JP4479116B2 - Cement production equipment extraction dust processing method - Google Patents

Cement production equipment extraction dust processing method Download PDF

Info

Publication number
JP4479116B2
JP4479116B2 JP2001053784A JP2001053784A JP4479116B2 JP 4479116 B2 JP4479116 B2 JP 4479116B2 JP 2001053784 A JP2001053784 A JP 2001053784A JP 2001053784 A JP2001053784 A JP 2001053784A JP 4479116 B2 JP4479116 B2 JP 4479116B2
Authority
JP
Japan
Prior art keywords
dust
extracted
solid
liquid separation
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001053784A
Other languages
Japanese (ja)
Other versions
JP2002254049A (en
Inventor
守久 横田
洋司 窪井
新作 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001053784A priority Critical patent/JP4479116B2/en
Publication of JP2002254049A publication Critical patent/JP2002254049A/en
Application granted granted Critical
Publication of JP4479116B2 publication Critical patent/JP4479116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components

Description

【0001】
【発明の属する技術分野】
本発明は、セメント製造装置内における塩素、アルカリ、硫黄の循環を低減するために焼成ガスの一部を抽気した際に同伴する、有害物質を含むダスト(以下、抽気ダストと称す)の処理方法に関するものである。
【0002】
【従来の技術】
塩素、アルカリ、硫黄含有量の多いセメント原料を使用した場合、セメントクリンカー中に含まれる塩素、アルカリ、硫黄の量が多くなり、セメントの品質に悪影響を与えるだけでなく、塩素、アルカリ、硫黄は、蒸気圧の高い化合物を形成し、セメント製造装置内においてガス化して循環する際に、装置内の比較的温度の低い部分で凝縮してコーティングを形成するため、セメント製造上のトラブルの原因ともなっている。この問題を解決するため、セメントキルンの窯尻部分から焼成ガスの一部を抽気して、セメント製造装置内を循環する塩素、アルカリ、硫黄の量を低減することが行われている。しかし、このような焼成ガスの抽気を行うと、塩素、アルカリ、硫黄の含有量の多い抽気ダストが必然的に同伴し、このダストの処理方法が新たな問題となって来る。即ち、抽気ダストには塩素、アルカリ、硫黄以外にも鉛、カドミウム、亜鉛、銅、クロム、マンガン、鉄、水銀、セレン、フッ素など、水質汚濁防止法で規制された有害物質が含まれており、抽気ダストを未処理のまま埋め立て、廃棄を行なえば環境汚染を引き起こすため、適切な方法で処理する必要がある。また、ダストを廃棄するのではなくセメント原料として再利用する場合にも、ダスト中に含まれるアルカリ、塩素の量を低減した後に原料系に返す必要がある。
【0003】
抽気ダストに含まれるアルカリ、塩素化合物は水溶性であることから、抽気ダストからの除アルカリ、除塩素化合物の方法としては、水洗処理が最も適していることは当然であり、既に公知である(例えば、特開昭49−86419号公報、同昭62−252351号公報)。ここで問題となるのは、水洗処理の際、アルカリ、塩化合物と一緒に溶出して来る重金属を含む有害物質の処理方法である。排水中の有害物質については国の基準値が設けられており、一成分でもそれをクリア出来ない排水は放流することは許されないのである。
【0004】
工業排水中に含まれる重金属を、各元素の水酸化物の溶解度が最小となるpHに調整して分別沈殿除去する方法は公知である(例えば、「環境管理設備事典」(株)産業調査会、1985年)。これを、セメント製造装置における抽気ダストの処理に応用したものが、特開平6−157089号公報に開示されている。その中では、抽気ダストを水洗処理した後のスラリー中のカドミウム、鉛を、夫々の水酸化物の溶解度が最小となるpHにおいて沈殿除去する方法および、硫化物等の沈殿促進剤を添加する方法の二つが記載されている。前者の方法では、溶解平衡の存在により、平成5年度に改定された鉛に対する排水基準値である0.1mg/lをクリアーすることは不可能であり、後者の方法では、硫化ソーダ、硫化水素等の沈殿促進剤を添加するため鉛量については排水基準値以下にまで下げることが出来るが、同じく抽気ダスト中に不可避的に含まれるセレン量は、国の排水基準値である0.1mg/l以下にまでは下がらず、実質的に排水を放流することは不可能である。
【0005】
【発明が解決しようとする課題】
本発明は、セメント製造装置において塩素、アルカリ、硫黄の循環を低減するために焼成ガスの一部を抽気した際に抽気ガスに同伴する抽気ダストを水洗処理し、固形分はセメント原料として再利用し、処理液は含まれる有害物質を排水基準値以下まで除去して放流廃棄を可能にする処理方法を提供することを目的とする。除去の困難な鉛、セレンについても、国の基準値である0.1mg/l以下にまで下げる処理方法の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明は、セメント製造装置における焼成炉からの排ガスの一部を抽気してクリンカの塩素、アルカリ量を減少させるセメントの製造方法において、抽気ガスに同伴された抽気ダストに水を加えてスラリー化した後、固液分離する工程、得られた液相にpH調整を行うことなく多硫化カルシウムを添加して溶存する6価セレンを4価に還元する工程、鉄塩を添加しスラリーpH値9.5〜10.5の状態で残存重金属を水酸化鉄と共に沈殿させた後2度目の固液分離を行なう工程より成ることを特徴とする、抽気ダストの処理方法に関する。以下に、本発明を詳細に説明する。
【0007】
【発明の実施の形態】
本発明では、次に示すような適切な還元・沈殿剤とpH調整、沈殿、固液分離を組合せることにより、抽気ダストスラリー中の有害物質の、国で定めた排水
基準値以下までの除去を達成したものである。
(1)第一工程:先ず、抽気ダストスラリーから高pH領域で鉛、セレン以外の溶存金属、および、未溶解重金属塩を含むセメント成分を固液分離で除去する工程。
(2)第二工程:固液分離後の液相に、多硫化カルシウムを添加し、溶存セレンを4価に還元、沈殿させる工程。
(3)第三工程:鉄塩の添加とスラリーpH値を9.5〜10.5に設定する要因とを組み合わせ、溶存する重金属を水酸化鉄と共に共沈させた後、固液分離を行なう工程。
【0008】
第一工程では、抽気ダストを水洗してアルカリ金属塩を溶出させるため、抽気ダストに水を加えてスラリー化する。抽気ダストの主成分は、酸化カルシウムであることから、生成スラリーは高pH値を示すが、除去対象であるアルカリ金属塩は、高pH下でも低減目的には十分な溶解度を示すことと、第二工程の多硫化カルシウムを添加する際のpH値は特に限定されないことから、特別なpH調整は必要でない。
スラリーは、第一回目の固液分離を行なう。
【0009】
第二工程では、固液分離後の液相に多硫化カルシウムを添加し、溶存6価セレンを4価セレンに還元すると共に、還元セレンを他の重金属と共に沈殿させるが、この工程はpH値には大きく依存しないことから、前記した第一工程の固液分離液をそのまま使用することができる。また、次工程における固液分離時に設定するpH値である10付近に設定することもできる。
