JP2006326462A - Method for recycling ash as cement raw material - Google Patents

Method for recycling ash as cement raw material Download PDF

Info

Publication number
JP2006326462A
JP2006326462A JP2005152453A JP2005152453A JP2006326462A JP 2006326462 A JP2006326462 A JP 2006326462A JP 2005152453 A JP2005152453 A JP 2005152453A JP 2005152453 A JP2005152453 A JP 2005152453A JP 2006326462 A JP2006326462 A JP 2006326462A
Authority
JP
Japan
Prior art keywords
ash
incineration
chlorine
water
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152453A
Other languages
Japanese (ja)
Inventor
Matsutaro Nagasawa
松太郎 長澤
Fumihiko Misumi
文彦 三角
Katsumi Miyata
克美 宮田
Takeshi Nakao
毅 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2005152453A priority Critical patent/JP2006326462A/en
Publication of JP2006326462A publication Critical patent/JP2006326462A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for simply and efficiently removing chlorine included in an incineration residue dug out from final disposal facilities in which the incineration ash, incineration fly ash, molten fly ash and dust incineration residue and the like are embedded, which technique removes water soluble chlorine as well as sparingly soluble chlorine and avoids hindrance to recycling of the residue as cement raw material. <P>SOLUTION: In recycling as the cement raw material by removing chlorine included in the dust incineration residue dug out from the final disposal facilities in which the incineration ash, incineration flying ash, dust incineration residue and the like are embedded, the method for recycling ash as cement raw material is characterized by using an aqueous solution containing a carbonate as cleaned water. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一般廃棄物や産業廃棄物の焼却時に発生する焼却灰、焼却飛灰や溶融飛灰、ならびにごみ焼却残さ等が埋設されている最終処分場より掘り起こされたごみ焼却残さ中に含まれる塩素を除去して、セメント原料として資源化する技術に関する。   The present invention includes incineration ash generated during incineration of general waste and industrial waste, incineration fly ash and molten fly ash, and waste incineration residue excavated from the final disposal site where waste incineration residue is buried. This technology is related to the technology to remove the chlorine and recycle as cement raw material.

一般廃棄物や産業廃棄物の焼却時に発生する焼却灰、焼却飛灰といった焼却残さの大部分は最終処分場にて埋立処分されている。ところが近年、最終処分場の確保が困難となってきており、これらの灰の有効利用が大きな課題となっている。   Most of the incineration residue such as incineration ash and incineration fly ash generated during the incineration of general waste and industrial waste is landfilled at the final disposal site. However, in recent years, it has become difficult to secure a final disposal site, and the effective use of these ashes has become a major issue.

一方、従来の最終処分場には上記の焼却残さのほかにプラスチック類、びん、缶、がれき等の多種多様な廃棄物が無秩序に埋設されている。これら埋立物の中には分別を行えば再生利用が図れるものが多く含まれており、満杯となった最終処分場あるいは現在使用中の最終処分場から再生可能な廃棄物を抽出し、新たな環境負荷を生じさせずに再生することは、資源の有効利用と最終処分場の延命化が同時に図れることから、これら灰類の有効利用のための中間処理技術の開発が望まれている。   On the other hand, in addition to the above-mentioned incineration residue, a wide variety of wastes such as plastics, bottles, cans, and debris are randomly buried in conventional final disposal sites. Many of these landfills can be recycled if they are separated. Recyclable waste is extracted from the final disposal site that is full or the final disposal site currently in use. Recycling without causing environmental impacts can effectively use resources and prolong the life of final disposal sites. Therefore, development of intermediate treatment technology for the effective use of these ashes is desired.

灰類の有効利用方法としては、セメント原料化や山元還元と呼ばれる重金属回収等がある。廃棄物のセメント原料化についてはエコセメントのJISが制定(JIS R5214)されたこともあり、今後ますますセメント製造、特にエコセメント製造において廃棄物の有効利用が図られるものと思われる。しかし焼却灰及び飛灰、選別不燃物中には多量の塩素が残留している。これら焼却残渣をそのままセメント製造に利用しようとすると投入量がかなり限定されることとなるため、脱塩素処理は必須であり、効率的な塩素除去技術が要求される。   As an effective utilization method of ash, there are heavy metal recovery called cement raw material or Yamamoto reduction. Regarding the use of waste as a raw material for cement, JIS Eco-JIS was established (JIS R5214), and it is expected that waste will be used more effectively in cement production, especially eco-cement production. However, a large amount of chlorine remains in incineration ash, fly ash, and sorted incombustibles. If these incineration residues are used as they are for cement production, the input amount is considerably limited. Therefore, dechlorination is essential, and an efficient chlorine removal technique is required.

