JP5761544B1 - Method and apparatus for desalinating chlorine-containing ash - Google Patents

Method and apparatus for desalinating chlorine-containing ash Download PDF

Info

Publication number
JP5761544B1
JP5761544B1 JP2014212930A JP2014212930A JP5761544B1 JP 5761544 B1 JP5761544 B1 JP 5761544B1 JP 2014212930 A JP2014212930 A JP 2014212930A JP 2014212930 A JP2014212930 A JP 2014212930A JP 5761544 B1 JP5761544 B1 JP 5761544B1
Authority
JP
Japan
Prior art keywords
slurry
fine
chlorine
ash
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014212930A
Other languages
Japanese (ja)
Other versions
JP2016077976A (en
Inventor
大輔 原口
大輔 原口
林 浩志
浩志 林
達哉 矢島
達哉 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014212930A priority Critical patent/JP5761544B1/en
Application granted granted Critical
Publication of JP5761544B1 publication Critical patent/JP5761544B1/en
Publication of JP2016077976A publication Critical patent/JP2016077976A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

【課題】高い脱塩効果を達成し、セメント原料または焼成骨材原料に適する洗浄灰を回収することができる脱塩処理方法と脱塩処理装置を提供する。【解決手段】塩素含有灰に洗浄水を加えて初期スラリーにして塩素を水に浸出する初期洗浄工程と、該初期スラリーに高分子凝集剤を加えて凝集フロックを沈降分離させて初期濃縮スラリーを形成する初期濃縮工程と、該初期濃縮スラリーを加水した後に湿式サイクロンを用いて細粒スラリーと粗粒スラリーに分離する分級工程と、さらに該細粒スラリーに高分子凝集剤を加えて細粒凝集フロックを沈降分離させて細粒濃縮スラリーを形成する細粒濃縮工程と、該細粒濃縮スラリーを脱水洗浄して細粒洗浄灰を回収する工程と、上記粗粒スラリーを脱水洗浄して粗粒洗浄灰を回収する工程を有することを特徴とする塩素含有灰の脱塩処理方法および脱塩処理装置。【選択図】図1A desalination treatment method and a desalination treatment apparatus capable of achieving a high desalting effect and capable of recovering washing ash suitable for a cement raw material or a fired aggregate raw material. An initial washing step in which washing water is added to chlorine-containing ash to form an initial slurry, and chlorine is leached into water, and a polymer flocculant is added to the initial slurry to precipitate and separate agglomerated flocs to obtain an initial concentrated slurry. An initial concentration step to be formed, a classification step in which the initial concentrated slurry is hydrated and then separated into a fine slurry and a coarse slurry using a wet cyclone, and a polymer flocculant is added to the fine slurry to further fine agglomerate A fine-grain concentration step in which flocs are settled to form a fine-grained concentrated slurry; a step in which the fine-grained concentrated slurry is dehydrated and washed to collect fine-grained washed ash; A method for desalinating chlorine-containing ash and an apparatus for desalinating, characterized by comprising a step of collecting washing ash. [Selection] Figure 1

Description

本発明は、塩素含有灰の脱塩技術方法に係り、特に都市ごみや産業廃棄物の焼却炉から排出される焼却灰(主灰、飛灰、燃え殻、煤塵)、埋め立て処分場からの掘り起こし焼却灰、またはセメント工場から発生する塩素バイパスダスト等の塩素濃度の高い焼却灰を少量の洗浄水で効率よく脱塩処理する技術に関する。本発明の脱塩処理技術は塩素濃度の高い焼却灰等をセメント原料として利用できるように脱塩することができる。なお、本発明において、塩素含有灰は、都市ごみや産業廃棄物の焼却施設から排出される焼却灰(主灰、飛灰、燃え殻、煤塵)、埋め立て処分場からの掘り起こし焼却灰、セメント工場から発生する塩素バイパスダストの何れか一種またはこれらの混合物を意味する。   The present invention relates to a method for desalinating chlorine-containing ash, and in particular, incineration ash (main ash, fly ash, burning husk, dust) discharged from an incinerator for municipal waste and industrial waste, and incineration from a landfill site. The present invention relates to a technology for efficiently desalting incineration ash having a high chlorine concentration such as ash or chlorine bypass dust generated from a cement factory with a small amount of washing water. The desalination treatment technique of the present invention can desalinate so that incinerated ash having a high chlorine concentration can be used as a cement raw material. In the present invention, the chlorine-containing ash is incinerated ash (main ash, fly ash, burning husk, dust) discharged from municipal incineration facilities and industrial waste incineration facilities, excavated incineration ash from landfill sites, and from cement factories. It means any one kind of chlorine bypass dust generated or a mixture thereof.