【0010】
多硫化カルシウムの添加量は、セレン量に依存するが、重量比で溶存セレン量の5倍以上が存在するように設定すれば十分である。
また、多硫化カルシウムは、固体、液体何れの形態のものでも問題なく使用できるが、市販されている27.5質量%水溶液での添加が、入手の容易さ及びハンドリングの容易さから最も好ましい。
ここで得られたスラリーには、固液分離処理を加える必要は無く、そのまま次工程に送ることができる。
【0011】
第三工程では、鉄塩を加えて、溶存セレンと鉛を水酸化鉄と共沈させて除くことを目的としていることから、最終的なスラリーpH値すなわち固液分離時におけるpH値を9.5〜10.5に調整する必要が在る。特に好ましいpH値は、10である。
固液分離時のスラリーpH値がこの範囲に在る条件が満足されれば、pH調整と、鉄塩添加の順序は特に問題とはならない。また、鉄塩添加時のpH値にも特に制限はない。
【0012】
鉄塩は、それが持っている酸化還元機能を利用するものではないことから、第一、第二鉄塩のどちらも使用できるが、第二鉄塩が、溶存セレンの除去効果が高いのに加えて、価格的にも安価であり、より好ましい材料である。また、第二鉄塩としては、最も一般的で安価且つ入手の容易な硫酸第二鉄或いは塩化第二鉄の使用が好ましいことは言うまでもない。
鉄塩の添加量は、1000ppm程度で十分である。前工程が確実に実施されていれば、除去対象である溶存金属量が桁違いに多くなることは起こらないからである。多すぎても、単に無駄であるだけでなく、固液分離に要する時間が大きくなり、好ましくない。
【0013】
第三工程においては、固液分離を行なう前のスラリーに高分子凝集剤を添加することができる。高分子凝集剤は、水酸化鉄を主成分とする沈殿の凝集を促進して固液分離を容易にする効果を示すが、市販のアクリルアミド系の高分子凝集剤が、ノニオン系、カチオン系、アニオン系を問わず有効に使用できる。また、高分子凝集剤は、単独で使用しても、ポリ塩化アルミニウム、硫酸アルミニウム(硫酸バンド)等の無機系の凝集剤と併用しても良い。なお、高分子凝集剤を添加する場合、その添加量は、1〜5ppmで十分である。
【0014】
本発明では、最低2回の固液分離操作を行なうが、固液分離の方法としては、一般に行われている方法例えば、ろ過法、遠心分離法、沈降分離法等を利用することができる。中でも、ろ過法は、分離効率及びコスト面から最も好ましい方法である。
【0015】
第三工程の固液分離で、鉛及びセレン量が排水基準値以下にまで低減された液相は、そのpH値を中性付近にまで低下させた後、放水することができる。
【0016】
【実施例】
以下に具体例を示し、本発明を更に詳細に説明する。
セメント製造装置の窯尻から抽気されたダスト100gに水2000gを加え、10分間攪拌しスラリー化した。生成スラリーのpHは12.8であった。スラリーは、ろ過により固液分離を行ない、得られたろ液中に含まれる鉛及びセレンの含有量は夫々180及び1.7ppmであり、それ以外の重金属の量は、夫々に対して設定されている排水基準値以下であった。
この原水について、以下に述べる方法で鉛及びセレンの除去を検討した。鉛及びセレンの分析は、JISK0102に準じて夫々原子吸光法及び吸光光度法で行なった。検出限界は夫々0,01ppm及び0.002ppmである。
【0017】
上記原水500mlに、所定量の27.5質量%多硫化カルシウム水溶液27.5mgを添加した。次いで、硫酸第二鉄200mgを添加した後、1N稀硫酸を加えてスラリーのpHを10に調整した。生成スラリーを10分間攪拌した後、ろ過を行ない、ろ液中のカドミウム、鉛及びセレンの定量を行なった。夫々の分析値は、鉛については検出限界以下であり、セレンについては、0.037ppmであった。この値は、国の排水基準である0.1ppmをクリアするものである
【0018】
【発明の効果】
本発明の抽気ダストの処理方法を実施すると、水洗処理してアルカリ量、塩素量が低減した固形分はセメント原料としての再利用が可能となり、水洗処理水は、除去が極めて困難な鉛、セレンを含めて有害物質が排水基準値をクリアするまでに除去されて、放流が可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating dust containing harmful substances (hereinafter referred to as extracted dust) that is entrained when a part of a firing gas is extracted in order to reduce the circulation of chlorine, alkali, and sulfur in a cement manufacturing apparatus. It is about.
[0002]
[Prior art]
When cement raw materials with a high chlorine, alkali and sulfur content are used, the amount of chlorine, alkali and sulfur contained in the cement clinker increases, which not only adversely affects the quality of the cement, but chlorine, alkali and sulfur When a compound with high vapor pressure is formed and gasified and circulated in the cement manufacturing equipment, it forms a coating by condensing at a relatively low temperature in the equipment, causing a problem in cement production. ing. In order to solve this problem, a part of the firing gas is extracted from the kiln bottom portion of the cement kiln to reduce the amount of chlorine, alkali, and sulfur circulating in the cement manufacturing apparatus. However, when such calcination gas extraction is performed, extraction dust with a high content of chlorine, alkali, and sulfur is inevitably accompanied, and this dust treatment method becomes a new problem. In other words, extraction dust contains harmful substances regulated by the Water Pollution Control Law such as lead, cadmium, zinc, copper, chromium, manganese, iron, mercury, selenium, and fluorine in addition to chlorine, alkali, and sulfur. If the extracted dust is reclaimed untreated and discarded, it causes environmental pollution. Therefore, it is necessary to treat it with an appropriate method. Also, when dust is not discarded but reused as a cement raw material, it is necessary to return to the raw material system after reducing the amount of alkali and chlorine contained in the dust.