これら塩素は主に水溶性であるため、脱塩素には水洗浄を行うのが一般的であり、廃棄物中の塩素分を水中に溶出させる技術が知られている。例えば、焼却灰を水で洗浄することにより、塩素を除去した後、セメント原料として利用する技術が提案されている(例えば、特許文献1参照。)。
特開平9―187748号公報
Since these chlorines are mainly water-soluble, washing with water is generally performed for dechlorination, and a technique for eluting the chlorine content in waste into water is known. For example, a technique has been proposed in which incineration ash is washed with water to remove chlorine and then used as a cement raw material (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 9-187748

しかしながら、焼却残さを単純に水で洗浄しただけでは、含有されている塩素の一部分しか溶解せず、また塩素分のうちフリーデル氏塩に代表されるような難水溶性の塩類が存在するため、水洗浄だけでは処理できない。特にごみ焼却残さが埋設されている最終処分場のごみ焼却残さ中の塩素分については雨水により水溶性塩素が洗い流されており、その結果難水溶性塩素の占める割合が高く、水洗浄を行っても脱塩素効果が低いなどの問題を有している。   However, simply washing the incineration residue with water dissolves only a portion of the contained chlorine, and there are poorly water-soluble salts such as Friedel's salt in the chlorine content. It cannot be treated with water washing alone. In particular, the chlorine content in the waste incineration residue at the final disposal site where the waste incineration residue is buried is washed away with water-soluble chlorine by rainwater, and as a result, the proportion of poorly water-soluble chlorine is high. Also have problems such as low dechlorination effect.

本発明は、水溶性塩素だけでなく、難溶性塩素の除去が十分に行われ、灰類のセメント原料化に支障が生じない、簡便で効率の良い塩素除去技術を提供することを目的とする。   An object of the present invention is to provide a simple and efficient chlorine removal technique in which not only water-soluble chlorine but also poorly soluble chlorine is sufficiently removed, and there is no hindrance to ash as a cement raw material. .

本発明者らは、上記課題を解決するために鋭意検討した結果、洗浄水に炭酸塩を添加した水溶液を用いることで、単純な水洗浄よりも焼却灰、焼却飛灰ならびに選別不燃物中の塩素含有量を低減できることを見出し、本発明に到達した。   As a result of diligent studies to solve the above problems, the present inventors have used incinerated ash, incinerated fly ash, and sorted incombustible materials rather than simple water washing by using an aqueous solution in which carbonate is added to washing water. The present inventors have found that the chlorine content can be reduced and have reached the present invention.

すなわち、本発明は、焼却灰、焼却飛灰、溶融飛灰及びごみ焼却残さが埋設されている最終処分場より掘り起こされたごみ焼却残さ、からなる群から選ばれる一種以上の灰類に洗浄水を添加し、該灰類に含まれる塩素を除去して、セメント原料とする方法において、洗浄水として炭酸塩を含む水溶液を用いることを特徴とする灰類のセメント原料化方法を要旨とするものである。   That is, the present invention relates to washing water for at least one ash selected from the group consisting of incineration ash, incineration fly ash, molten fly ash, and waste incineration residue excavated from a final disposal site where waste incineration residue is embedded. In the method of adding chlorine and removing chlorine contained in the ash to obtain a cement raw material, the gist of the method for converting the ash into a cement raw material, using an aqueous solution containing carbonate as washing water It is.