都市ごみや産業廃棄物の中間処理によって発生する焼却灰は、従来は埋め立て処分、あるいは溶融処理して減容化した後に埋め立て処分される。しかしながら、既存の埋め立て処分場の拡張や新規処分場の建設は、環境規制や近隣住民との合意が得られない等の社会的な要因から困難な状況にある。セメントは、カルシウム、ケイ素、アルミニウム、鉄などの酸化物が主成分であり、これらを含む廃棄物はセメント原料として活用することができる。高炉スラグや石炭灰など種々の廃棄物がセメント原料として積極的に利用されている。都市ごみ、産業廃棄物を中間処理したときに発生する焼却灰についても、セメント原料として活用されつつある。   Conventionally, incineration ash generated by intermediate treatment of municipal waste and industrial waste is landfilled or landfilled after melting and volume reduction. However, expansion of existing landfill sites and construction of new landfill sites are difficult due to social factors such as environmental regulations and lack of agreement with neighboring residents. Cement is mainly composed of oxides such as calcium, silicon, aluminum and iron, and waste containing these can be used as a cement raw material. Various wastes such as blast furnace slag and coal ash are actively used as raw materials for cement. Incinerated ash generated during the intermediate treatment of municipal waste and industrial waste is also being used as a raw material for cement.

しかし、都市ごみ、産業廃棄物などの焼却灰には高濃度の塩素が含まれているため、セメント原料として利用すると生成するセメントも塩素を大量に含むことになる。セメント中に塩素が大量に含まれている場合には、鉄筋が腐食しやすくなるので、鉄筋コンクリートの耐久性が低下する。JIS規格(JIS R 5210)では、普通ポルトランドセメント中の塩素含有量を350ppm以下と規定している。一方、焼却灰には1〜25wt%程度の塩素が含まれている。焼却灰のような高濃度に塩素を含むものをセメントの原料として活用しようとすると、ごく少量しか使うことができない。埋め立て処分場の再生工事で発生する掘り起こし灰、セメント工場から発生する塩素バイパスダストをセメント原料に活用するときにも同様の問題が生じる。   However, incineration ash such as municipal waste and industrial waste contains high concentrations of chlorine, so the cement produced when used as a cement raw material also contains a large amount of chlorine. When a large amount of chlorine is contained in the cement, the reinforcing bars are easily corroded, so that the durability of the reinforced concrete is lowered. The JIS standard (JIS R 5210) stipulates that the chlorine content in ordinary Portland cement is 350 ppm or less. On the other hand, incineration ash contains about 1 to 25 wt% of chlorine. When trying to use a high concentration of chlorine such as incinerated ash as a raw material for cement, only a very small amount can be used. The same problem arises when digging ash generated in reclamation works at landfill sites and chlorine bypass dust generated from cement factories are used as cement raw materials.

そこで、焼却灰のように塩素濃度の高い廃棄物を脱塩する方法として水浸出による湿式脱塩法が知られている。塩素含有灰を水洗すると、塩素等の可溶成分は水中に溶解するため、洗浄後の灰の塩素濃度は減少する。洗浄灰の塩素濃度を十分に下げることで、セメント原料として大量に活用することができる。同様の湿式脱塩処理により、塩素含有灰を焼成骨材の原料として活用することもできる。また、同様の湿式脱塩処理は塩素含有灰を溶融処理するときの前処理とすることができる。   Therefore, a wet desalting method using water leaching is known as a method for desalting wastes having a high chlorine concentration such as incinerated ash. When the chlorine-containing ash is washed with water, soluble components such as chlorine are dissolved in water, so that the chlorine concentration of the washed ash decreases. By sufficiently reducing the chlorine concentration of the washing ash, it can be used in large quantities as a cement raw material. Chlorine-containing ash can also be used as a raw material for calcined aggregate by the same wet desalting treatment. Moreover, the same wet desalting process can be used as a pretreatment when the chlorine-containing ash is melt-processed.

