JP5716892B2 - Cleaning method of sludge - Google Patents

Cleaning method of sludge Download PDF

Info

Publication number
JP5716892B2
JP5716892B2 JP2010267761A JP2010267761A JP5716892B2 JP 5716892 B2 JP5716892 B2 JP 5716892B2 JP 2010267761 A JP2010267761 A JP 2010267761A JP 2010267761 A JP2010267761 A JP 2010267761A JP 5716892 B2 JP5716892 B2 JP 5716892B2
Authority
JP
Japan
Prior art keywords
sludge
cleaning
chlorine concentration
washing
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010267761A
Other languages
Japanese (ja)
Other versions
JP2012115767A (en
Inventor
林 浩志
浩志 林
二瓶智也
畠山 耕
耕 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010267761A priority Critical patent/JP5716892B2/en
Publication of JP2012115767A publication Critical patent/JP2012115767A/en
Application granted granted Critical
Publication of JP5716892B2 publication Critical patent/JP5716892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、汚泥に吸着されている塩素を効率よく洗浄して汚泥の塩素濃度を低減する汚泥の洗浄方法に関する。本発明の洗浄方法によれば、産業施設より発生する酸性排水の処理工程から生じる中和汚泥などの塩素濃度をセメント原料に再利用できる程度に低減することができる。 The present invention relates to a sludge cleaning method for efficiently cleaning chlorine adsorbed on sludge to reduce the chlorine concentration in the sludge. According to the cleaning method of the present invention, it is possible to reduce the chlorine concentration of neutralized sludge and the like generated from the treatment process of acidic wastewater generated from an industrial facility to the extent that it can be reused as a cement raw material.

産業施設の排水処理工程で発生する汚泥をセメント原料として再利用する試みがなされているが、塩素濃度が高い汚泥はセメント原料として利用することができない。そこで、汚泥を洗浄して塩素を除去する方法が知られている。 Attempts have been made to reuse sludge generated in the wastewater treatment process of industrial facilities as cement raw material, but sludge having a high chlorine concentration cannot be used as cement raw material. Therefore, a method is known in which sludge is washed to remove chlorine.

例えば、特開平11−156337号公報(特許文献1)には、焼却飛灰を水洗して塩素やカルシウムを除去することが記載されている。特開平2003−19484号公報(特許文献2)には、塩化鉄含有溶液にアルカリ剤を添加して水酸化物スラリーを生成させ、これを固液分離して水洗して脱塩する方法において、塩化鉄含有溶液の第一鉄イオンを酸化して第二鉄イオンにした後に水酸化物を沈澱させることによって脱塩効果を高める処理方法が記載されている。 For example, JP-A-11-156337 (Patent Document 1) describes that incineration fly ash is washed with water to remove chlorine and calcium. In JP-A-2003-19484 (Patent Document 2), an alkali agent is added to an iron chloride-containing solution to produce a hydroxide slurry, which is solid-liquid separated, washed with water, and desalted. A treatment method is described which enhances the desalting effect by precipitating hydroxide after oxidizing ferrous ions in a solution containing iron chloride to ferric ions.

特開2002−18394号公報(特許文献3)には、廃棄物の水性スラリーをアルカリ性に調整した後、水洗することによって重金属(銅、鉛、亜鉛)の溶出を抑制して脱塩する方法が記載されている。特開2005−213527号公報(特許文献4)には、溶融飛灰または亜鉛含有ガスを酸処理して亜鉛含有溶液にし、該亜鉛含有溶液にアルカリ剤を添加して亜鉛水酸化物を沈殿させ、該沈殿物を水洗処理して沈殿物中の塩素を除去して亜鉛を回収する方法が記載されている。 Japanese Patent Laid-Open No. 2002-18394 (Patent Document 3) discloses a method of desalting by adjusting the aqueous slurry of waste to alkaline and then washing it with water to suppress elution of heavy metals (copper, lead, zinc). Have been described. In JP-A-2005-213527 (Patent Document 4), molten fly ash or zinc-containing gas is acid-treated to form a zinc-containing solution, and an alkali agent is added to the zinc-containing solution to precipitate zinc hydroxide. , A method of recovering zinc by washing the precipitate with water to remove chlorine in the precipitate is described.

特開平11−156337号公報JP-A-11-156337 特開平2003−19484号公報Japanese Patent Laid-Open No. 2003-19484 特開2002−18394号公報JP 2002-18394 A 特開2005−213527号公報JP 2005-213527 A

従来の水洗方法では汚泥に強固に吸着された塩素を十分に除去することができず、概ね5,000〜6,000mg/kg程度の塩素が残る。産業施設より発生する酸性排水の処理工程から生じる中和汚泥はカルシウムやアルミニウム、マグネシウムなどを含むので、セメント原料等に再利用することが求められるが、塩素含有量が高いものはセメント原料として利用する場合、利用できる量が限られる。なお、特許文献2の方法では塩素濃度を2,000mg/kg以下にできると説明されているが、大量の洗浄水を必要とする問題がある。 The conventional water washing method cannot sufficiently remove chlorine firmly adsorbed on sludge, and approximately 5,000 to 6,000 mg / kg of chlorine remains. Neutralized sludge generated from the treatment process of acidic wastewater generated from industrial facilities contains calcium, aluminum, magnesium, etc., so it is required to be reused for cement raw materials, etc., but those with high chlorine content are used as cement raw materials The amount available is limited. In addition, although it is described that the chlorine concentration can be reduced to 2,000 mg / kg or less in the method of Patent Document 2, there is a problem that a large amount of washing water is required.

本発明は、従来の水洗方法の上記問題を解消したものであり、汚泥に吸着されている塩素を効率よく洗浄して汚泥の塩素濃度を低減する汚泥の洗浄方法を提供する。 The present invention solves the above-mentioned problems of conventional water washing methods, and provides a method for cleaning sludge that efficiently cleans chlorine adsorbed on sludge and reduces the chlorine concentration in the sludge.