本発明によれば、炭酸塩を添加した水溶液を用いて洗浄することで得られる上記灰類中の塩素含有濃度を効果的に除去することができる。すなわち、焼却灰、焼却飛灰、溶融飛灰ならびにごみ焼却残さ等が埋設されている最終処分場より掘り起こされたごみ焼却残さ中の塩素を効果的に分離することができ、固液分離後に得られる水洗残さをセメント原料として資源化することが可能となる。   According to the present invention, the chlorine-containing concentration in the ash obtained by washing with an aqueous solution to which carbonate has been added can be effectively removed. In other words, chlorine in the incineration residue excavated from the final disposal site where incineration ash, incineration fly ash, molten fly ash and waste incineration residue are buried can be effectively separated and obtained after solid-liquid separation. It becomes possible to recycle the washed residue as a raw material for cement.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においてセメント原料化の対象となる灰類は、焼却灰、焼却飛灰、溶融飛灰又はごみ焼却残さが埋設されている最終処分場より掘り起こされたごみ焼却残さである。焼却灰とは、一般廃棄物や産業廃棄物を焼却炉で焼却した際に生ずる灰をいい、焼却飛灰とは、一般廃棄物や産業廃棄物の焼却時に発生する酸性ガスを処理した際に生ずる灰をいい、溶融飛灰とは、焼却灰や焼却飛灰の溶融時に発生する酸性ガスを処理した際に生ずる灰を指す。   In the present invention, the ash to be used as a raw material for cement is incineration ash, incineration fly ash, molten fly ash, or waste incineration residue excavated from a final disposal site where waste incineration residue is buried. Incineration ash refers to ash produced when incineration of general waste and industrial waste in an incinerator. Incineration fly ash refers to the treatment of acid gas generated during incineration of general waste and industrial waste. The generated ash is referred to as molten fly ash. The molten fly ash refers to the ash produced when the incinerated ash or the acid gas generated when the incinerated fly ash is melted is treated.

また、ごみ焼却残さ等が埋設されている最終処分場より掘り起こされたごみ焼却残さとは、最終処分場を掘り起こした際に発生する掘り起こし廃棄物を、約100mmの粗選別および磁力選別を行い、鉄類が除去された100mm以下の部分を乾燥後、振動ふるいおよび手選別を行い、最終的に焼却残さを含む土砂類、可燃物+プラスチック類、ビン・カン類、石・ガレキ類に分別して得られるもののうちの一つである。   In addition, the waste incineration residue excavated from the final disposal site where waste incineration residue etc. is buried is roughly 100 mm of coarse and magnetic sorting of the excavated waste generated when the final disposal site is excavated, After drying the portion of 100mm or less from which iron has been removed, perform vibration sieving and manual sorting, and finally sort it into earth and sand, combustibles + plastics, bottles / cans, stones / rubbles, including incineration residue It is one of those obtained.

本発明においては、これらのうちから選択される一種以上のものであればよく、複数の灰類が混合されたものであってもよい。   In the present invention, one or more selected from these may be used, and a mixture of a plurality of ashes may be used.

本発明においては、上記灰類に、洗浄水を添加し混合して灰類に含まれる塩素を洗浄水に溶出させるのであるが、洗浄水として炭酸塩を含む水溶液を用いることを特徴としている。   In the present invention, washing water is added to and mixed with the ash to elute chlorine contained in the ash into the washing water, and an aqueous solution containing carbonate is used as the washing water.

本発明に用いる炭酸塩としては、炭酸アンモニウム、炭酸カリウム、炭酸カリウムナトリウム、炭酸ナトリウム、炭酸リチウム、炭酸水素アンモニウム、炭酸水素カリウム、炭酸水素ナトリウムが挙げられる。この中で、炭酸ナトリウムが反応当量およびコストの点から好ましい。   Examples of the carbonate used in the present invention include ammonium carbonate, potassium carbonate, potassium carbonate sodium, sodium carbonate, lithium carbonate, ammonium hydrogen carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate. Among these, sodium carbonate is preferable from the viewpoint of reaction equivalent and cost.

炭酸塩の添加量は、洗浄対象物100質量部に対し、0.1〜10質量部となるように水溶液に添加することが好ましく、特に1〜5質量部が好ましい。添加量が0.1質量部未満であると、塩素除去効果が不十分であり、10質量部を超えると炭酸塩の薬剤コストが大きくなるので好ましくない。   The addition amount of the carbonate is preferably added to the aqueous solution so as to be 0.1 to 10 parts by mass, particularly 1 to 5 parts by mass with respect to 100 parts by mass of the cleaning object. If the addition amount is less than 0.1 parts by mass, the effect of removing chlorine is insufficient, and if it exceeds 10 parts by mass, the chemical cost of carbonate increases, which is not preferable.

炭酸イオンはフリーデル氏塩等の難溶性の塩素を分解し、可溶化させる効果を持つことが知られている。本発明ではこの原理を利用し、水洗浄のみでは溶出させることが出来なかった塩素分をさらに洗浄水側に溶出させることが出来るものと考えられる。   It is known that carbonate ions have the effect of decomposing and solubilizing poorly soluble chlorine such as Friedel's salt. In the present invention, using this principle, it is considered that the chlorine component that could not be eluted by water washing alone can be further eluted to the washing water side.