[0003]
Since the alkali and chlorine compounds contained in the extraction dust are water-soluble, it is natural that the water washing treatment is most suitable as a method for removing alkali from the extraction dust and the chlorine removal compound, and is already known ( For example, JP-A-49-86419 and JP-A-62-2252351). The problem here is a method for treating harmful substances including heavy metals that are eluted together with alkalis and salt compounds during the water washing treatment. There are national standards for hazardous substances in wastewater, and wastewater that cannot be cleared even with one component is not allowed to be discharged.
[0004]
A method for separating and removing heavy metals contained in industrial wastewater by adjusting the pH so that the solubility of each element's hydroxide is minimized is known (for example, “Environmental Management Equipment Encyclopedia” Sangyo Kenkyukai Co., Ltd.). 1985). Japanese Laid-Open Patent Publication No. 6-1557089 discloses an application of this to extraction dust extraction in a cement manufacturing apparatus. Among them, a method of precipitating and removing cadmium and lead in the slurry after the extraction dust is washed with water at a pH at which the solubility of each hydroxide is minimized, and a method of adding a precipitation accelerator such as sulfide Two are described. In the former method, it is impossible to clear the 0.1 mg / l effluent standard value for lead revised in 1993 due to the presence of dissolution equilibrium. In the latter method, sodium sulfide, hydrogen sulfide The amount of lead can be reduced to below the effluent standard value due to the addition of a precipitation accelerator such as selenium, but the amount of selenium inevitably contained in the extracted dust is also the national effluent standard value of 0.1 mg / It does not drop below 1 and it is virtually impossible to discharge the waste water.
[0005]
[Problems to be solved by the invention]
In the present invention, in order to reduce the circulation of chlorine, alkali, and sulfur in a cement production apparatus, when a part of the calcination gas is extracted, the extraction dust accompanying the extraction gas is washed with water, and the solid content is reused as a cement raw material. In addition, the treatment liquid has an object to provide a treatment method that enables discharge disposal by removing harmful substances contained in the treatment liquid to below the effluent standard value. An object of the present invention is to provide a treatment method for reducing lead and selenium, which are difficult to remove, to a national standard value of 0.1 mg / l or less.
[0006]
[Means for Solving the Problems]
The present invention relates to a cement manufacturing method for extracting a part of exhaust gas from a firing furnace in a cement manufacturing apparatus to reduce the amount of chlorine and alkali in a clinker, and adding slurry to extraction dust accompanied by extraction gas to form a slurry. After that, the step of solid-liquid separation, the step of reducing the hexavalent selenium dissolved by adding calcium polysulfide without adjusting the pH to the obtained liquid phase, the salt pH value of 9 by adding iron salt The present invention relates to a method for treating bleed dust, comprising the step of precipitating residual heavy metal together with iron hydroxide in a state of 0.5 to 10.5 and then performing a second solid-liquid separation. The present invention is described in detail below.