本発明によれば、以下の構成を有する汚泥の洗浄方法が提供される。
〔1〕塩素が吸着している汚泥について、硫酸化合物溶液または炭酸化合物溶液を用いて汚泥を吸着洗浄することによって塩素を離脱させ、汚泥の塩素濃度を低減する洗浄方法あって、塩素が吸着している汚泥を水洗浄した後に、硫酸化合物溶液または炭酸化合物溶液を用いて汚泥を吸着洗浄し、再び汚泥を水洗浄することを特徴とする汚泥の洗浄方法。
〔2〕洗浄濾液の塩素濃度を測定し、塩素濃度が一時的に上昇した後に低下し始めた時点で吸着洗浄を終了し、再び水洗浄を行う上記[1]に記載する汚泥の洗浄方法。
〔3〕汚泥または洗浄濾液の塩素濃度が4000mg/Lを超える場合は塩素濃度または電気伝導率を測定しながら水洗浄と吸着洗浄を行い、該塩素濃度が4000mg/L以下の場合は塩素濃度を測定しながら水洗浄と吸着洗浄を行う上記[1]または上記[2]に記載する汚泥の洗浄方法。
〔4〕フィルタープレスを用いて脱水された汚泥を洗浄する際の洗浄液、あるいは脱水された汚泥を洗浄液に分散させてスラリー化するリパルプ洗浄の上記洗浄液として、硫酸化合物溶液または炭酸化合物溶液を用い、上記脱水された汚泥を先ず水洗浄した後に硫酸化合物溶液または炭酸化合物溶液を用いて吸着洗浄を行う上記[1]〜上記[3]の何れかに記載する汚泥の洗浄方法。
〔5〕塩素が吸着している汚泥が産業施設より発生する酸性排水の処理工程において生じる排水の中和汚泥である上記[1]〜上記[4]の何れかに記載する汚泥の洗浄方法。
〔6〕塩素濃度を低減した汚泥をセメント原料に再利用する上記[1]〜上記[5]の何れかに記載する汚泥の洗浄方法。

According to this invention, the washing | cleaning method of the sludge which has the following structures is provided.
[1] About a sludge adsorbed with chlorine, a method of removing chlorine by adsorbing and cleaning sludge using a sulfuric acid compound solution or a carbonic acid compound solution to reduce the chlorine concentration in the sludge. A method for cleaning sludge, characterized in that after sludge is washed with water, the sludge is adsorbed and washed with a sulfuric acid compound solution or a carbonate compound solution, and the sludge is again washed with water.
[2] The sludge washing method according to the above [1], wherein the chlorine concentration of the washing filtrate is measured, the adsorption washing is terminated when the chlorine concentration starts to fall after temporarily rising, and the water washing is performed again.
[3] If the chlorine concentration in the sludge or washing filtrate exceeds 4000 mg / L, water washing and adsorption washing are performed while measuring the chlorine concentration or electrical conductivity. If the chlorine concentration is 4000 mg / L or less, the chlorine concentration is reduced. The sludge cleaning method according to the above [1] or [2], wherein the water cleaning and the adsorption cleaning are performed while measuring.
[4] A sulfuric acid compound solution or a carbonic acid compound solution is used as a cleaning liquid for cleaning dewatered sludge using a filter press, or the above-mentioned cleaning liquid for repulp cleaning in which dewatered sludge is dispersed in a cleaning liquid to form a slurry. The sludge washing method according to any one of [1] to [3] above, wherein the dewatered sludge is first washed with water and then adsorbed and washed using a sulfuric acid compound solution or a carbonate compound solution .
[5] The sludge cleaning method according to any one of [1] to [4] above, wherein the sludge adsorbing chlorine is neutralized sludge of wastewater generated in a treatment process of acidic wastewater generated from an industrial facility.
[6] The sludge cleaning method according to any one of [1] to [5] above, wherein the sludge having a reduced chlorine concentration is reused as a cement raw material.

本発明の洗浄方法によれば、塩素濃度が104〜105mg/kgの汚泥を洗浄することによって塩素濃度を1200mg/kg以下に低減することができるので、産業施設より発生する酸性排水の処理工程から生じる中和汚泥等について、塩素濃度をセメント原料として再利用することができる程度まで大幅に低減することができる。 According to the cleaning method of the present invention, the chlorine concentration can be reduced to 1200 mg / kg or less by cleaning sludge having a chlorine concentration of 10 4 to 10 5 mg / kg. About the neutralized sludge etc. which arise from a processing process, chlorine concentration can be reduced significantly to such an extent that it can be reused as a cement raw material.

本発明の洗浄方法は、水洗浄に依存する洗浄方法に比べて洗浄水量が格段に低減することができる。具体的には、本発明の実施例1に示すように、産業施設より発生する酸性排水の処理工程から生じる中和汚泥について、乾燥汚泥1gあたり126mlの洗浄液量で汚泥中の塩素濃度を約1200mg/kg以下まで低減することができる。一方、比較例1に示すように、実施例と同様の中和汚泥について、水洗浄のみを行った場合には、乾燥汚泥1gあたり126mlの洗浄液量で汚泥中の塩素濃度は約5000mg/kgであり、しかも洗浄水量をこれ以上に増やしても汚泥中の塩素濃度は殆ど変わらなかった。 The cleaning method of the present invention can significantly reduce the amount of cleaning water as compared with a cleaning method that relies on water cleaning. Specifically, as shown in Example 1 of the present invention, with respect to the neutralized sludge generated from the treatment process of acidic wastewater generated from industrial facilities, the chlorine concentration in the sludge is about 1200 mg with a cleaning liquid amount of 126 ml per 1 g of dry sludge. / kg or less can be reduced. On the other hand, as shown in Comparative Example 1, the neutralized sludge similar to the example was washed with water only, and the chlorine concentration in the sludge was about 5000 mg / kg with a washing liquid amount of 126 ml per 1 g of dry sludge. Moreover, the chlorine concentration in the sludge hardly changed even if the amount of washing water was increased more than this.

実施例1のろ液の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the filtrate of Example 1, and the amount of cleaning liquids. 実施例1の汚泥の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the sludge of Example 1, and the amount of cleaning liquids. 実施例2のろ液の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the filtrate of Example 2, and the amount of cleaning liquids. 実施例2の汚泥の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the sludge of Example 2, and the amount of cleaning liquids. 実施例3のろ液の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the filtrate of Example 3, and the amount of cleaning liquids. 実施例3の汚泥の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the sludge of Example 3, and the amount of cleaning liquids. 比較例1のろ液の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the filtrate of the comparative example 1, and the amount of cleaning liquids. 比較例1の汚泥の塩素濃度と洗浄液量との関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of the sludge of the comparative example 1, and the amount of cleaning liquids. ろ液の塩素濃度と導電率の関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of a filtrate, and electrical conductivity. ろ液の塩素濃度と洗浄液量の関係を示すグラフ。The graph which shows the relationship between the chlorine concentration of a filtrate, and the amount of cleaning liquids. ろ液の導電率と洗浄液量の関係を示すグラフ。The graph which shows the relationship between the electrical conductivity of a filtrate, and the amount of cleaning liquids. 実施例1のX線回折チャート。2 is an X-ray diffraction chart of Example 1. FIG. 実施例1と比較例1の洗浄効果を対比して示すグラフ。The graph which compares and shows the cleaning effect of Example 1 and Comparative Example 1.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の洗浄方法は、塩素が吸着している汚泥について、硫酸化合物溶液または炭酸化合物溶液を用いて汚泥を吸着洗浄することによって塩素を離脱させ、汚泥の塩素濃度を低減する洗浄方法であって、塩素が吸着している汚泥を水洗浄した後に、硫酸化合物溶液または炭酸化合物溶液を用いて汚泥を吸着洗浄し、再び汚泥を水洗浄することを特徴とする汚泥の洗浄方法である。
Hereinafter, the present invention will be specifically described based on embodiments.
The method of cleaning the invention, the sludge chlorine is adsorbed, a cleaning method is disengaged chlorine by adsorbing washing the sludge with sulfuric acid compound solution or a carbonic acid compound solution, to reduce the chlorine concentration of the sludge The sludge washing method is characterized in that after the sludge adsorbed with chlorine is washed with water, the sludge is adsorbed and washed using a sulfuric acid compound solution or a carbonate compound solution, and the sludge is washed with water again .