本発明において、炭酸塩を含む洗浄水の添加量は、洗浄対象物と洗浄水との固液比は、洗浄対象物の湿重量:洗浄水の容量=1:1〜1:30が好ましく、特に1:2〜1:10が好ましい。1:1未満の場合は混合および塩素溶解が困難となり、1:30を超える場合は設備容量および排水処理の負担が大きくなるので好ましくない。   In the present invention, the amount of washing water containing carbonate is preferably such that the solid-liquid ratio between the washing object and the washing water is the wet weight of the washing object: the capacity of the washing water = 1: 1 to 1:30. Particularly preferred is 1: 2 to 1:10. If it is less than 1: 1, mixing and chlorine dissolution become difficult, and if it exceeds 1:30, the equipment capacity and the wastewater treatment burden increase, which is not preferable.

本発明においては、以上のようにして炭酸塩を含む洗浄水を添加することにより、不燃物のpHはおよそ10〜11程度になる。   In the present invention, the pH of the incombustible material becomes about 10 to 11 by adding the washing water containing carbonate as described above.

本発明における混合方法は、洗浄水を加えた後、浸漬洗浄や機械撹拌を用いて洗浄操作を行う。機械撹拌を用いる場合はいずれの手段でもよく、例えば回転式撹拌機を用いて10分〜2時間撹拌を行ってもよい。また超音波洗浄や磨砕洗浄のような物理洗浄を促進する手段を用いてもよい。   In the mixing method of the present invention, after washing water is added, washing operation is performed using immersion washing or mechanical stirring. When using mechanical stirring, any means may be used, for example, stirring may be performed for 10 minutes to 2 hours using a rotary stirrer. Also, means for promoting physical cleaning such as ultrasonic cleaning and grinding cleaning may be used.

本発明においては塩素除去効果を上げるために、洗浄水の温度を30〜100℃に設定するのが好ましく、さらに好ましくは40〜80℃である。操作としては、洗浄水が所定の液温となるように恒温水槽を用いて温度調整を行えばよい。   In the present invention, the temperature of the washing water is preferably set to 30 to 100 ° C., more preferably 40 to 80 ° C., in order to increase the chlorine removal effect. As an operation, the temperature may be adjusted using a constant temperature water bath so that the washing water has a predetermined liquid temperature.

本発明においては洗浄水の添加・混合後、次に脱水を行い、水洗ろ液と水洗残さとに分離する。脱水する手段としてはどのような方法でもよく、例えば、重力沈降分離や遠心分離、ベルトプレスなどが用いられる。   In the present invention, after addition and mixing of the washing water, dehydration is then performed to separate the washing filtrate and the washing residue. Any method may be used as a means for dewatering, for example, gravity sedimentation separation, centrifugation, belt press, or the like is used.

本発明においては塩素除去効果を上げるために、多段式洗浄を用いてもよく、例えば、まず浸漬洗浄あるいはその他の方法による第一洗浄を行い、固液分離後に得られた水洗残さに対し、浸漬洗浄あるいはその他の方法による第二洗浄を行い、その後脱水を行ってもよい。   In the present invention, in order to increase the chlorine removal effect, multi-stage cleaning may be used. For example, first cleaning by immersion cleaning or other methods is performed first, and the water washing residue obtained after solid-liquid separation is immersed. You may perform washing | cleaning or the 2nd washing | cleaning by the other method, and may perform dehydration after that.

なお、洗浄後発生する水洗ろ液については既存の排水処理により、微量重金属類の除去が行われたのち、中和処理し系外へ放流するか、または濃縮晶析などにより、塩回収を行ってもよい。   For the washing filtrate generated after washing, trace heavy metals are removed by existing wastewater treatment, and then neutralized and discharged to the outside of the system, or salt recovery is performed by concentrated crystallization, etc. May be.

本発明により塩素が除去された洗浄残さは、乾燥および粉砕により、水分量と粒度の調整が行われた後、搬出され、セメント原料として用いられる。洗浄処理後の塩素濃度は低ければ低いほどよいが、できるだけJIS規格のセメント原料の塩素含有許容量である350ppm以下とした方が好ましい。塩素濃度が少なくなるほど、この洗浄処理により得られた物質がセメント原料の一部に代替えされる割合が増加する。   The cleaning residue from which chlorine has been removed according to the present invention is adjusted by adjusting the amount of water and the particle size by drying and pulverization, and is then transported and used as a cement raw material. The lower the chlorine concentration after the cleaning treatment, the better. However, it is preferable that the chlorine content of the JIS standard cement raw material is 350 ppm or less as much as possible. As the chlorine concentration decreases, the rate at which the material obtained by this cleaning process is replaced with a portion of the cement raw material increases.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

本実施例において、塩素含有量は、振盪抽出法とアルカリ溶融法により測定した。   In this example, the chlorine content was measured by a shaking extraction method and an alkali melting method.

