては、第2工程同様、例えば、水酸化ナトリウム、水酸化カルシウム等が挙げられる。pHは8〜12、好ましくは9〜11に調節する。
In the third step of the present invention, a ferric salt compound is added to the liquid phase after solid-liquid separation obtained in the second step, the pH is adjusted to 8 to 12, and then a polymer flocculant is added. This is a step of performing solid-liquid separation.
Examples of the ferric salt compound include ferric chloride, ferric chloride and hexahydrate, ferric sulfate, ferric sulfate and trihydrate, ferric sulfate and hexahydrate, And ferric sulfate heptahydrate, polyferric sulfate and the like.
The addition amount of the ferric salt compound is 50 to 300 times mol, preferably 100 to 250 times mol, in terms of iron ion, with respect to the total amount of selenium dissolved in the raw water.
Examples of the liquid phase pH adjuster include sodium hydroxide and calcium hydroxide as in the second step. The pH is adjusted to 8-12, preferably 9-11.

本発明の第2及び第3工程で添加する高分子凝集剤は、水酸化鉄を主成分とする沈殿の凝集を促進して固液分離を容易にする効果を示す。高分子凝集剤としては、ポリアクリルアミド、又はポリアクリル酸ソーダを含む高分子凝集剤であれば良く、ノニオン系、カチオン系、アニオン系を問わずに使用できる。また高分子凝集剤の添加量は、0.2〜4mg/l、好ましくは0.5〜2mg/lである。
本発明の第1〜3工程で行う固液分離する方法は、一般に行われている方法、例えば、ろ過法、遠心分離法、沈降分離法等を利用することができる。
第4工程の固液分離で重金属およびセレンを排水基準値以下に低減させた液相は、そのpHを中性付近にまで低下させた後、放流することができる。また、第1〜3工程で得られた固相は、鉄を含むため、鉄源としてセメント原料に再利用可能である。
The polymer flocculant added in the second and third steps of the present invention has an effect of facilitating solid-liquid separation by promoting aggregation of precipitates mainly composed of iron hydroxide. As the polymer flocculant, any polymer flocculant containing polyacrylamide or sodium polyacrylate may be used, regardless of nonionic, cationic or anionic. The addition amount of the polymer flocculant is 0.2 to 4 mg / l, preferably 0.5 to 2 mg / l.
As a method for solid-liquid separation performed in the first to third steps of the present invention, a commonly used method, for example, a filtration method, a centrifugal separation method, a sedimentation separation method, or the like can be used.
The liquid phase in which heavy metal and selenium are reduced to below the drainage standard value by solid-liquid separation in the fourth step can be discharged after the pH is lowered to near neutrality. Moreover, since the solid phase obtained in the first to third steps contains iron, it can be reused as a raw material for cement as an iron source.

以下に具体例を示し、本発明を詳細に説明する。また、以下の実施例、比較例の結果を表1に示す。
(実施例1)
抽気ダスト250gに水2500gを加え、3時間攪拌しスラリー化した。スラリーは1μmの孔径のメンブランフィルターで固液分離を行い、得られたろ液(以下、原水1と称す)のpHは13.0、酸化還元電位は−117mVであった。
The present invention will be described in detail with reference to specific examples. The results of the following examples and comparative examples are shown in Table 1.
Example 1
2500 g of water was added to 250 g of extracted dust and stirred for 3 hours to form a slurry. The slurry was subjected to solid-liquid separation with a membrane filter having a pore size of 1 μm, and the pH of the obtained filtrate (hereinafter referred to as raw water 1) was 13.0 and the oxidation-reduction potential was −117 mV.

この原水1に含まれる全セレンは、JIS K 0102に準拠し、以下の方法で定量した。
即ち、原水1に硫酸及び硝酸を添加し、加熱し硫酸白煙発生後、室温まで放冷し、塩酸を加え、90〜100℃で10分間加熱し、放冷し、試料液とした。この試料液を水素化合物発生原子吸光分析装置にて全セレンの定量を行った。また、4価セレンは原水を前処理せず、水素化合物発生原子吸光分析装置にて定量を行った。6価セレンは、全セレンから4価セレンを差し引いた値とした。
全セレン(4価セレンと6価セレン)および6価セレンの含有量は夫々13、12mg/lであった。
Total selenium contained in the raw water 1 was quantified by the following method in accordance with JIS K 0102.
That is, sulfuric acid and nitric acid were added to the raw water 1 and heated to generate white sulfuric acid smoke. This sample solution was quantified with a hydrogen compound generation atomic absorption spectrometer. Tetravalent selenium was quantified with a hydrogen compound generation atomic absorption spectrometer without pretreatment of raw water. Hexavalent selenium was obtained by subtracting tetravalent selenium from all selenium.
The contents of total selenium (tetravalent selenium and hexavalent selenium) and hexavalent selenium were 13, 12 mg / l, respectively.