塩素が吸着している汚泥とは、例えば、産業施設より発生する酸性排水の処理工程から生じる中和汚泥などである。これらの廃液は消石灰などを添加して中和処理されており、多量の塩素が吸着している(塩素濃度:約104〜105mg/kgなど)。この他に塩酸や塩素の使用設備から排出される汚泥、廃プラスチック処理設備から排出される汚泥や飛灰、廃棄物処理設備から排出される汚泥や飛灰などについても本発明の洗浄方法を適用することができる。 The sludge to which chlorine is adsorbed is, for example, neutralized sludge generated from a treatment process of acidic wastewater generated from an industrial facility. These waste liquids are neutralized by adding slaked lime or the like, and a large amount of chlorine is adsorbed (chlorine concentration: about 10 4 to 10 5 mg / kg, etc.). In addition, the cleaning method of the present invention is applied to sludge discharged from facilities using hydrochloric acid and chlorine, sludge and fly ash discharged from waste plastic processing facilities, and sludge and fly ash discharged from waste treatment facilities. can do.

本発明の洗浄方法は、硫酸化合物溶液または炭酸化合物溶液を洗浄液として用い、これらの溶液に存在する硫酸イオン(SO4 2-)や炭酸イオン(CO3 2-)を利用して塩素イオン(Cl-)を汚泥から離脱させる。硫酸イオン(SO4 2-)や炭酸イオン(CO3 2-)は汚泥に対して塩素イオンよりも親和性が高い(吸着力が強い)ので、洗浄液として硫酸化合物溶液または炭酸化合物溶液を用いると、汚泥中の塩素イオンが硫酸イオンや炭酸イオンによって置換され、硫酸イオンや炭酸イオンが汚泥に吸着されて塩素イオンは洗浄液中に離脱するので、汚泥の塩素濃度を大幅に低減することができる。このように硫酸化合物溶液や炭酸化合物溶液を用いた洗浄は、硫酸イオン(SO4 2-)および炭酸イオン(CO3 2-)の吸着力の強さを利用するので、この洗浄を本発明では吸着洗浄と云う。硫酸イオン(SO4 2-)と炭酸イオン(CO3 2-)は吸着力が強く、化合物も安価であるので好ましい。 The cleaning method of the present invention uses a sulfuric acid compound solution or a carbonate compound solution as a cleaning liquid, and utilizes sulfate ions (SO 4 2- ) and carbonate ions (CO 3 2- ) present in these solutions to produce chloride ions (Cl -) is allowed to withdrawal from the sludge. Since sulfate ions (SO 4 2- ) and carbonate ions (CO 3 2- ) have a higher affinity for sludge than chlorine ions (strong adsorption power), using a sulfate compound solution or a carbonate compound solution as a cleaning solution Since chlorine ions in the sludge are replaced by sulfate ions and carbonate ions, and sulfate ions and carbonate ions are adsorbed by the sludge and the chlorine ions are released into the cleaning liquid, the chlorine concentration in the sludge can be greatly reduced. As described above, cleaning using a sulfate compound solution or a carbonate compound solution utilizes the strength of adsorption of sulfate ions (SO 4 2- ) and carbonate ions (CO 3 2- ). This is called adsorption cleaning. Sulfuric acid ions (SO 4 2− ) and carbonate ions (CO 3 2− ) are preferable because they have strong adsorptive power and are inexpensive.

使用する硫酸化合物溶液は特に限定されず、例えば、硫酸ナトリウム、硫酸カルシウム、硫酸カリウム、硫酸アルミニウム、明礬または硫酸マグネシウムなどを用いることができる。硫酸カルシウムとしては石膏および再生石膏を使用してもよい。 The sulfuric acid compound solution to be used is not particularly limited, and for example, sodium sulfate, calcium sulfate, potassium sulfate, aluminum sulfate, alum or magnesium sulfate can be used. Gypsum and regenerated gypsum may be used as calcium sulfate.

使用する炭酸化合物溶液は特に限定されず、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カルシウム、炭酸カリウム、炭酸アルミニウム、炭酸マグネシウム、または二酸化炭素が水に溶けて炭酸イオンとして存在する炭酸水などを用いることができる。 The carbonate compound solution to be used is not particularly limited, and sodium carbonate, sodium hydrogen carbonate, calcium carbonate, potassium carbonate, aluminum carbonate, magnesium carbonate, or carbonated water in which carbon dioxide is dissolved in water and is present as carbonate ions may be used. it can.

好ましくは、硫酸ナトリウム、硫酸カルシウム、炭酸ナトリウム、または炭酸水素ナトリウムを用いると良い。汚泥に吸着した硫酸イオンは汚泥中のカルシウムと反応して硫酸カルシウム(石膏)を生じるが、硫酸カルシウムは通常のセメント原料成分であるので、洗浄処理した汚泥をセメント原料に再利用する妨げにならない。また、ナトリウムは汚泥から離脱した塩素と共に洗浄ろ液中に含まれて除去される。炭酸ナトリウムや炭酸カルシウムを用いた場合、炭酸成分の大部分はセメントクリンカー焼成時に気化して除去される。 Preferably, sodium sulfate, calcium sulfate, sodium carbonate, or sodium bicarbonate is used. The sulfate ions adsorbed on the sludge react with calcium in the sludge to produce calcium sulfate (gypsum), but since calcium sulfate is an ordinary cement raw material component, it does not interfere with the reuse of the washed sludge as a cement raw material. . Further, sodium is removed by being contained in the washing filtrate together with chlorine released from the sludge. When sodium carbonate or calcium carbonate is used, most of the carbonic acid component is vaporized and removed during cement clinker firing.

なお、硫酸水溶液は汚泥を溶解するので本発明の洗浄液には適さない。但し、硫酸水溶液と水酸化ナトリウムなどのアルカリ金属の水酸化物またはその水溶液を混合して得られる硫酸化合物水溶液は本発明の洗浄液として使用することができる。 In addition, since sulfuric acid aqueous solution dissolves sludge, it is not suitable for the cleaning liquid of the present invention. However, a sulfuric acid compound aqueous solution obtained by mixing a sulfuric acid aqueous solution with an alkali metal hydroxide such as sodium hydroxide or an aqueous solution thereof can be used as the cleaning liquid of the present invention.