しかし高塩素濃度の灰スラリーを一段の洗浄処理で脱塩し、固液分離して洗浄灰を回収しようとすると、洗浄灰の脱塩率が低く、あるいは洗浄灰の塩素濃度のばらつきが大きいためセメント原料に適さないことが多い。また、洗浄排水の塩素濃度は数g/L、しばしば10g/L以上になるので設備の金属腐食を起こしやすく、またカルシウムなどの金属イオンも高濃度に含むため配管や設備にスケールを生成したり、固液分離に使用する濾布の閉塞を生じやすいなど、装置に対する負担も大きいなどの問題が生じる。   However, when desalting high-chlorine ash slurry by one-step washing process and collecting the liquid and washing ash by solid-liquid separation, the desalination rate of the washing ash is low, or the variation in the chlorine concentration of the washing ash is large. Often not suitable for cement materials. In addition, the chlorine concentration in the washing wastewater is several g / L, often 10 g / L or more, so it is easy to cause metal corrosion of the equipment. Also, it contains high concentrations of metal ions such as calcium, so scales can be generated in piping and equipment. In addition, there is a problem that the load on the apparatus is large, such as the filter cloth used for solid-liquid separation being easily blocked.

このような問題を避けるため、塩素含有廃棄物の処理方法として以下の方法が知られている。
(イ) 焼却灰と水を混合撹拌し、摩砕してスラリー化した後に水簸で粗粒と細粒に分級し、細粒スラリーに酸を添加して脱塩する方法(特許文献1)。
(ロ) 焼却灰を、篩や湿式サイクロンを用いて粗粒と細粒に分級した後、粗粒は水洗浄し、細粒は水洗浄と共に化学的あるいは物理的に洗浄して脱塩する方法(特許文献2)。
(ハ) 焼却灰と水の混合と脱水を繰り返して焼却灰を洗浄し、一次洗浄と二次洗浄の間に遠心分離を行い、固形分の湿潤灰の含水率が60wt%以下になるまで脱水して高塩素濃度の洗浄水を分離して脱塩する方法(特許文献3)。
In order to avoid such problems, the following methods are known as methods for treating chlorine-containing waste.
(Ii) A method of mixing and stirring incinerated ash and water, grinding and slurrying, classifying into coarse and fine particles with a water tank, and adding an acid to the fine-grained slurry for desalting (Patent Document 1) .
(B) A method in which incinerated ash is classified into coarse and fine particles using a sieve or wet cyclone, then the coarse particles are washed with water, and the fine particles are washed with water and chemically or physically washed for desalting. (Patent Document 2).
(C) Repeated mixing and dehydration of incineration ash and water to wash the incineration ash, performing centrifugation between the primary and secondary washings, and dehydrating until the moisture content of the solid wet ash is 60 wt% or less Then, a method of separating and desalting the washing water having a high chlorine concentration (Patent Document 3).

特許第5561326号公報Japanese Patent No. 5561326 特許第4937074号公報Japanese Patent No. 4937004 特許第3818924号公報Japanese Patent No. 3818924

特許文献1および特許文献2の脱塩方法は、焼却灰を水で粗洗浄した後に撹拌混合などにより一次洗浄し、湿式サイクロンもしくは水簸によって、細粒スラリーと粗粒スラリーに分級し、それぞれ水洗浄、あるいは酸添加などによる化学的洗浄によって二次的洗浄を行っている。しかし、これらの方法では分級後も各々のスラリー液中の塩素濃度は一次洗浄時の液性と変わらず、液中の塩素濃度は数g/L以上〜10g/L以上と高いままである。そのため、水や薬剤を添加し二次洗浄を実施しても塩素の浸出が抑制され、十分な脱塩ができず、また脱塩を促進するための水量や薬剤量が増大する。   In the desalting methods of Patent Document 1 and Patent Document 2, the incineration ash is roughly washed with water and then primary washed by stirring and mixing, etc., and classified into fine slurry and coarse slurry by a wet cyclone or water tank, Secondary cleaning is performed by chemical cleaning such as cleaning or acid addition. However, in these methods, the chlorine concentration in each slurry liquid remains the same as the liquidity at the time of primary cleaning even after classification, and the chlorine concentration in the liquid remains as high as several g / L to 10 g / L. Therefore, even if water and chemicals are added and secondary cleaning is performed, leaching of chlorine is suppressed, sufficient desalting cannot be performed, and the amount of water and chemicals for promoting desalting increases.

また、特許文献1の方法では、細粒と粗粒の湿式分級に水簸を用いているが、水簸は粒子の粒子径差や沈降速度差を利用しているため、灰粒子どうしがフロック状の凝集塊を形成していると、灰粒子の本来の粒度分布とは異なる分級が行われてしまい、分級効率が低下する問題がある。さらに、特許文献2の方法では、分級および脱塩洗浄の手段として湿式サイクロンを用いる例を示しているが、サイクロン内部の滞留時間は数秒と非常に短時間であるため、水への塩素の浸出は不十分である。また、湿式サイクロンは灰と水が十分に混合してスラリー化していないと分級効率が低下する。   In addition, in the method of Patent Document 1, elutriation is used for wet classification of fine grains and coarse grains. However, elutriation uses differences in particle diameter and sedimentation speed, so that ash particles are flocked. If a flocculated aggregate is formed, classification different from the original particle size distribution of the ash particles is performed, and there is a problem that classification efficiency is lowered. Furthermore, although the method of Patent Document 2 shows an example in which a wet cyclone is used as a means for classification and desalting and washing, since the residence time inside the cyclone is a very short time of several seconds, the leaching of chlorine into water Is insufficient. In addition, the classification efficiency of the wet cyclone is reduced unless the ash and water are sufficiently mixed and slurried.