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, by combining appropriate reducing / precipitating agents as shown below, pH adjustment, precipitation, and solid-liquid separation, harmful substances in the extracted dust slurry can be removed to a level equal to or lower than the national wastewater standard value. Is achieved.
(1) First step: First, a step of removing cement components containing lead, dissolved metals other than selenium, and undissolved heavy metal salts from the extracted dust slurry in a high pH region by solid-liquid separation.
(2) Second step: A step of adding calcium polysulfide to the liquid phase after solid-liquid separation, and reducing and precipitating dissolved selenium to tetravalent.
(3) Third step: combining the addition of iron salt and the factor for setting the slurry pH value to 9.5 to 10.5, coprecipitating dissolved heavy metal with iron hydroxide, and then performing solid-liquid separation Process.
[0008]
In the first step, since the extracted dust is washed with water to elute the alkali metal salt, water is added to the extracted dust to form a slurry. Since the main component of the extracted dust is calcium oxide, the resulting slurry exhibits a high pH value, but the alkali metal salt to be removed exhibits sufficient solubility for reduction purposes even under high pH, and Since the pH value when adding the two-stage calcium polysulfide is not particularly limited, no special pH adjustment is necessary.
The slurry undergoes a first solid-liquid separation.
[0009]
In the second step, calcium polysulfide is added to the liquid phase after solid-liquid separation to reduce dissolved hexavalent selenium to tetravalent selenium and precipitate the reduced selenium together with other heavy metals. Does not depend greatly, the solid-liquid separation liquid in the first step can be used as it is. Moreover, it can also set to 10 vicinity which is the pH value set at the time of solid-liquid separation in the next process.
[0010]
The amount of calcium polysulfide added depends on the amount of selenium, but it is sufficient to set it so that there is at least 5 times the amount of dissolved selenium by weight.
Calcium polysulfide can be used in a solid or liquid form without any problem, but addition with a commercially available 27.5% by mass aqueous solution is most preferable from the viewpoint of easy availability and handling.
The slurry obtained here does not need to be subjected to a solid-liquid separation process, and can be sent to the next step as it is.
[0011]
In the third step, iron salt is added to remove dissolved selenium and lead by coprecipitation with iron hydroxide, so that the final slurry pH value, that is, the pH value during solid-liquid separation is set to 9. There is a need to adjust to 5-10.5. A particularly preferred pH value is 10.
If the conditions that the slurry pH value during solid-liquid separation is within this range are satisfied, the order of pH adjustment and iron salt addition is not particularly problematic. Moreover, there is no restriction | limiting in particular also in the pH value at the time of iron salt addition.
[0012]