上記原水1(250ml)のpHが8になるように水酸化ナトリウムを添加し、硫酸第一鉄・七水和物を添加した。この硫酸第一鉄・七水和物の添加量はこの液相の酸化還元電位が−656mVになるまで添加し、その後30分間攪拌混合した。
次いで上記高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
Sodium hydroxide was added so that the pH of the raw water 1 (250 ml) was 8, and ferrous sulfate heptahydrate was added. The ferrous sulfate heptahydrate was added until the redox potential of this liquid phase was -656 mV, and then stirred and mixed for 30 minutes.
Next, 2 mg / l of the above polymer flocculant was added and stirred and mixed for 10 minutes. After 10 minutes of standing, this treatment liquid was filtered with 5 types A filter paper.

上記ろ液に1mol/lの塩化第二鉄・六水和物を10.2ml(原水1に溶存している全セレン13mg/lの248倍モル量)添加して、水酸化ナトリウムを添加することによりpHを10に調節して30分間攪拌混合した。次いで高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
上記ろ液を原水1の分析方法により定量を行った。全セレンは0.01mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/lをクリアした。
To the above filtrate is added 10.2 ml of 1 mol / l ferric chloride hexahydrate (248 times mole amount of 13 mg / l of total selenium dissolved in raw water 1), and sodium hydroxide is added. The pH was adjusted to 10 by mixing for 30 minutes. Subsequently, 2 mg / l of a polymer flocculant was added, and the mixture was stirred and mixed for 10 minutes. After 10 minutes of standing, the treated liquid was filtered with 5 types A filter paper.
The filtrate was quantified by the raw water 1 analysis method. The total selenium was 0.01 mg / l, which cleared the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law.

(実施例2)
抽気ダスト250gに水2500gを加え、3時間攪拌しスラリー化した。スラリーは1μmの孔径のメンブランフィルターで固液分離を行い、得られたろ液(以下、原水2と称す)のpHは12.0、酸化還元電位は−103mVであった。
(Example 2)
2500 g of water was added to 250 g of extracted dust and stirred for 3 hours to form a slurry. The slurry was subjected to solid-liquid separation with a membrane filter having a pore size of 1 μm. The pH of the obtained filtrate (hereinafter referred to as raw water 2) was 12.0, and the oxidation-reduction potential was −103 mV.

この原水2に含まれる全セレンは、原水1の分析方法で定量した。
全セレン(4価セレンと6価セレン)および6価セレンの含有量は夫々49、4mg/lであった。
The total selenium contained in the raw water 2 was quantified by the raw water 1 analysis method.
The contents of total selenium (tetravalent selenium and hexavalent selenium) and hexavalent selenium were 49 and 4 mg / l, respectively.

上記原水2(250ml)のpHが10になるように水酸化ナトリウムを添加し、硫酸第一鉄・七水和物を、液相の酸化還元電位が−706mVになるまで添加した。その後30分間攪拌混合した。
次いで上記高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
Sodium hydroxide was added so that the pH of the raw water 2 (250 ml) was 10, and ferrous sulfate heptahydrate was added until the redox potential of the liquid phase was -706 mV. Thereafter, the mixture was stirred and mixed for 30 minutes.
Next, 2 mg / l of the above polymer flocculant was added and stirred and mixed for 10 minutes. After 10 minutes of standing, this treatment liquid was filtered with 5 types A filter paper.