振盪抽出法は、試料1重量部に対し、水100重量部を加えて振盪抽出操作を行い、抽出液をチオシアン酸水銀(II)吸光光度法による測定を行い、得られた値を塩素量とした。   In the shake extraction method, 100 parts by weight of water is added to 1 part by weight of the sample and shake extraction is performed. The extract is measured by the mercury (II) thiocyanate absorptiometry, and the obtained value is used as the chlorine content. did.

アルカリ溶融法は、試料に所定量の炭酸カリウムナトリウムを加えて900℃でアルカリ溶融し、溶融物をチオシアン酸水銀(II) 吸光光度法による測定を行い、得られた値を塩素量とした。   In the alkali melting method, a predetermined amount of potassium sodium carbonate was added to a sample and the mixture was alkali-melted at 900 ° C., the melt was measured by mercury (II) thiocyanate absorptiometry, and the obtained value was used as the amount of chlorine.

2通りの塩素含有量測定を行うのは、難水溶性塩素含有量をアルカリ溶融法による塩素含有量と振盪抽出法による塩素含有量の差と定義し、以降説明する洗浄による難水溶性塩素濃度の除去効果を知ることが目的である。   The two types of chlorine content measurements are defined as the poorly water-soluble chlorine content defined as the difference between the chlorine content by the alkali melting method and the chlorine content by the shaking extraction method, and the poorly water-soluble chlorine concentration by washing described below The purpose is to know the removal effect.

実施例1
選別焼却残さ(1)として、塩素含有濃度が5,060mg/kg-dry(振盪抽出法)、5,200mg/kg-dry(アルカリ溶融法)を含む、某最終処分場を掘り起こして発生する掘り起こし廃棄物を選別して得られる焼却残さ40.0g(湿量)に炭酸ナトリウム0.4gを添加した水溶液120mL(固液比1:3)を洗浄水として加え、小型攪拌機により120rpm、1時間撹拌を行なった。撹拌終了後、固液分離を行い、塩素含有濃度が745mg/kg-dry(振盪抽出法)、1,245mg/kg-dry(アルカリ溶融法)の水洗残さ(1)として26.2g(乾量)と塩素含有濃度が824mg/Lの水洗ろ液(1)として101mLを得た。
Example 1
Distilled waste generated by excavating the final disposal site, including chlorine incineration residue (1) with chlorine content of 5,060mg / kg-dry (shaking extraction method) and 5,200mg / kg-dry (alkaline melting method) 120 mL of aqueous solution (solid-liquid ratio 1: 3) in which 0.4 g of sodium carbonate was added to 40.0 g (wet amount) of the incineration residue obtained by screening the was added as washing water, and the mixture was stirred with a small stirrer at 120 rpm for 1 hour. After stirring, solid-liquid separation was performed, and the water content was 26.2 g (dry weight) as a residue of water (1) with a chlorine content of 745 mg / kg-dry (shaking extraction method) and 1,245 mg / kg-dry (alkali melting method). 101 mL of water washing filtrate (1) having a chlorine-containing concentration of 824 mg / L was obtained.

実施例2
実施例1と同じ選別焼却残さ(1)の40.0g(湿量)に炭酸ナトリウム2.0gを添加した水溶液120mL(固液比1:3)を洗浄水として加え、超音波細胞破砕装置で出力20ワット、小型攪拌機による撹拌120rpm、および恒温水槽を用いて混合洗浄時の温度を80℃に調整して1時間超音波+撹拌+高温度水洗浄を行った。撹拌終了後、固液分離を行い、塩素含有濃度が675mg/kg-dry(振盪抽出法)、1,100mg/kg-dry(アルカリ溶融法)の水洗残さ(2)として28.6g(乾量)と塩素含有濃度が953mg/Lの水洗ろ液(2)として88.5mLを得た。
Example 2
120 mL of an aqueous solution in which 2.0 g of sodium carbonate was added to 40.0 g (wet amount) of the same sorted incineration residue (1) as in Example 1 (solid-liquid ratio 1: 3) was added as washing water, and output by an ultrasonic cell crusher 20 The temperature at the time of mixing and washing was adjusted to 80 ° C. by using Watt, stirring with a small stirrer 120 rpm, and a constant temperature water bath, and ultrasonic wave + stirring + high temperature water washing was performed for 1 hour. After the stirring, solid-liquid separation is performed, and the water content is 28.6g (dry weight) as a residue (2) with chlorine content of 675mg / kg-dry (shaking extraction method) and 1,100mg / kg-dry (alkali melting method). 88.5 mL was obtained as a water-washed filtrate (2) having a chlorine-containing concentration of 953 mg / L.