Since iron salt does not use the redox function that it has, either ferrous or ferric salt can be used, but ferric salt is highly effective in removing dissolved selenium. In addition, it is inexpensive and is a more preferable material. Needless to say, it is preferable to use ferric sulfate or ferric chloride which is the most common, inexpensive and easily available as the ferric salt.
About 1000 ppm is sufficient for the amount of iron salt added. This is because the amount of dissolved metal to be removed does not increase by an order of magnitude if the pre-process is performed reliably. Too much is not preferable because it is not only useless but also increases the time required for solid-liquid separation.
[0013]
In the third step, a polymer flocculant can be added to the slurry before solid-liquid separation. The polymer flocculant has the effect of facilitating the aggregation of precipitates mainly composed of iron hydroxide to facilitate solid-liquid separation. However, commercially available acrylamide-based polymer flocculants are nonionic, cationic, It can be used effectively regardless of anionic type. The polymer flocculant may be used alone or in combination with an inorganic flocculant such as polyaluminum chloride or aluminum sulfate (sulfuric acid band). In addition, when adding a polymer flocculant, 1-5 ppm is sufficient for the addition amount.
[0014]
In the present invention, the solid-liquid separation operation is performed at least twice. As a solid-liquid separation method, a commonly used method such as a filtration method, a centrifugal separation method, a sedimentation separation method, or the like can be used. Among these, the filtration method is the most preferable method from the viewpoint of separation efficiency and cost.
[0015]
The liquid phase in which the amounts of lead and selenium are reduced to below the drainage standard value in the solid-liquid separation in the third step can be discharged after the pH value is lowered to near neutrality.
[0016]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples.
To 100 g of dust extracted from the kiln bottom of the cement manufacturing apparatus, 2000 g of water was added and stirred for 10 minutes to form a slurry. The pH of the product slurry was 12.8. The slurry is subjected to solid-liquid separation by filtration. The content of lead and selenium contained in the obtained filtrate is 180 and 1.7 ppm, respectively, and the amount of the other heavy metals is set for each. It was below the effluent standard value.
For this raw water, removal of lead and selenium was examined by the method described below. The analysis of lead and selenium was carried out by atomic absorption method and absorptiometric method according to JISK0102. The detection limits are 0.01 ppm and 0.002 ppm, respectively.
[0017]
A predetermined amount of 27.5 mg of a 27.5 mass% calcium polysulfide aqueous solution was added to 500 ml of the raw water. Next, 200 mg of ferric sulfate was added, and 1N diluted sulfuric acid was added to adjust the pH of the slurry to 10. The resulting slurry was stirred for 10 minutes and then filtered, and cadmium, lead and selenium in the filtrate were quantified. Each analytical value was below the detection limit for lead and 0.037 ppm for selenium. This value clears the national wastewater standard of 0.1 ppm. [0018]
【The invention's effect】
When the method for treating extracted dust of the present invention is carried out, the solid content whose alkali content and chlorine content have been reduced by washing with water can be reused as a cement raw material. Including toxic substances will be removed by the time the wastewater standard value is cleared, allowing discharge.