上記ろ液に1mol/lの塩化第二鉄・六水和物を15.5ml(原水2に溶存している全セレン49mg/lの100倍モル量)添加して、水酸化ナトリウムを添加することによりpHを10に調節して30分間攪拌混合した。次いで高分子凝集剤を1mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
上記ろ液を原水2の分析方法により定量を行った。全セレンは0.04mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/lをクリアした。
15.5 ml of 1 mol / l ferric chloride hexahydrate (100 times mole amount of all selenium 49 mg / l dissolved in raw water 2) is added to the filtrate, and sodium hydroxide is added. The pH was adjusted to 10 by mixing for 30 minutes. Subsequently, 1 mg / l of a polymer flocculant was added and stirred and mixed for 10 minutes. After 10 minutes of standing, this treatment liquid was filtered with 5 types A filter paper.
The filtrate was quantified by the raw water 2 analysis method. The total selenium was 0.04 mg / l, which cleared the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law.

(比較例1)
抽気ダスト250gに水2500gを加え、3時間攪拌しスラリー化した。スラリーは1μmの孔径のメンブランフィルターで固液分離を行い、得られたろ液(以下、原水3と称す)のpHは13.0、酸化還元電位は−114mVであった。
この原水3に含まれる全セレンは、原水1の分析方法で定量した。
全セレン(4価セレンと6価セレン)および6価セレンの含有量は夫々13、12mg/lであった。
上記原水3(250ml)のpHが8になるように水酸化ナトリウムを添加し、硫酸第一鉄・七水和物を、液相の酸化還元電位が−537mVになるまで添加した。その後30分間攪拌混合した。
次いで上記高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
(Comparative Example 1)
2500 g of water was added to 250 g of extracted dust and stirred for 3 hours to form a slurry. The slurry was subjected to solid-liquid separation with a membrane filter having a pore size of 1 μm, and the pH of the obtained filtrate (hereinafter referred to as raw water 3) was 13.0 and the oxidation-reduction potential was −114 mV.
The total selenium contained in the raw water 3 was quantified by the raw water 1 analysis method.
The contents of total selenium (tetravalent selenium and hexavalent selenium) and hexavalent selenium were 13, 12 mg / l, respectively.
Sodium hydroxide was added so that the pH of the raw water 3 (250 ml) was 8, and ferrous sulfate heptahydrate was added until the redox potential of the liquid phase became −537 mV. Thereafter, the mixture was stirred and mixed for 30 minutes.
Next, 2 mg / l of the above polymer flocculant was added and stirred and mixed for 10 minutes. After 10 minutes of standing, this treatment liquid was filtered with 5 types A filter paper.

上記ろ液に1mol/lの塩化第二鉄・六水和物を10.2ml(原水1に溶存している全セレン13mg/lの248倍モル量)添加して、水酸化ナトリウムを添加することによりpHを10に調節して30分間攪拌混合した。次いで高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
上記ろ液を原水1の分析方法により定量を行った。全セレンは0.22mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/lをクリアしなかった。
To the above filtrate is added 10.2 ml of 1 mol / l ferric chloride hexahydrate (248 times mole amount of 13 mg / l of total selenium dissolved in raw water 1), and sodium hydroxide is added. The pH was adjusted to 10 by mixing for 30 minutes. Subsequently, 2 mg / l of a polymer flocculant was added, and the mixture was stirred and mixed for 10 minutes. After 10 minutes of standing, the treated liquid was filtered with 5 types A filter paper.
The filtrate was quantified by the raw water 1 analysis method. Total selenium was 0.22 mg / l, which did not clear the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law.

(比較例2)
抽気ダスト250gに水2500gを加え、3時間攪拌しスラリー化した。スラリーは1μmの孔径のメンブランフィルターで固液分離を行い、得られたろ液(以下、原水4と称す)のpHは12.0、酸化還元電位は−111mVであった。
この原水4に含まれる全セレンは、原水1の分析方法で定量した。
全セレン(4価セレンと6価セレン)および6価セレンの含有量は夫々49、4mg/lであった。
上記原水4(250ml)のpHが10になるように水酸化ナトリウムを添加し、硫酸第一鉄・七水和物を、液相の酸化還元電位が−532mVになるまで添加した。その後30分間攪拌混合した。
次いで上記高分子凝集剤を2mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
(Comparative Example 2)
2500 g of water was added to 250 g of extracted dust and stirred for 3 hours to form a slurry. The slurry was subjected to solid-liquid separation with a membrane filter having a pore size of 1 μm, and the pH of the obtained filtrate (hereinafter referred to as raw water 4) was 12.0, and the oxidation-reduction potential was −111 mV.
The total selenium contained in the raw water 4 was quantified by the raw water 1 analysis method.
The contents of total selenium (tetravalent selenium and hexavalent selenium) and hexavalent selenium were 49 and 4 mg / l, respectively.
Sodium hydroxide was added so that the pH of the raw water 4 (250 ml) was 10, and ferrous sulfate heptahydrate was added until the redox potential of the liquid phase was −532 mV. Thereafter, the mixture was stirred and mixed for 30 minutes.
Next, 2 mg / l of the above polymer flocculant was added and stirred and mixed for 10 minutes. After 10 minutes of standing, this treatment liquid was filtered with 5 types A filter paper.