特許文献3の脱塩方法は、一次洗浄と二次洗浄の間に遠心分離を行い、固形分の湿潤灰の含水率が60wt%以下になるまで脱水して高塩素濃度の洗浄水を分離しているが、含水率60wt%以下の湿潤灰は固く圧搾されたケーキ状であるため、再懸濁して脱塩洗浄するためには細かく解砕する必要がある。解砕が足りないと二次洗浄以降の脱塩効率が低下する。さらに、含水率60wt%以下の湿潤灰を再懸濁するために羽根車を用いた強撹拌装置を用いているが、羽根車の摩耗などによりランニングコストが増大する。   In the desalting method of Patent Document 3, centrifugal separation is performed between the primary washing and the secondary washing, and dehydration is performed until the water content of the wet ash in the solid content is 60 wt% or less to separate the washing water having a high chlorine concentration. However, since the wet ash having a water content of 60 wt% or less is in the form of a hard-pressed cake, it is necessary to pulverize it finely in order to resuspend and demineralize it. If the crushing is insufficient, the desalting efficiency after the secondary washing will decrease. Furthermore, although a strong stirring device using an impeller is used to resuspend wet ash having a water content of 60 wt% or less, running costs increase due to wear of the impeller and the like.

本発明の脱塩処理方法は、従来の上記方法における問題を克服したものであり、塩素含有灰に水を加えたスラリーを所定時間撹拌して脱塩洗浄を行い、該スラリーに高分子凝集剤を加えて凝集フロックを沈降分離させて濃縮スラリーを形成するスラリー濃縮工程を行い、次に、このように形成した濃縮スラリーを粗粒スラリーと細粒スラリーに分離する分級工程を組み合わせることによって、高い脱塩効果を達成し、セメント原料に適する洗浄灰を回収することができる脱塩処理方法と脱塩処理装置を提供する。   The desalinization treatment method of the present invention overcomes the problems in the conventional method described above, and a slurry obtained by adding water to chlorine-containing ash is stirred for a predetermined time to perform desalting washing, and the slurry is polymer flocculant. Is added to separate the aggregated flocs by sedimentation and form a concentrated slurry, and then, the combined slurry is separated into a coarse slurry and a fine slurry, and then combined with a classification step for separating the concentrated slurry. Provided are a desalting method and a desalting apparatus that can achieve a desalting effect and can recover washing ash suitable for a cement raw material.