吸着洗浄はpH3〜12の液性において洗浄効果が向上し、pH5〜9の範囲が最適であるので、洗浄時の溶液をこのpH範囲に調整するのが好ましい。 Adsorption washing improves the washing effect at pH 3-12, and the pH range 5-9 is optimal. Therefore, it is preferable to adjust the solution during washing to this pH range.

本発明の洗浄方法は、最初に水洗浄を行って離脱しやすい塩素をあらかじめ除去し、次いで吸着洗浄を行って塩素の離脱を促進した後に、再び水洗浄を行い残った塩素を除去するとよい。水洗浄および吸着洗浄の回数や水量は汚泥の状態に応じて定めれば良い。 In the cleaning method of the present invention, it is preferable to first remove chlorine that is easily removed by performing water washing first, and then perform adsorption washing to promote the removal of chlorine, and then perform water washing again to remove the remaining chlorine. The number of times of water cleaning and adsorption cleaning and the amount of water may be determined according to the state of sludge.

本発明の洗浄方法は、ケーキ状の汚泥の洗浄、スラリー状の汚泥のリパルプ洗浄などに適用することができる。ケーキ洗浄液あるいはリパルプ洗浄液として、硫酸化合物溶液または炭酸化合物溶液を用いると良い。 The cleaning method of the present invention can be applied to cake sludge cleaning, slurry sludge repulp cleaning, and the like. As the cake washing liquid or the repulp washing liquid, a sulfuric acid compound solution or a carbonate compound solution may be used.

本発明の洗浄方法において、汚泥や洗浄ろ液の塩素濃度または電気伝導率(導電率)を測定しながら水洗浄と吸着洗浄を行うと良い。なお、塩素濃度が高い領域(約4,000〜約40,000mg/L)では塩素濃度と電気伝導率は相関するが、塩素濃度が低い領域(約4,000mg/L以下)では電気伝導率は塩素濃度に依存しなくなるので、電気伝導率は塩素濃度が比較的高い洗浄領域において利用することが好ましい。 In the cleaning method of the present invention, it is preferable to perform water cleaning and adsorption cleaning while measuring the chlorine concentration or electrical conductivity (conductivity) of sludge and cleaning filtrate. In the high chlorine concentration range (approximately 4,000 to 40,000 mg / L), the chlorine concentration correlates with the electrical conductivity, but in the low chlorine concentration range (approximately 4,000 mg / L or less), the electrical conductivity depends on the chlorine concentration. Since it does not depend, the electrical conductivity is preferably used in a cleaning region where the chlorine concentration is relatively high.

汚泥や洗浄ろ液の塩素濃度または電気伝導率を測定しながら洗浄する例を以下に示す。
(イ)汚泥ケーキを水洗浄し、ろ液の電気伝導率を測定し、電気伝導率が一定になったら水による洗浄を終了し、吸着洗浄を行う。
(ロ)吸着洗浄とともに得られる洗浄ろ液の塩素濃度を測定し、塩素濃度が一時的に上昇した後に低下し始めた時点で吸着洗浄を終了し、再び水洗浄を行う。
(ハ)水洗浄ではろ液の塩素濃度は洗浄液量の増加とともに連続的に低下するので、ろ液の塩素濃度を指標とし、ろ液の塩素濃度が目標値まで低下したら水洗浄を終了する。
An example of washing while measuring the chlorine concentration or electrical conductivity of sludge and washing filtrate is shown below.
(I) Wash the sludge cake with water, measure the electrical conductivity of the filtrate, and when the electrical conductivity becomes constant, finish washing with water and perform adsorption cleaning.
(B) The chlorine concentration of the washing filtrate obtained along with the adsorption cleaning is measured, and the adsorption cleaning is terminated when the chlorine concentration begins to decrease after temporarily increasing, and then water cleaning is performed again.
(C) Since the chlorine concentration of the filtrate continuously decreases as the amount of the cleaning solution increases in water cleaning, the chlorine concentration of the filtrate is used as an index, and the water cleaning is terminated when the chlorine concentration of the filtrate decreases to the target value.

本発明の洗浄方法は、例えば、産業施設より発生する酸性排水の処理工程から生じる中和汚泥の洗浄などに好適に用いることができる。産業施設より発生する酸性排水に消石灰を添加して中和した汚泥には多量の塩素が含まれている。本発明の洗浄方法によれば、少量の洗浄水量(乾燥汚泥1gあたり約126ml)で、汚泥の塩素濃度をセメント原料として受け入れ可能な塩素濃度まで低減化することができる。従って、洗浄した中和汚泥をセメント原料として再利用することができる。 The washing | cleaning method of this invention can be used suitably for the washing | cleaning of the neutralized sludge etc. which arise from the process of the acidic waste water which generate | occur | produces from an industrial facility, for example. A large amount of chlorine is contained in sludge neutralized by adding slaked lime to acidic wastewater generated from industrial facilities. According to the cleaning method of the present invention, the chlorine concentration of sludge can be reduced to a chlorine concentration acceptable as a cement raw material with a small amount of cleaning water (about 126 ml per 1 g of dried sludge). Accordingly, the washed neutralized sludge can be reused as a cement raw material.

以下、本発明の実施例を比較例と共に示す。洗浄ろ液の塩素濃度および電気伝導率の測定、汚泥の塩素濃度の測定、汚泥のX線解析は以下のように行った。
(イ)ろ液中の塩素濃度はイオン電極法により測定した。ろ液を希釈して測定液とし、この測定液に硝酸カリウムを加えてコンディショニングした後に塩素用イオン電極を測定液に浸し、あらかじめ校正しておいたイオンメータによって塩素イオン濃度を測定した。
(ロ)汚泥の塩素濃度は燃焼揮発法により行った。汚泥を燃焼管に入れ、加熱して塩素分を揮発させる。揮発した塩素分を捕集部にて液中に回収し、回収液の塩素濃度をイオンクロマトグラフィーによって測定した。
(ハ)汚泥の粉末X線分析は、汚泥を乾燥させた後に微細に粉砕し、粉末X線回折装置(RIGAKU製)を用いてX線回折チャートを得た。
(ニ)ろ液の電気伝導率は電気伝導率計を用いて測定した。
Examples of the present invention are shown below together with comparative examples. Measurement of chlorine concentration and electrical conductivity of the washing filtrate, measurement of chlorine concentration of sludge, and X-ray analysis of sludge were performed as follows.
(I) The chlorine concentration in the filtrate was measured by the ion electrode method. The filtrate was diluted to give a measurement solution, and after adding potassium nitrate to the measurement solution for conditioning, the chlorine ion electrode was immersed in the measurement solution, and the chlorine ion concentration was measured with an ion meter calibrated in advance.
(B) Chlorine concentration in sludge was measured by combustion volatilization. Put sludge in the combustion tube and heat it to volatilize the chlorine. Volatilized chlorine content was recovered in the liquid at the collection section, and the chlorine concentration of the recovered liquid was measured by ion chromatography.
(C) In the powder X-ray analysis of sludge, the sludge was dried and then finely pulverized, and an X-ray diffraction chart was obtained using a powder X-ray diffractometer (manufactured by RIGAKU).
(D) The electrical conductivity of the filtrate was measured using an electrical conductivity meter.