Claims (5)

セメント製造装置における焼成炉からの排ガスの一部を抽気してクリンカの塩素、アルカリ量を減少させるセメントの製造方法において、抽気ガスに同伴された抽気ダストに水を加えてスラリー化した後、固液分離する工程、得られた液相にpH調整を行うことなく多硫化カルシウムを添加して溶存する6価セレンを4価に還元する工程、鉄塩を添加しスラリーpH値9.5〜10.5の状態で残存重金属を水酸化鉄と共に沈殿させた後2度目の固液分離を行なう工程より成ることを特徴とする、抽気ダストの処理方法。In a cement manufacturing method in which a portion of the exhaust gas from the firing furnace in a cement manufacturing apparatus is extracted to reduce the amount of chlorine and alkali in the clinker, water is added to the extracted dust accompanied by the extracted gas, Step of liquid separation, Step of reducing dissolved hexavalent selenium to tetravalent by adding calcium polysulfide without adjusting pH to the obtained liquid phase, Adding iron salt to slurry pH value of 9.5-10 A process for treating bleed dust, comprising the step of precipitating residual heavy metal together with iron hydroxide in the state of .5, followed by a second solid-liquid separation. 鉄塩が第二鉄塩であることを特徴とする、請求項1に記載の抽気ダストの処理方法。The method for treating extracted dust according to claim 1, wherein the iron salt is a ferric salt. 残存重金属を水酸化鉄と共に沈殿させる際に、高分子凝集剤を存在させることを特徴とする、請求項1または2に記載の、抽気ダストの処理方法。The method for treating extracted dust according to claim 1 or 2, wherein a polymer flocculant is present when the residual heavy metal is precipitated together with iron hydroxide. 前記多硫化カルシウムの添加量は、重量比で溶存セレン量の5倍以上である請求項1から3のいずれか1項に記載の抽気ダストの処理方法。The processing method of the extraction dust of any one of Claim 1 to 3 whose addition amount of the said calcium polysulfide is 5 times or more of the amount of dissolved selenium by weight ratio. 前記2度目の固液分離を行なった後の固形分をセメント原料として再利用する請求項1から4のいずれか1項に記載の抽気ダストの処理方法。The method for treating extracted dust according to any one of claims 1 to 4, wherein the solid content after the second solid-liquid separation is reused as a cement raw material.
JP2001053784A 2001-02-28 2001-02-28 Cement production equipment extraction dust processing method Expired - Lifetime JP4479116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053784A JP4479116B2 (en) 2001-02-28 2001-02-28 Cement production equipment extraction dust processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053784A JP4479116B2 (en) 2001-02-28 2001-02-28 Cement production equipment extraction dust processing method