本発明によれば、上記課題の解決手段として、以下の構成を有する脱塩処理方法が提供される。
〔1〕塩素含有灰に洗浄水を加えて初期スラリーにして塩素を水に浸出する初期洗浄工程と、該初期スラリーに高分子凝集剤を加えて凝集フロックを沈降分離させて初期濃縮スラリーを形成すると共に該塩素含有灰の塩素を一次上澄水に移行させる初期濃縮工程と、該初期濃縮スラリーを加水した後に湿式サイクロンを用いて細粒スラリーと粗粒スラリーに分離する分級工程と、さらに該細粒スラリーに高分子凝集剤を加えて細粒凝集フロックを沈降分離させて細粒濃縮スラリーを形成すると共に該細粒の塩素を二次上澄水に移行させる細粒濃縮工程とを有し、上記初期濃縮工程の一次上澄水および上記細粒濃縮工程の二次上澄水を排水して脱塩すると共に、上記細粒濃縮スラリーを脱水洗浄して脱塩した細粒洗浄灰を回収する工程と、上記粗粒スラリーを脱水洗浄して脱塩した粗粒洗浄灰を回収する工程を有することを特徴とする塩素含有灰の脱塩処理方法。
〔2〕塩素含有灰に洗浄水を加えて固形分濃度30〜300g/Lの初期スラリーにし、該初期スラリーに高分子凝集剤を添加して固形分濃度が該初期スラリーの2倍以上に濃縮した初期濃縮スラリーと、一次上澄水とに分離し、該一次上澄水に塩素含有灰に含まれる塩素量の40〜90%を移行させて系外に除去する上記[1]に記載する塩素含有灰の脱塩処理方法。
〔3〕初期濃縮スラリーに洗浄水を加えて固形分濃度10〜150g/Lの希釈スラリーにし、該希釈スラリーを湿式サイクロンに導入して、50%粒子径が30μm以上〜1000μm以下の粗粒を含む粗粒スラリーと、50%粒子径が30μm未満の細粒を含む細粒スラリーとに分級する上記[1]または上記[2]に記載する塩素含有灰の脱塩処理方法。
〔4〕細粒スラリーに高分子凝集剤を添加して細粒灰を沈降分離させて固形分濃度が該細粒スラリーの2倍以上に濃縮した細粒濃縮スラリーと、二次上澄水とに分離し、該二次上澄水に塩素含有灰に含まれる塩素量の5〜60%を移行させて系外に除去し、該細粒濃縮スラリーを回収する上記[1]〜上記[3]の何れかに記載する塩素含有灰の脱塩処理方法。
〔5〕回収した細粒濃縮スラリーを脱水洗浄して、処理開始時の塩素含有灰に含まれる塩素量を1/2〜1/60に低減した細粒洗浄灰を回収する上記[1]〜上記[4]の何れかに記載する塩素含有灰の脱塩処理方法。
〔6〕粗粒スラリーを洗浄し固液分離して、処理開始時の塩素含有灰に含まれる塩素量を1/2〜1/100に低減した粗粒洗浄灰を回収する上記[1]〜上記[4]の何れかに記載する塩素含有灰の脱塩処理方法。
〔7〕希釈スラリーを湿式サイクロンに導入して細粒スラリーと粗粒スラリーに分級する工程を複数回行う上記[1]〜上記[6]の何れかに記載する塩素含有灰の脱塩処理方法。
〔8〕希釈スラリーを湿式サイクロンに導入して一次細粒スラリーと一次粗粒スラリーに分級し、該一次粗粒スラリーに洗浄水を加えて固形分濃度10〜150g/Lの二次希釈スラリーにし、該二次希釈スラリーを再び湿式サイクロンに導入して二次細粒スラリーと二次粗粒スラリーに分級し、該二次細粒スラリーと上記一次細粒スラリーを混合して総細粒スラリーにし、該総細粒スラリーに高分子凝集剤を加え、細粒を沈降させて細粒濃縮スラリーにする上記[7]に記載する塩素含有灰の脱塩処理方法。
〔9〕粗粒洗浄灰および細粒洗浄灰を回収してセメント原料として用いる上記[1]〜上記[8]の何れかに記載する塩素含有灰の脱塩処理方法。
〔10〕都市ごみの中間処理から発生する主灰および飛灰、産業廃棄物の中間処理から発生する燃え殻および煤塵、埋め立て処分場の再生工事で発生する掘り起こし灰、またはセメント工場から発生する塩素バイパスダストを処理する上記[1]〜上記[9]の何れかに記載する塩素含有灰の脱塩処理方法。
According to the present invention, a desalting treatment method having the following configuration is provided as a means for solving the above problems.
[1] An initial washing process in which washing water is added to chlorine-containing ash to form an initial slurry, and chlorine is leached into water, and a polymer flocculant is added to the initial slurry to precipitate and separate the aggregated floc to form an initial concentrated slurry. An initial concentration step of transferring chlorine of the chlorine-containing ash to the primary supernatant, a classification step of adding the initial concentrated slurry to water and then separating it into a fine slurry and a coarse slurry using a wet cyclone, and and a fine concentration step of shifting the said sub grains chlorine on the secondary supernatant water to form a fine particle concentrate slurry by adding a polymer flocculant to the settling of the fine flocs in the grain slurry, the Draining and desalting the primary supernatant water of the initial concentration step and the secondary supernatant water of the fine particle concentration step, and dewatering and washing the fine particle concentrated slurry to recover the desalted fine particle washed ash; the above Desalting method chlorine-containing ash and having a step of recovering the coarse cleaning ash desalted dehydrated washed particle slurry.
[2] Add washing water to the chlorine-containing ash to make an initial slurry with a solid content concentration of 30 to 300 g / L, add a polymer flocculant to the initial slurry and concentrate the solid content concentration to more than twice that of the initial slurry. The initial concentration slurry is separated into primary supernatant water, and 40 to 90% of the chlorine content contained in the chlorine-containing ash is transferred to the primary supernatant water and removed out of the system. Ash desalting method.
[3] Washing water is added to the initial concentrated slurry to form a diluted slurry having a solid content concentration of 10 to 150 g / L, and the diluted slurry is introduced into a wet cyclone to obtain coarse particles having a 50% particle size of 30 μm to 1000 μm. The chlorine-containing ash desalting method according to the above [1] or [2], wherein the coarse slurry is classified into a coarse slurry containing and a fine slurry containing fine particles having a 50% particle diameter of less than 30 μm .
[4] Add a polymer flocculant to the fine-grain slurry to precipitate and separate fine-grain ash, and concentrate the fine-grained slurry to a concentration of solids more than twice that of the fine-grain slurry, and secondary supernatant water. The above-mentioned [1] to [3] are separated and transferred to the secondary supernatant to transfer 5 to 60% of the amount of chlorine contained in the chlorine-containing ash and remove it outside the system, and recover the fine-grained concentrated slurry. A method for desalinating chlorine-containing ash according to any one of the above.
[5] The recovered fine-grained concentrated slurry is dewatered and washed, and the fine-grained washed ash in which the amount of chlorine contained in the chlorine-containing ash at the start of treatment is reduced to 1/2 to 1/60 is collected. The method for desalinating chlorine-containing ash according to any one of [4] above.
[6] The [1] to [1] to recover the coarse-grained ash in which the coarse-grain slurry is washed and solid-liquid separated to reduce the amount of chlorine contained in the chlorine-containing ash at the start of the treatment to 1/2 to 1/100 The method for desalinating chlorine-containing ash according to any one of [4] above.
[7] The method for desalinating chlorine-containing ash according to any one of [1] to [6], wherein the step of introducing the diluted slurry into a wet cyclone and classifying the slurry into a fine slurry and a coarse slurry is performed a plurality of times. .
[8] The diluted slurry is introduced into a wet cyclone and classified into a primary fine slurry and a primary coarse slurry, and washing water is added to the primary coarse slurry to obtain a secondary diluted slurry having a solid content concentration of 10 to 150 g / L. The secondary diluted slurry is again introduced into the wet cyclone and classified into a secondary fine slurry and a secondary coarse slurry, and the secondary fine slurry and the primary fine slurry are mixed to obtain a total fine slurry. The method for desalinating chlorine-containing ash as described in [7] above, wherein a polymer flocculant is added to the total fine particle slurry to precipitate the fine particles to obtain a fine particle concentrated slurry.
[9] The method for desalinating chlorine-containing ash according to any one of [1] to [8] above, wherein the coarse washed ash and the fine washed ash are collected and used as a cement raw material.
[10] Main ash and fly ash generated from the intermediate treatment of municipal waste, burning husks and dust generated from the intermediate treatment of industrial waste, excavated ash generated from reclamation work at landfill sites, or chlorine bypass generated from cement factories The method for desalinating chlorine-containing ash according to any one of [1] to [9] above, wherein the dust is treated.