上記ろ液に1mol/lの塩化第二鉄・六水和物を15.5ml(原水2に溶存している全セレン49mg/lの100倍モル量)添加して、水酸化ナトリウムを添加することによりpHを10に調節して30分間攪拌混合した。次いで高分子凝集剤を1mg/l添加して10分間攪拌混合し、静置10分後にこの処理液を5種Aのろ紙でろ過した。
上記ろ液を原水1の分析方法により定量を行った。全セレンは0.25mg/lであり、水質汚濁防止法に係る排水基準値の0.1mg/lをクリアしなかった。
15.5 ml of 1 mol / l ferric chloride hexahydrate (100 times mole amount of all selenium 49 mg / l dissolved in raw water 2) is added to the filtrate, and sodium hydroxide is added. The pH was adjusted to 10 by mixing for 30 minutes. Subsequently, 1 mg / l of a polymer flocculant was added and stirred and mixed for 10 minutes. After 10 minutes of standing, this treatment liquid was filtered with 5 types A filter paper.
The filtrate was quantified by the raw water 1 analysis method. The total selenium was 0.25 mg / l, which did not clear the wastewater standard value of 0.1 mg / l according to the Water Pollution Control Law.

Figure 0005206455
Figure 0005206455

1 第1工程
2 第2工程
3 第3工程
4 抽気ダスト
5 セメント原料
6 放流水
1 First process 2 Second process 3 Third process 4 Extracted dust 5 Cement raw material 6 Effluent water

Claims (3)

以下の各工程からなることを特徴とするセメントキルン抽気ダストの処理方法。
(1)セメントキルン抽気ダストに水を加えてスラリー化した後、固液分離する第1工程、
(2)第1工程で得られた固液分離後の液相(以下、原水と称す)に、該液相の酸化還元電位が−600mV以下になるまで第一鉄塩化合物を添加した後、pHを8〜10に調節し、高分子凝集剤を添加し、固液分離を行う第2工程であり、前記第2工程の第一鉄塩化合物が、塩化第一鉄、硫酸第一鉄、又はこれらの水和物であり、
(3)第2工程で得られた固液分離後の液相に、第二鉄塩化合物を添加し、pHを8〜12に調節した後、高分子凝集剤を添加し、固液分離を行う第3工程であり、
前記第3工程の第二鉄塩化合物が、塩化第二鉄、硫酸第二鉄、ポリ硫酸第二鉄、又はこれらの水和物であり、該第二鉄塩化合物の添加量が、前記原水中の全セレンに対して50〜300倍モル量であり、
前記第2工程及び第3工程の高分子凝集剤が、ポリアクリルアミド又はポリアクリル酸ソーダを含む高分子凝集剤である。
A cement kiln bleed dust treatment method comprising the following steps.
(1) A first step in which water is added to cement kiln extraction dust to form a slurry, followed by solid-liquid separation,
(2) After adding the ferrous salt compound to the liquid phase after solid-liquid separation obtained in the first step (hereinafter referred to as raw water) until the oxidation-reduction potential of the liquid phase becomes −600 mV or less, It is a second step of adjusting the pH to 8 to 10, adding a polymer flocculant, and performing solid-liquid separation, and the ferrous salt compound of the second step is ferrous chloride, ferrous sulfate, Or these hydrates,
(3) The ferric salt compound is added to the liquid phase after the solid-liquid separation obtained in the second step, the pH is adjusted to 8 to 12, and then the polymer flocculant is added to perform the solid-liquid separation. A third step to be performed,
The ferric salt compound in the third step is ferric chloride, ferric sulfate, polyferric sulfate, or a hydrate thereof, and the added amount of the ferric salt compound is 50-300 times the molar amount with respect to all selenium in water,
The polymer flocculant in the second step and the third step is a polymer flocculant containing polyacrylamide or sodium polyacrylate.
前記第1工程において、原水の塩素濃度が2質量%以下になるように水を加える請求項1記載のセメントキルン抽気ダストの処理方法。 The processing method of the cement kiln extraction dust of Claim 1 which adds water so that the chlorine concentration of raw | natural water may be 2 mass% or less in the said 1st process. 前記第1〜3工程のいずれか1工程において得られた固液分離後の固相をセメント原料に再利用する請求項1または2記載のセメントキルン抽気ダストの処理方法。 The method for treating cement kiln bleed dust according to claim 1 or 2, wherein the solid phase after solid-liquid separation obtained in any one of the first to third steps is reused as a cement raw material.
JP2009022230A 2009-02-03 2009-02-03 Cement kiln extraction dust processing method Expired - Lifetime JP5206455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022230A JP5206455B2 (en) 2009-02-03 2009-02-03 Cement kiln extraction dust processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022230A JP5206455B2 (en) 2009-02-03 2009-02-03 Cement kiln extraction dust processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003393329A Division JP4306422B2 (en) 2003-11-25 2003-11-25 Cement kiln extraction dust processing method