Publications (2)

Publication Number Publication Date
JP2002254049A JP2002254049A (en) 2002-09-10
JP4479116B2 true JP4479116B2 (en) 2010-06-09

Family

ID=18914210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053784A Expired - Lifetime JP4479116B2 (en) 2001-02-28 2001-02-28 Cement production equipment extraction dust processing method

Country Status (1)

Country Link
JP (1) JP4479116B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144362B2 (en) * 2004-10-29 2006-12-05 Heritage Environmental Servicers, Llc Method for chemically stabilizing waste materials containing multivalent oxyanions
JP5461789B2 (en) * 2007-06-20 2014-04-02 宇部興産株式会社 Cement-based solidifying material
JP5461790B2 (en) * 2007-06-20 2014-04-02 宇部興産株式会社 Cement-based solidifying material
JP5478846B2 (en) * 2007-07-18 2014-04-23 宇部興産株式会社 Cement composition and cement-based solidifying material
JP5146192B2 (en) * 2008-08-18 2013-02-20 三菱マテリアル株式会社 Operation control method for cement manufacturing apparatus and cement manufacturing apparatus
JP4723624B2 (en) * 2008-09-26 2011-07-13 デンカエンジニアリング株式会社 Disposal of chlorine-containing fine powder waste
JP5206453B2 (en) * 2009-02-03 2013-06-12 宇部興産株式会社 Cement kiln extraction dust processing method
JP5206454B2 (en) * 2009-02-03 2013-06-12 宇部興産株式会社 Cement kiln extraction dust processing method
JP5206455B2 (en) * 2009-02-03 2013-06-12 宇部興産株式会社 Cement kiln extraction dust processing method
NZ605206A (en) 2010-07-02 2014-10-31 Mercutek Llc Cement kiln exhaust gas pollution reduction
JP5894895B2 (en) * 2012-09-27 2016-03-30 三菱マテリアル株式会社 Operation control method for cement manufacturing apparatus and cement manufacturing apparatus

Also Published As

Publication number Publication date
JP2002254049A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
JP4479116B2 (en) Cement production equipment extraction dust processing method
US5089242A (en) Method for selectively separating a non-ferrous metal
EP3733613B1 (en) Wastewater treatment method
JP4042169B2 (en) Cement production equipment extraction dust processing method
JP3625270B2 (en) Waste disposal method
JP3820622B2 (en) Cement production equipment extraction dust processing method
JP4306394B2 (en) Cement kiln extraction dust processing method
JP4306422B2 (en) Cement kiln extraction dust processing method
JP5206453B2 (en) Cement kiln extraction dust processing method
JP5911100B2 (en) Wastewater treatment method
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
EP3733612B1 (en) Wastewater treatment method
JP4306413B2 (en) Cement kiln extraction dust processing method
JP5206455B2 (en) Cement kiln extraction dust processing method
JP2004000962A (en) Process for removal and removing agent of fluorine ion
JP3901191B2 (en) Cement production equipment bleed dust treatment method
JP3794260B2 (en) Waste disposal method
JP5877588B2 (en) Wastewater treatment method
JP5716892B2 (en) Cleaning method of sludge
JP3733452B2 (en) Waste disposal method
KR100376528B1 (en) Wastewater treatment agent for treating fluorine, hexavalent chromium and wastewater treatment method using the same
JP7083782B2 (en) Treatment method of wastewater containing fluorine
JP5206454B2 (en) Cement kiln extraction dust processing method
JP2003164829A (en) Method for treating heavy metal-containing fly ash
JP4026167B2 (en) Waste dehydrated cake processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term