〔実施例1〕
塩酸酸性廃液(塩素濃度4,800mg/L)に消石灰を加えてpH7に中和し、この中和汚泥を含むスラリーにした。このスラリーをブフナーロートにて吸引濾過した。濾紙上に残った汚泥を水100mlで濾過した。この濾紙上に残った汚泥に対する濾過操作を濾過洗浄と呼ぶ。ろ液を採取して塩素濃度を測定した。この水洗浄と塩素濃度の測定を3回行った。次に、硫酸ナトリウム水溶液(濃度4,400mg/L)を100mlずつ用いて汚泥を濾過洗浄し、ろ液の塩素濃度を測定した。この吸着洗浄と塩素濃度の測定を2回行った。その後、再び汚泥を水100mlずつ用いて濾過洗浄を行い、ろ液の塩素濃度を測定した。この水洗浄と塩素濃度の測定を3回行った。本実施例では洗浄液の総量は800mlであり、乾燥汚泥1gあたりの洗浄液量は約126mlであった。ろ液の塩素濃度と洗浄液量の関係を図1に示す。汚泥の塩素濃度と洗浄液量の関係を図2に示す。最終の洗浄ろ液の塩素濃度は60mg/Lであり、洗浄後の汚泥中の塩素濃度は1,110mg/kgであった。洗浄後の汚泥を乾燥粉砕し、粉末X線分析により含有成分の形態を調べた。粉末X線回
折のパターンを図12に示す。この回折チャートには石膏(CaSO4)のピークが示されており、洗浄液の硫酸イオンは汚泥のカルシウムと結合し、汚泥中に石膏として含まれていることが分かる。
[Example 1]
Hydrochloric acid waste liquid (chlorine concentration: 4,800 mg / L) was added with slaked lime to neutralize to pH 7 to make a slurry containing this neutralized sludge. The slurry was suction filtered with a Buchner funnel. The sludge remaining on the filter paper was filtered with 100 ml of water. This filtration operation for the sludge remaining on the filter paper is called filtration cleaning. The filtrate was collected and the chlorine concentration was measured. This water washing and measurement of chlorine concentration were performed three times. Next, the sludge was filtered and washed with 100 ml each of an aqueous sodium sulfate solution (concentration 4,400 mg / L), and the chlorine concentration of the filtrate was measured. This adsorption cleaning and the measurement of chlorine concentration were performed twice. Thereafter, the sludge was again washed with 100 ml of water and the chlorine concentration of the filtrate was measured. This water washing and measurement of chlorine concentration were performed three times. In this example, the total amount of cleaning liquid was 800 ml, and the amount of cleaning liquid per 1 g of dried sludge was about 126 ml. The relationship between the chlorine concentration of the filtrate and the amount of cleaning liquid is shown in FIG. The relationship between the sludge chlorine concentration and the amount of cleaning liquid is shown in FIG. The chlorine concentration in the final washing filtrate was 60 mg / L, and the chlorine concentration in the sludge after washing was 1,110 mg / kg. The sludge after washing was dried and pulverized, and the form of the contained components was examined by powder X-ray analysis. The powder X-ray diffraction pattern is shown in FIG. This diffraction chart shows a peak of gypsum (CaSO 4 ), and it can be seen that sulfate ions in the cleaning liquid are combined with calcium in the sludge and are contained in the sludge as gypsum.

〔実施例2〕
実施例1と同様の中和汚泥を含んだスラリーをブフナーロートにて吸引濾過した。濾紙上に残った汚泥を水100mlで濾過洗浄した。ろ液を採取して塩素濃度を測定した。この水洗浄と塩素濃度の測定を5回行った。次に、硫酸カルシウム水溶液(濃度2,000mg/L)を100mlずつ用いて汚泥を濾過洗浄し、ろ液の塩素濃度を測定した。この吸着洗浄と塩素濃度の測定を10回行った。本実施例では洗浄液の総量は1500mlであり、乾燥汚泥1gあたりの洗浄液量は約237mlであった。ろ液の塩素濃度と洗浄液量の関係を図3に示す。汚泥中の塩素濃度と洗浄液量の関係を図4に示す。最終の洗浄ろ液の塩素濃度は60mg/Lであり、洗浄後の汚泥中の塩素濃度は230mg/kgであった。
[Example 2]
A slurry containing the same neutralized sludge as in Example 1 was suction filtered with a Buchner funnel. The sludge remaining on the filter paper was filtered and washed with 100 ml of water. The filtrate was collected and the chlorine concentration was measured. This water washing and measurement of chlorine concentration were performed 5 times. Next, the sludge was filtered and washed with 100 ml each of an aqueous calcium sulfate solution (concentration 2,000 mg / L), and the chlorine concentration of the filtrate was measured. This adsorption washing and measurement of the chlorine concentration were performed 10 times. In this example, the total amount of the cleaning solution was 1500 ml, and the amount of the cleaning solution per 1 g of dried sludge was about 237 ml. The relationship between the chlorine concentration of the filtrate and the amount of cleaning liquid is shown in FIG. The relationship between the chlorine concentration in the sludge and the amount of cleaning liquid is shown in FIG. The chlorine concentration of the final washing filtrate was 60 mg / L, and the chlorine concentration in the sludge after washing was 230 mg / kg.

〔実施例3〕
実施例1と同様の中和汚泥を含んだスラリーをブフナーロートにて吸引濾過した。濾紙に残った汚泥を水100mlで濾過洗浄した。ろ液を採取し、ろ液の塩素濃度を測定した。この水洗浄と塩素濃度の測定を3回行った。次に、炭酸ナトリウム水溶液(濃度5,300mg/L)を100mlずつ用いて汚泥を濾過洗浄し、ろ液の塩素濃度を測定した。この吸着洗浄と塩素濃度の測定を2回行った。次いで、再び汚泥を水100mlずつ用いて濾過洗浄を行い、ろ液の塩素濃度を測定した。この水洗浄と塩素濃度の測定を3回行った。本実施例では洗浄液の総量は800mlであり、乾燥汚泥1gあたりの洗浄液量は約126mlであった。ろ液の塩素濃度と洗浄液量の関係を図5に示す。汚泥中の塩素濃度と洗浄液量の関係を図6に示す。最終の洗浄ろ液の塩素濃度は40mg/Lであり、洗浄後の汚泥中の塩素濃度は1,000mg/kgであった。
Example 3
A slurry containing the same neutralized sludge as in Example 1 was suction filtered with a Buchner funnel. The sludge remaining on the filter paper was filtered and washed with 100 ml of water. The filtrate was collected and the chlorine concentration of the filtrate was measured. This water washing and measurement of chlorine concentration were performed three times. Next, the sludge was filtered and washed with 100 ml each of an aqueous sodium carbonate solution (concentration 5,300 mg / L), and the chlorine concentration of the filtrate was measured. This adsorption cleaning and the measurement of chlorine concentration were performed twice. Next, the sludge was again filtered and washed with 100 ml of water, and the chlorine concentration of the filtrate was measured. This water washing and measurement of chlorine concentration were performed three times. In this example, the total amount of cleaning liquid was 800 ml, and the amount of cleaning liquid per 1 g of dried sludge was about 126 ml. The relationship between the chlorine concentration of the filtrate and the amount of cleaning liquid is shown in FIG. The relationship between the chlorine concentration in the sludge and the amount of cleaning liquid is shown in FIG. The chlorine concentration in the final washing filtrate was 40 mg / L, and the chlorine concentration in the sludge after washing was 1,000 mg / kg.