Publications (2)

Publication Number Publication Date
JP2009136873A JP2009136873A (en) 2009-06-25
JP5206455B2 true JP5206455B2 (en) 2013-06-12

Family

ID=40868071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022230A Expired - Lifetime JP5206455B2 (en) 2009-02-03 2009-02-03 Cement kiln extraction dust processing method

Country Status (1)

Country Link
JP (1) JP5206455B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501694B2 (en) * 2009-08-19 2014-05-28 太平洋セメント株式会社 Fertilizer and method and apparatus for manufacturing the same
JP5493903B2 (en) * 2010-01-20 2014-05-14 宇部興産株式会社 Mercury removal method
JP2013202521A (en) * 2012-03-28 2013-10-07 Jx Nippon Mining & Metals Corp Treatment method of selenium-containing waste water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042169B2 (en) * 1996-10-01 2008-02-06 宇部興産株式会社 Cement production equipment extraction dust processing method
JP3215066B2 (en) * 1997-03-25 2001-10-02 日鉱金属株式会社 Treatment method for wastewater containing selenium
JP2002159978A (en) * 2000-11-27 2002-06-04 Nec Ameniplantex Ltd Treatment method for waste liquid containing cadmium and selenium
JP4479116B2 (en) * 2001-02-28 2010-06-09 宇部興産株式会社 Cement production equipment extraction dust processing method
JP4306422B2 (en) * 2003-11-25 2009-08-05 宇部興産株式会社 Cement kiln extraction dust processing method

Also Published As

Publication number Publication date
JP2009136873A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
CN101962239B (en) Method for purifying titanium white wastewater
CN105271436A (en) Method for preparing polyferric chloride flocculant by using steel wire rope sludge and waste salt
JP2006272168A (en) Chlorine and heavy metal containing waste treatment method
JP4306394B2 (en) Cement kiln extraction dust processing method
JP4306422B2 (en) Cement kiln extraction dust processing method
JP2016019968A (en) Processing method for incineration ash
JP5206453B2 (en) Cement kiln extraction dust processing method
JP5831914B2 (en) Water treatment method
JP5451323B2 (en) Water treatment method
CN110240122B (en) Method for one-step detoxification and sulfur recovery of arsenic sulfide slag
JP5206455B2 (en) Cement kiln extraction dust processing method
JP4306413B2 (en) Cement kiln extraction dust processing method
JP4479116B2 (en) Cement production equipment extraction dust processing method
JP5911100B2 (en) Wastewater treatment method
JP2013075260A (en) Treatment method and treatment apparatus for removing fluorine and harmful substance
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP5206454B2 (en) Cement kiln extraction dust processing method
JP2000296400A (en) Treatment of sludge containing arsenic
JP5493903B2 (en) Mercury removal method
TWI694057B (en) Method for manufacturing gypsum and method for manufacturing cement composition
JP3901191B2 (en) Cement production equipment bleed dust treatment method
JP5716892B2 (en) Cleaning method of sludge
JP2005349349A (en) Material for disposing of heavy metal
JP5877588B2 (en) Wastewater treatment method
JP6008455B1 (en) How to handle hazardous substances

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term