比較例1
実施例1と同じ選別焼却残さ(1)の40.0g(湿量)に水120mL(固液比1:3)を加え、炭酸ナトリウムは添加せずに小型攪拌機により120rpm、1時間撹拌を行う。撹拌終了後、固液分離を行い、塩素含有濃度が1,040mg/kg-dry(振盪抽出法)、1,605mg/kg-dry(アルカリ溶融法)の水洗残さ(3)として25.4g(乾量)と塩素含有濃度が768mg/Lの水洗ろ液(3)として102mLを得た。
Comparative Example 1
120 mL of water (solid-liquid ratio 1: 3) is added to 40.0 g (wet amount) of the same incineration residue (1) as in Example 1, and stirring is performed at 120 rpm for 1 hour with a small stirrer without adding sodium carbonate. After stirring, solid-liquid separation is performed, and 25.4 g (dry weight) of water-washing residue (3) with a chlorine-containing concentration of 1,040 mg / kg-dry (shaking extraction method) and 1,605 mg / kg-dry (alkali melting method) And 102 mL was obtained as a water-washing filtrate (3) whose chlorine content concentration is 768 mg / L.

比較例2
実施例2と同じ選別焼却残さ(1)の40.0gに水120mL(固液比1:3)を加え、炭酸ナトリウムは添加せずに超音波細胞破砕装置で出力20ワット、小型攪拌機による撹拌120rpm、および恒温水槽を用いて混合洗浄時の温度を80℃に調整して1時間超音波+撹拌+高温度水洗浄を行った。撹拌終了後、固液分離を行い、塩素含有濃度が950mg/kg-dry(振盪抽出法)、1,465mg/kg-dry(アルカリ溶融法)の水洗残さ(4)として27.4g(乾量)と塩素含有濃度が872mg/Lの水洗ろ液(4)として90.8mLを得た。
Comparative Example 2
120 mL of water (solid-liquid ratio 1: 3) was added to 40.0 g of the same incineration residue (1) as in Example 2, and the output was 20 watts with an ultrasonic cell crusher without adding sodium carbonate, and stirring with a small stirrer was 120 rpm. And the temperature at the time of mixed washing was adjusted to 80 ° C. using a constant temperature water bath, and ultrasonic wave + stirring + high temperature water washing was performed for 1 hour. After stirring, solid-liquid separation was performed, and the water content was 27.4g (dry weight) as a residue (4) with a chlorine content of 950mg / kg-dry (shaking extraction method) and 1,465mg / kg-dry (alkali melting method). 90.8 mL was obtained as a water-washed filtrate (4) having a chlorine-containing concentration of 872 mg / L.

実施例1、2で得られた水洗残さ(1)、(2)および比較例1、2で得られた水洗残さ(3)、(4)についての塩素含有量および実施例1、2および比較例1、2での水洗ろ液中の塩素含有濃度について表1に示す。   Chlorine content and Example 1, 2 and comparison for water washing residue (1), (2) obtained in Examples 1, 2 and water washing residue (3), (4) obtained in Comparative Examples 1, 2 It shows in Table 1 about the chlorine containing density | concentration in the water washing filtrate in Example 1,2.