〔比較例1〕
実施例1と同様の中和汚泥を含んだスラリーをブフナーロートにて吸引濾過した。濾紙上に残った汚泥を水100mlで濾過洗浄した。ろ液を採取して塩素濃度を測定した。この水洗浄と塩素濃度の測定を8回行った。本比較例では洗浄液の総量は800mlであり、乾燥汚泥1gあたりの洗浄液量は約126mlであった。図7にろ液の塩素濃度と洗浄液量の関係を示す。図8に汚泥中の塩素濃度と洗浄液量の関係を示す。最終の洗浄ろ液の塩素濃度は190mg/Lであり、洗浄後の汚泥の塩素濃度は4960mg/kgであった。
洗浄後の汚泥を乾燥粉砕し、粉末X線分析により含有成分の形態を調べた。粉末X線回
折のパターンを図12に示す。この回折チャートにはNaClと石膏のピークは記録されなかった。
[Comparative Example 1]
The slurry containing the same neutralized sludge as in Example 1 was suction filtered with a Buchner funnel. The sludge remaining on the filter paper was filtered and washed with 100 ml of water. The filtrate was collected and the chlorine concentration was measured. This water washing and measurement of chlorine concentration were performed 8 times. In this comparative example, the total amount of cleaning liquid was 800 ml, and the amount of cleaning liquid per 1 g of dried sludge was about 126 ml. FIG. 7 shows the relationship between the chlorine concentration of the filtrate and the amount of cleaning liquid. FIG. 8 shows the relationship between the chlorine concentration in the sludge and the amount of cleaning liquid. The chlorine concentration in the final washing filtrate was 190 mg / L, and the chlorine concentration in the sludge after washing was 4960 mg / kg.
The sludge after washing was dried and pulverized, and the form of the contained components was examined by powder X-ray analysis. The powder X-ray diffraction pattern is shown in FIG. In this diffraction chart, NaCl and gypsum peaks were not recorded.

〔比較例2〕
実施例1と同様の中和汚泥を含んだスラリーをブフナーロートにて吸引濾過した。濾紙上の汚泥を回収し、乾燥後、粉末X線分析により含有成分の形態を調べた。粉末X線回
折のパターンを図12に示す。この回折チャートにはNaClのピークが存在し、洗浄後の汚泥に多量の塩素が含まれていることが確認された。
[Comparative Example 2]
The slurry containing the same neutralized sludge as in Example 1 was suction filtered with a Buchner funnel. The sludge on the filter paper was collected, dried, and the form of the contained components was examined by powder X-ray analysis. The powder X-ray diffraction pattern is shown in FIG. This diffraction chart had a NaCl peak, and it was confirmed that the sludge after washing contained a large amount of chlorine.

実施例1と比較例1を比較した結果を図13に示す。吸着洗浄を行った実施例1の洗浄ろ液の塩素濃度は比較例1の塩素濃度より大きく下回っており、硫酸イオンによって塩素除去が促進されていることが分かる。また、実施例1、比較例1、比較例2の汚泥の粉末X線回折パターンを比較した図12に示すように、汚泥中の塩素は洗浄しない場合
(比較例2)にはNaClとして汚泥中に存在しており、水洗浄を行う(比較例1)とNaClは除去されるが、X線回折パターンには現れない塩素が多数吸着されている(図8参照
)。一方、本発明の洗浄(水洗浄+吸着洗浄)を行うと(実施例1)、硫酸イオン汚泥の塩素は殆ど除去され(図2)、代わって、洗浄液の硫酸イオンと汚泥中のカルシウムによって石膏が形成さている。
The result of comparing Example 1 and Comparative Example 1 is shown in FIG. The chlorine concentration of the washing filtrate of Example 1 subjected to the adsorption cleaning is significantly lower than the chlorine concentration of Comparative Example 1, and it is understood that the chlorine removal is promoted by sulfate ions. Moreover, as shown in FIG. 12 which compared the powder X-ray diffraction pattern of the sludge of Example 1, Comparative Example 1, and Comparative Example 2, when chlorine in the sludge is not washed (Comparative Example 2), it is NaCl as sludge. When NaCl is removed by water washing (Comparative Example 1), NaCl is removed, but a large amount of chlorine that does not appear in the X-ray diffraction pattern is adsorbed (see FIG. 8). On the other hand, when the cleaning of the present invention (water cleaning + adsorption cleaning) is performed (Example 1), most of the chlorine in the sulfate ion sludge is removed (FIG. 2), and instead, the gypsum is replaced by sulfate ions in the cleaning liquid and calcium in the sludge. Is formed.

実施例2は吸着洗浄液として硫酸カルシウム水溶液を用いているが、図3および図4に示すように、ろ液、汚泥の塩素濃度は何れも比較例1の塩素濃度を大きく下回っており、硫酸イオンによる塩素除去が促進されていることが分かる。また、実施例3は吸着洗浄液として炭酸ナトリウム水溶液を用いているが、図5および図6に示すように、ろ液と汚泥の塩素濃度は何れも比較例1の塩素濃度を大きく下回っており、炭酸イオンによる塩素除去が促進されていることが分かる。この結果から明らかなように、産業施設より発生する酸性排水の処理工程から回収した中和汚泥は塩素を多量に含んでいるが、本発明の吸着洗浄を行うことによってセメントキルンに入れても支障のない原料として利用することができる。 In Example 2, a calcium sulfate aqueous solution was used as the adsorbing cleaning liquid. As shown in FIGS. 3 and 4, the chlorine concentration in the filtrate and sludge was much lower than the chlorine concentration in Comparative Example 1, and sulfate ions It can be seen that the chlorine removal by is promoted. Further, Example 3 uses an aqueous sodium carbonate solution as the adsorbing cleaning liquid, but as shown in FIGS. 5 and 6, the chlorine concentrations of the filtrate and the sludge are both significantly lower than the chlorine concentration of Comparative Example 1, It can be seen that the removal of chlorine by carbonate ions is promoted. As is clear from this result, the neutralized sludge recovered from the treatment process of acidic wastewater generated from industrial facilities contains a large amount of chlorine. However, it can be put into a cement kiln by performing the adsorption cleaning of the present invention. It can be used as a raw material without.