また、本発明によれば、以下の構成を有する脱塩処理装置が提供される。
〔11〕塩素含有灰に洗浄水を加えて初期スラリーにして塩素を水に浸出する手段、該初期スラリーを撹拌する手段、該初期スラリーに高分子凝集剤を添加する手段、凝集フロックを沈降分離させて初期濃縮スラリーを形成すると共に該塩素含有灰の塩素を一次上澄水に移行させて上澄水と分離する手段、該上澄水を系外に除去する手段、該初期濃縮スラリーに洗浄水を加えて希釈スラリーにする手段、該希釈スラリーを細粒スラリーと粗粒スラリーに分級する湿式サイクロン、該細粒スラリーに高分子凝集剤を加えて細粒を沈降分離させて細粒濃縮スラリーを形成すると共に該細粒の塩素を上澄水に移行させて上澄水と分離する手段、該細粒濃縮スラリーを脱水洗浄して脱塩した細粒洗浄灰を回収する手段、上記粗粒スラリーを脱水洗浄して脱塩した粗粒洗浄灰を回収する手段を備えることを特徴とする塩素含有灰の脱塩処理装置。
Moreover, according to this invention, the desalination processing apparatus which has the following structures is provided.
[11] Means for adding washing water to chlorine-containing ash to form an initial slurry, leaching chlorine into water, means for stirring the initial slurry, means for adding a polymer flocculant to the initial slurry, and separating and separating the aggregated floc Forming an initial concentrated slurry , transferring chlorine from the chlorine-containing ash to the primary supernatant water, separating the supernatant from the supernatant water, removing the supernatant water from the system, and adding washing water to the initial concentrated slurry. Means for forming a diluted slurry, a wet cyclone for classifying the diluted slurry into a fine slurry and a coarse slurry, and adding a polymer flocculant to the fine slurry to precipitate and separate the fine particles to form a fine concentrated slurry . means for separating the upper supernatant water by migrating said sub grains chlorine above supernatant water, means for recovering fine cleaning ash desalted dehydrated washed said sub grain concentrated slurry, the coarse particle slurry was dehydrated washed with Desalination apparatus chlorine-containing ash, characterized in that it comprises means for recovering desalted coarse cleaning ashes.