表1から、比較例1における水洗残さ中の塩素含有濃度は1,040mg/kg-dry(振盪抽出法)、1,605mg/kg-dry(アルカリ溶融法)、水洗ろ液中の塩素含有濃度は768mg/Lであり、これに対し、実施例1で得られる水洗残さ中の塩素含有濃度は745mg/kg-dry(振盪抽出法)、1,245mg/kg-dty(アルカリ溶融法)、水洗ろ液中の塩素含有濃度は824mg/Lとなり、炭酸塩を加えて洗浄することで塩素除去が効果的に行われていることがわかる。また実施例2のように超音波洗浄と高温度水洗浄を付加することにより、水洗残さ中の塩素含有濃度は675mg/kg-dry(振盪抽出法)、1,100mg/kg-dty(アルカリ溶融法)、水洗ろ液中の塩素含有濃度は953mg/Lとなり塩素除去効果が上がることがわかる。 From Table 1, the chlorine content concentration in the washing residue in Comparative Example 1 is 1,040 mg / kg-dry (shaking extraction method), 1,605 mg / kg-dry (alkaline melting method), and the chlorine content concentration in the water washing filtrate is 768 mg. On the other hand, the chlorine concentration in the washing residue obtained in Example 1 is 745 mg / kg-dry (shaking extraction method), 1,245 mg / kg-dty (alkaline melting method), and in the washing filtrate. The chlorine concentration of 824mg / L is 824mg / L, and it can be seen that chlorine removal is effectively performed by adding carbonate and washing. Moreover, by adding ultrasonic cleaning and high-temperature water cleaning as in Example 2, the chlorine content concentration in the water washing residue is 675 mg / kg-dry (shaking extraction method), 1,100 mg / kg-dty (alkali melting method) ), The chlorine content in the water wash filtrate is 953 mg / L, indicating that the chlorine removal effect is improved.

振盪抽出法とアルカリ溶融法における水洗残さ中の塩素含有濃度分析結果の差について、比較例1および2では565〜875mg/kg-dryであり、これに対し実施例1および2では425〜500mg/kg-dryであり、難水溶性塩素分の除去も効果的に行われていることがわかる。   About the difference of the chlorine concentration analysis result in the washing residue in the shaking extraction method and the alkali melting method, it is 565 to 875 mg / kg-dry in Comparative Examples 1 and 2, whereas in Examples 1 and 2, it is 425 to 500 mg / kg. It is kg-dry, and it can be seen that the removal of poorly water-soluble chlorine is also effectively carried out.

以上より、洗浄水として炭酸塩を添加した水溶液を用いて洗浄することにより、水溶性の塩素分だけでなく、難水溶性の塩素分も除去できることがわかる。この結果、得られたセメント原料の塩素含有濃度をさらに低減することができる。よって、この洗浄処理により得られた物質を、より大きな割合で、通常のセメント原料の一部に置き換えることが可能となる。   From the above, it can be seen that not only water-soluble chlorine but also poorly water-soluble chlorine can be removed by washing with an aqueous solution to which carbonate is added as washing water. As a result, the chlorine content concentration of the obtained cement raw material can be further reduced. Therefore, it becomes possible to replace the substance obtained by this cleaning treatment with a part of a normal cement raw material at a larger ratio.

Claims (1)

焼却灰、焼却飛灰、溶融飛灰及びごみ焼却残さが埋設されている最終処分場より掘り起こされたごみ焼却残さ、からなる群から選ばれる一種以上の灰類に洗浄水を添加し、該灰類に含まれる塩素を除去して、セメント原料とする方法において、洗浄水として炭酸塩を含む水溶液を用いることを特徴とする灰類のセメント原料化方法。
Wash water is added to at least one ash selected from the group consisting of incineration ash, incineration fly ash, molten fly ash, and waste incineration residue excavated from the final disposal site where waste incineration residue is buried, and the ash A method for converting ash into a cement raw material, wherein an aqueous solution containing carbonate is used as cleaning water in a method of removing chlorine contained in a shell to obtain a cement raw material.
JP2005152453A 2005-05-25 2005-05-25 Method for recycling ash as cement raw material Pending JP2006326462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152453A JP2006326462A (en) 2005-05-25 2005-05-25 Method for recycling ash as cement raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152453A JP2006326462A (en) 2005-05-25 2005-05-25 Method for recycling ash as cement raw material

Publications (1)

Publication Number Publication Date
JP2006326462A true JP2006326462A (en) 2006-12-07

Family

ID=37548752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152453A Pending JP2006326462A (en) 2005-05-25 2005-05-25 Method for recycling ash as cement raw material

Country Status (1)