〔実施例4〕
実施例1と同様の中和汚泥を含んだスラリーを加圧ろ過(フィルタープレス)し、濾布に残った汚泥について、水洗浄と吸着洗浄を行った。洗浄中はろ液を採取し、その塩素濃度と電気伝導率をイオン電極または電気伝導率計を用いて測定した。この汚泥を洗浄したときのろ液の塩素濃度と電気伝導率の関係を図9に示す。また汚泥洗浄にともなう塩素濃度と電気伝導率の変化を図10および図11にそれぞれ示す。
Example 4
The slurry containing neutralized sludge similar to that in Example 1 was subjected to pressure filtration (filter press), and the sludge remaining on the filter cloth was washed with water and adsorbed. During the washing, the filtrate was collected, and its chlorine concentration and electric conductivity were measured using an ion electrode or an electric conductivity meter. FIG. 9 shows the relationship between the chlorine concentration of the filtrate and the electrical conductivity when this sludge is washed. Moreover, the change of the chlorine concentration and electrical conductivity accompanying sludge washing | cleaning is shown in FIG. 10 and FIG. 11, respectively.

図9に示すように、塩素濃度が高い領域(4,000〜約40,500mg/L)では、塩素濃度と電気伝導率には相関があるが、塩素濃度が低い領域(4,000mg/L以下)では、電気伝導率は塩素濃度に関係なく一定となることがわかる。従って、電気伝導率は塩素濃度が比較的高い洗浄領域において利用することが好ましい。 As shown in FIG. 9, in the region where the chlorine concentration is high (4,000 to about 40,500 mg / L), there is a correlation between the chlorine concentration and the electric conductivity, but in the region where the chlorine concentration is low (4,000 mg / L or less), It can be seen that the electrical conductivity is constant regardless of the chlorine concentration. Therefore, it is preferable to use the electrical conductivity in the cleaning region where the chlorine concentration is relatively high.

ろ液の塩素濃度と電気伝導率を以下のように測定しながら洗浄方法を行った。
(1)濾布に残った汚泥を水洗浄し、ろ液の電気伝導率を測定して電気伝導率が一定になったら水洗浄を終了した。
(2)次に吸着洗浄を行った。洗浄液は硫酸ナトリウム水溶液(4,400mg/L)を使用した。この吸着洗浄によって図11に示すように電気伝導率が上昇した。これは汚泥中の塩素が離脱し、また洗浄液中の硫酸イオンが流出したためである。硫酸ナトリウム水溶液約200mlで汚泥を洗浄して吸着洗浄を終了する。このとき図10に示すようにろ液の塩素濃度が低下している。
(3)次いで、汚泥を再び水洗浄する。図11に示すように電気伝導率は低下してやがて一定になるが、図10に示すように、ろ液の塩素濃度は洗浄液量を増やすとともに連続的に低下していく。
(4)ろ液の塩素濃度が60mg/Lまで低下したところで水洗浄を終了した。
The washing method was performed while measuring the chlorine concentration and electrical conductivity of the filtrate as follows.
(1) The sludge remaining on the filter cloth was washed with water, and the electrical conductivity of the filtrate was measured. When the electrical conductivity became constant, the water washing was terminated.
(2) Next, adsorption cleaning was performed. As the washing solution, an aqueous sodium sulfate solution (4,400 mg / L) was used. This adsorption cleaning increased the electrical conductivity as shown in FIG. This is because chlorine in the sludge is released, and sulfate ions in the cleaning liquid flow out. The sludge is washed with about 200 ml of an aqueous sodium sulfate solution to complete the adsorption washing. At this time, the chlorine concentration of the filtrate is lowered as shown in FIG.
(3) Next, the sludge is washed again with water. As shown in FIG. 11, the electrical conductivity decreases and becomes constant over time, but as shown in FIG. 10, the chlorine concentration of the filtrate increases continuously as the amount of the cleaning liquid increases.
(4) Water washing was terminated when the chlorine concentration of the filtrate was reduced to 60 mg / L.

この実施例では、洗浄液の全量は約1000mlであった。最終のろ液の塩素濃度は60mg/Lであり、洗浄後の汚泥ケーキ中の塩素濃度は1,000mg/kgあった。 In this example, the total amount of cleaning solution was about 1000 ml. The chlorine concentration in the final filtrate was 60 mg / L, and the chlorine concentration in the sludge cake after washing was 1,000 mg / kg.

上記実施例1〜実施例4の結果に示されるように、洗浄ろ液の塩素濃度が400〜500mg/L以下であれば、汚泥中の塩素濃度は概ね1,000〜2,000mg/kg程度に低減化された。 As shown in the results of Examples 1 to 4, if the chlorine concentration of the washing filtrate is 400 to 500 mg / L or less, the chlorine concentration in the sludge is about 1,000 to 2,000 mg / kg. Reduced to

Claims (6)