〔具体的な説明〕
本発明の脱塩処理方法は、塩素含有灰に洗浄水を加えて初期スラリーにして塩素を水に浸出する初期洗浄工程と、該初期スラリーに高分子凝集剤を加えてスラリー中の灰粒子を凝集フロックとして沈降分離させて初期濃縮スラリーを形成する初期濃縮工程と、該初期濃縮スラリーを湿式サイクロンによって細粒スラリーと粗粒スラリーに分離する分級工程と、さらに該細粒スラリーに高分子凝集剤を加えて細粒凝集フロックを沈降分離させて細粒濃縮スラリーを形成する細粒濃縮工程と、該細粒濃縮スラリーを脱水洗浄して細粒洗浄灰を回収する工程と、上記粗粒スラリーを脱水洗浄して粗粒洗浄灰を回収する工程を有することを特徴とする塩素含有灰の脱塩処理方法である。
本発明の脱塩処理方法の工程図を図1〜図4に示す。
[Specific description]
The desalination treatment method of the present invention includes an initial washing step of adding washing water to chlorine-containing ash to form an initial slurry and leaching chlorine into water, and adding a polymer flocculant to the initial slurry to remove ash particles in the slurry. An initial concentration step in which an initial concentrated slurry is formed by settling and separating as an aggregate floc, a classification step in which the initial concentrated slurry is separated into a fine slurry and a coarse slurry by a wet cyclone, and a polymer flocculant in the fine slurry The fine-grained aggregated flocs are settled and separated to form a fine-grained concentrated slurry, the fine-grained concentrated slurry is dehydrated and washed to recover the fine-grained washed ash, and the coarse-grained slurry is A method for desalinating chlorine-containing ash, comprising a step of dewatering and washing to collect coarse-grained washed ash.
1 to 4 show process diagrams of the desalting method of the present invention.

〔初期洗浄工程〕
本発明の脱塩処理方法は、最初の工程として、塩素含有灰に洗浄水を加えて混合槽に導き、所定時間撹拌し、初期スラリーにして塩素を水に浸出させる(初期洗浄工程)。洗浄水量は、後段の沈降分離において塩素含有灰に含まれる塩素量の40〜90%を上澄水に移行させる水量が好ましく、具体的には、例えば固形分濃度30〜300g/Lのスラリーにするのが好ましい。この固形分濃度にするには、概ね、処理開始時の塩素含有灰重量の2倍量〜20倍量の洗浄水を加えると良い。スラリーの水分量がこれより少ないと、塩素含有灰に含まれている塩素を水に溶解するのが不十分になる。またスラリーの水分量がこれより多いと沈降分離槽の上澄水の水量が多くなるので、排水処理の負担が過大になる。初期洗浄は、一般的な化学装置で用いられるような撹拌装置付きの角型または円筒型の完全混合槽、あるいは回転ドラム式混合槽を用いることができる。完全混合槽は1つの槽でもよいし、複数の槽を直列または並列に配置してもよい。回転ドラム式混合槽は、スラリーをそのまま撹拌してもよいし、あるいはボール状やロッド状の粉砕媒体をいれてもよい。塩素含有灰に粒子径5〜20mm以上の灰とは性状の異なる異物が混入しているときには、ふるい分けあるいは磁選してあらかじめ除去するとよい。
[Initial cleaning process]
In the desalination treatment method of the present invention, as the first step, washing water is added to the chlorine-containing ash, guided to a mixing tank, stirred for a predetermined time, and leached into water as an initial slurry (initial washing step). The amount of washing water is preferably an amount of water that transfers 40 to 90% of the amount of chlorine contained in the chlorine-containing ash to the supernatant water in the subsequent sedimentation separation. Specifically, for example, a slurry with a solid content concentration of 30 to 300 g / L is used. Is preferred. In order to obtain this solid content concentration, it is generally preferable to add 2 to 20 times as much washing water as the chlorine-containing ash weight at the start of the treatment. If the water content of the slurry is less than this, it will be insufficient to dissolve chlorine contained in the chlorine-containing ash in water. If the amount of water in the slurry is greater than this, the amount of supernatant water in the sedimentation tank increases, and the burden of wastewater treatment becomes excessive. For the initial cleaning, a square or cylindrical complete mixing tank with a stirrer used in a general chemical apparatus, or a rotating drum type mixing tank can be used. The complete mixing tank may be one tank, or a plurality of tanks may be arranged in series or in parallel. In the rotating drum type mixing tank, the slurry may be stirred as it is, or a ball-shaped or rod-shaped grinding medium may be added. When foreign substances having different properties from those of ash having a particle diameter of 5 to 20 mm or more are mixed in the chlorine-containing ash, it may be removed in advance by screening or magnetic separation.