Country Link
JP (1) JP2006326462A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090173A (en) * 2007-10-04 2009-04-30 Mhi Environment Engineering Co Ltd Water-washing treatment method/system of incineration ash
JP2009119407A (en) * 2007-11-16 2009-06-04 Kurita Water Ind Ltd Desalinization accelerator of ash and desalinization method of the ash
JP2009233610A (en) * 2008-03-27 2009-10-15 Taiheiyo Cement Corp Treatment method for incineration residue
JP2010051922A (en) * 2008-08-29 2010-03-11 Nippon Mining & Metals Co Ltd Method of treating waste incineration treatment debris
JP2012115767A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for washing sludge
CN104588390A (en) * 2014-12-01 2015-05-06 同济大学 Method for performing dechlorination on fly ash by utilizing residual sludge
CN104926167A (en) * 2015-05-21 2015-09-23 天津城建大学 Method for consolidating waste incineration fly ash heavy metal through microorganism cement mineralization
JP2016137431A (en) * 2015-01-27 2016-08-04 株式会社タクマ Apparatus and method for treating fly ash
JP2019089040A (en) * 2017-11-16 2019-06-13 公立大学法人北九州市立大学 Friedel's salt removal method and Friedel's salt removal system
CN114918236A (en) * 2022-05-11 2022-08-19 山东大学 Waste incineration fly ash washing reaction device, treatment system and method
CN115228885A (en) * 2022-06-24 2022-10-25 深圳华明环保科技有限公司 Method for treating fly ash generated by waste incineration

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090173A (en) * 2007-10-04 2009-04-30 Mhi Environment Engineering Co Ltd Water-washing treatment method/system of incineration ash
JP2009119407A (en) * 2007-11-16 2009-06-04 Kurita Water Ind Ltd Desalinization accelerator of ash and desalinization method of the ash
JP2009233610A (en) * 2008-03-27 2009-10-15 Taiheiyo Cement Corp Treatment method for incineration residue
JP2010051922A (en) * 2008-08-29 2010-03-11 Nippon Mining & Metals Co Ltd Method of treating waste incineration treatment debris
JP2012115767A (en) * 2010-11-30 2012-06-21 Mitsubishi Materials Corp Method for washing sludge
CN104588390A (en) * 2014-12-01 2015-05-06 同济大学 Method for performing dechlorination on fly ash by utilizing residual sludge
JP2016137431A (en) * 2015-01-27 2016-08-04 株式会社タクマ Apparatus and method for treating fly ash
CN104926167A (en) * 2015-05-21 2015-09-23 天津城建大学 Method for consolidating waste incineration fly ash heavy metal through microorganism cement mineralization
JP2019089040A (en) * 2017-11-16 2019-06-13 公立大学法人北九州市立大学 Friedel's salt removal method and Friedel's salt removal system
JP6989844B2 (en) 2017-11-16 2022-01-12 公立大学法人北九州市立大学 Friedel salt removal method and Friedel salt removal system
CN114918236A (en) * 2022-05-11 2022-08-19 山东大学 Waste incineration fly ash washing reaction device, treatment system and method
CN114918236B (en) * 2022-05-11 2023-12-19 山东大学 Waste incineration fly ash washing reaction device, treatment system and method
CN115228885A (en) * 2022-06-24 2022-10-25 深圳华明环保科技有限公司 Method for treating fly ash generated by waste incineration

Similar Documents

Publication Publication Date Title
JP2006326462A (en) Method for recycling ash as cement raw material
US10118182B2 (en) Incineration byproduct processing and methods
JP4438329B2 (en) Method for treating waste containing organic matter
US20120298562A1 (en) Ash processing and metals recovery systems and methods
Fedje et al. Zinc recovery from Waste-to-Energy fly ash–A pilot test study
JP3368372B2 (en) Method for converting incinerated ash into cement raw material
JP2006015190A (en) Method for treating fly ash
US20040146440A1 (en) Method for spent potliner processing separating and recycling the products therefrom
JP2007069066A (en) Method for treating fly ash
JP2007069185A (en) Method for washing inorganic matter
JP5761544B1 (en) Method and apparatus for desalinating chlorine-containing ash
JP2009202077A (en) Method for water-flushing dust
JP2020110739A (en) Method for converting refuse incineration ashes to resources and apparatus for converting to resources thereof
JP5359197B2 (en) Waste chromium removal method and chromium removal apparatus
JP2004130199A (en) Method and system for repairing heavy metal-polluted soil
US20140056796A1 (en) Processing of waste incineration ashes
JP2013166135A (en) Method and apparatus for treating dust containing chlorine
JP2003334510A (en) Chlorine removing treatment method for molten fly ash
JP3178252B2 (en) Metal recovery from fly ash
JP3851206B2 (en) Fly ash treatment method
WO1998024938A1 (en) Extraction of metals from heavy metal-bearing wastes
JP2670417B2 (en) Recycling treatment method of incinerator ash of stalker type incinerator for waste
JP2011183305A (en) Method of treating incineration ash
JPH11300331A (en) Production of sand vsing waste incineration residue as raw material
JP2006272163A (en) Waste separation recovery device and recovery method