塩素が吸着している汚泥について、硫酸化合物溶液または炭酸化合物溶液を用いて汚泥を吸着洗浄することによって塩素を離脱させ、汚泥の塩素濃度を低減する洗浄方法であって、塩素が吸着している汚泥を水洗浄した後に、硫酸化合物溶液または炭酸化合物溶液を用いて汚泥を吸着洗浄し、再び汚泥を水洗浄することを特徴とする汚泥の洗浄方法。 This is a cleaning method that removes chlorine by adsorbing and cleaning sludge using a sulfuric acid compound solution or carbonate compound solution to reduce the chlorine concentration in the sludge . A method for cleaning sludge, characterized in that after sludge is washed with water, the sludge is adsorbed and washed with a sulfuric acid compound solution or a carbonate compound solution, and the sludge is washed with water again. 洗浄濾液の塩素濃度を測定し、塩素濃度が一時的に上昇した後に低下し始めた時点で吸着洗浄を終了し、再び水洗浄を行う請求項1に記載する汚泥の洗浄方法。The method for cleaning sludge according to claim 1, wherein the chlorine concentration of the washing filtrate is measured, and when the chlorine concentration begins to decrease after temporarily increasing, the adsorption cleaning is terminated and the water cleaning is performed again. 汚泥または洗浄濾液の塩素濃度が4000mg/Lを超える場合は塩素濃度または電気伝導率を測定しながら水洗浄と吸着洗浄を行い、該塩素濃度が4000mg/L以下の場合は塩素濃度を測定しながら水洗浄と吸着洗浄を行う請求項1または請求項2に記載する汚泥の洗浄方法。When the chlorine concentration of sludge or washing filtrate exceeds 4000 mg / L, water washing and adsorption washing are performed while measuring the chlorine concentration or electrical conductivity, and when the chlorine concentration is 4000 mg / L or less, the chlorine concentration is measured. The method for cleaning sludge according to claim 1 or 2, wherein water cleaning and adsorption cleaning are performed. フィルタープレスを用いて脱水された汚泥を洗浄する際の洗浄液、あるいは脱水された汚泥を洗浄液に分散させてスラリー化するリパルプ洗浄の上記洗浄液として、硫酸化合物溶液または炭酸化合物溶液を用い、上記脱水された汚泥を先ず水洗浄した後に硫酸化合物溶液または炭酸化合物溶液を用いて吸着洗浄を行う請求項1〜請求項3の何れかに記載する汚泥の洗浄方法。
As a cleaning solution for cleaning dewatered sludge using a filter press, or as a cleaning solution for repulp cleaning in which dewatered sludge is dispersed in a cleaning solution to form a slurry, a sulfuric acid compound solution or a carbonate compound solution is used for the above dehydration. The sludge washing method according to any one of claims 1 to 3, wherein the sludge is first washed with water and then adsorbed and washed using a sulfuric acid compound solution or a carbonate compound solution .
塩素が吸着している汚泥が産業施設より発生する酸性排水の処理工程において生じる排水の中和汚泥である請求項1〜請求項4の何れかに記載する汚泥の洗浄方法。 The sludge washing method according to any one of claims 1 to 4, wherein the sludge to which chlorine is adsorbed is neutralized sludge of wastewater generated in a treatment process of acidic wastewater generated from an industrial facility. 塩素濃度を低減した汚泥をセメント原料に再利用する請求項1〜請求項5の何れかに記載する汚泥の洗浄方法。
The method for cleaning sludge according to any one of claims 1 to 5, wherein sludge having a reduced chlorine concentration is reused as a cement raw material.
JP2010267761A 2010-11-30 2010-11-30 Cleaning method of sludge Active JP5716892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267761A JP5716892B2 (en) 2010-11-30 2010-11-30 Cleaning method of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267761A JP5716892B2 (en) 2010-11-30 2010-11-30 Cleaning method of sludge

Publications (2)

Publication Number Publication Date
JP2012115767A JP2012115767A (en) 2012-06-21
JP5716892B2 true JP5716892B2 (en) 2015-05-13

Family

ID=46499280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267761A Active JP5716892B2 (en) 2010-11-30 2010-11-30 Cleaning method of sludge

Country Status (1)

Country Link
JP (1) JP5716892B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190690B (en) * 2014-08-06 2016-05-04 华南理工大学 A kind of method and application that utilizes ammonia-soda process alkaline residue to prepare dechlorination alkaline residue mixture
JP7234775B2 (en) * 2019-04-25 2023-03-08 三菱マテリアル株式会社 Desalination system for chlorine-containing ash

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4210456B2 (en) * 1997-07-14 2009-01-21 太平洋セメント株式会社 Cement raw material processing method
JP3965769B2 (en) * 1998-04-20 2007-08-29 三菱マテリアル株式会社 Fly ash treatment method
JP4767444B2 (en) * 2001-07-06 2011-09-07 月島機械株式会社 Wastewater treatment method to reduce chlorine content in treated sludge
JP2003080199A (en) * 2001-09-11 2003-03-18 Fuji Kikai Kk Method for washing treatment of ash
JP3818924B2 (en) * 2002-01-29 2006-09-06 株式会社荏原製作所 Ash cleaning method and apparatus
JP4358014B2 (en) * 2004-03-29 2009-11-04 株式会社荏原製作所 Method and apparatus for washing incineration ash and cement kiln dust with water
JP2006110508A (en) * 2004-10-18 2006-04-27 Ebara Corp Method and apparatus for washing and dehydrating incineration ash and/or cement kiln dust
JP2006326462A (en) * 2005-05-25 2006-12-07 Unitika Ltd Method for recycling ash as cement raw material
JP2007069185A (en) * 2005-09-09 2007-03-22 Unitika Ltd Method for washing inorganic matter
JP4758811B2 (en) * 2006-04-25 2011-08-31 株式会社トクヤマ Submarine dredging treatment method
JP5041131B2 (en) * 2006-11-07 2012-10-03 三菱マテリアル株式会社 Pulsation cleaning method and pulsation cleaning device
JP5317421B2 (en) * 2007-03-19 2013-10-16 太平洋セメント株式会社 Method and system for processing salt-containing powder
JP2008246398A (en) * 2007-03-30 2008-10-16 Mitsubishi Materials Corp Method for recovering gypsum from molten fly ash
JP4826532B2 (en) * 2007-04-17 2011-11-30 三菱マテリアル株式会社 Processing method of molten fly ash
JP5157384B2 (en) * 2007-11-16 2013-03-06 栗田工業株式会社 Ash desalting method
JP5018603B2 (en) * 2008-03-31 2012-09-05 住友大阪セメント株式会社 Cleaning method for water-soluble chlorine-containing powder
JP2010227827A (en) * 2009-03-27 2010-10-14 Kubota Corp System and method for treating granule

Also Published As

Publication number Publication date
JP2012115767A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP4839653B2 (en) Method for treating waste containing chlorine and heavy metals
JP4549579B2 (en) Waste treatment method with high chlorine and lead content
JP4826532B2 (en) Processing method of molten fly ash
JP4809080B2 (en) Waste water treatment method and waste water treatment agent containing fluorine ions
JP4558633B2 (en) Wastewater treatment method containing fluoride ions
JP4306422B2 (en) Cement kiln extraction dust processing method
JP5716892B2 (en) Cleaning method of sludge
JP2009011920A (en) Treatment method for wastewater containing heavy metal
JP4479116B2 (en) Cement production equipment extraction dust processing method
JP2002018394A (en) Treating method for waste
JP2008254944A (en) Porous iron oxide and its manufacturing method, and method for processing water to be treated
JP4670004B2 (en) Method for treating selenium-containing water
JP4253203B2 (en) How to remove fluorine from gypsum
JP5206455B2 (en) Cement kiln extraction dust processing method
JP2001340872A (en) Method for treating wastewater containing boron and/or fluorine
JP4306413B2 (en) Cement kiln extraction dust processing method
JP5187199B2 (en) Fluorine separation method from fluorine-containing wastewater
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP3940157B1 (en) Incineration residue treatment method and incineration residue treatment product
JP2005238083A (en) Treatment method for solution containing selenium
JP3901191B2 (en) Cement production equipment bleed dust treatment method
JP2006255628A (en) Dephosphorizationagent and method for removing phosphoric acid ion
JP5877588B2 (en) Wastewater treatment method
JP2002126693A (en) Method for treatment waste
JP2009240952A (en) Waste treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150303

R150 Certificate of patent or registration of utility model

Ref document number: 5716892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150