〔初期濃縮工程〕
該初期スラリーに高分子凝集剤を加えてスラリー中の灰粒子を凝集フロックとして沈降分離させ、初期濃縮スラリーを形成する(初期濃縮工程)。例えば、高分子凝集剤を加えた初期スラリーを沈降分離槽に導いて灰粒子を沈降分離させ、初期濃縮スラリーを形成する。固形分濃度が該初期スラリーの2倍以上に濃縮したスラリーにするのが好ましい。例えば、初期スラリーの固形分濃度が60g/Lのものは300g/L程度に濃縮し、初期スラリーの固形分濃度が30g/Lのものは250g/L以上に濃縮するのが好ましい。なお、通常、スラリーの固形分濃度を400g/L以上に濃縮するには沈降時間が長時間になり、また配管内の閉塞も起こりやすくなるため、実操業では固形分濃度の上限を400g/L程度にして濃縮を行うのが好ましい。
[Initial concentration step]
A polymer flocculant is added to the initial slurry, and the ash particles in the slurry are settled and separated as agglomerated flocs to form an initial concentrated slurry (initial concentration step). For example, the initial slurry to which the polymer flocculant is added is guided to a sedimentation separation tank to separate and separate the ash particles, thereby forming an initial concentrated slurry. It is preferable that the slurry has a solid content concentration concentrated to at least twice that of the initial slurry. For example, when the initial slurry has a solid content of 60 g / L, it is preferably concentrated to about 300 g / L, and when the initial slurry has a solid content of 30 g / L, it is preferably concentrated to 250 g / L or more. Normally, the concentration of the solid content of the slurry to 400 g / L or more requires a long sedimentation time, and blockage in the pipe is likely to occur. Therefore, in actual operation, the upper limit of the solid content concentration is 400 g / L. It is preferable to carry out the concentration to a degree.

スラリーを濃縮することによって、濃縮した灰に含まれる塩素が洗浄水に浸出しやすくなる。スラリーの固形分濃度を該初期スラリーの2倍以上に濃縮することによって、塩素含有灰に含まれる塩素量の概ね40〜90%を一次上澄水に移行させて、系外に排出させることができる。沈降分離槽では槽底の初期濃縮スラリーとその上側の一次上澄水に分離し、該一次上澄水には塩素やカルシウムが多量に浸出しているので、該一次上澄水を系外に除去し、上記初期濃縮スラリーを沈降分離槽から抜き出す。   By concentrating the slurry, the chlorine contained in the concentrated ash is easily leached into the washing water. By concentrating the solid content concentration of the slurry to more than twice that of the initial slurry, approximately 40 to 90% of the amount of chlorine contained in the chlorine-containing ash can be transferred to the primary supernatant and discharged out of the system. . In the sedimentation separation tank, it is separated into the initial concentrated slurry at the bottom of the tank and the primary supernatant water above it, and since the primary supernatant water is leached in large quantities of chlorine and calcium, the primary supernatant is removed from the system, The initial concentrated slurry is extracted from the sedimentation tank.

〔分級工程〕
沈降分離槽から抜き出した初期濃縮スラリーに洗浄水を加えて希釈スラリーにする。希釈スラリーの固形分濃度は10〜150g/Lが好ましい。この固形分濃度にするには、概ね、スラリーの0.5倍量〜40倍量の洗浄水を初期濃縮スラリーに加えると良い。希釈スラリーの水分量がこれより少ないと、スラリーの粘性が大きくなるので流動状態が不良なり粗粒と細粒の分級が難くなる。一方、希釈スラリーの水分量がこれより多いと後工程の細粒濃縮工程における沈降分離の負担が過大になる。
[Classification process]
Washing water is added to the initial concentrated slurry extracted from the settling tank to form a diluted slurry. The solid content concentration of the diluted slurry is preferably 10 to 150 g / L. In order to achieve this solid content concentration, it is generally preferable to add 0.5 to 40 times the amount of the washing water to the initial concentrated slurry. If the amount of water in the diluted slurry is less than this, the viscosity of the slurry increases, so that the flow state becomes poor and classification of coarse particles and fine particles becomes difficult. On the other hand, if the amount of water in the diluted slurry is larger than this, the burden of sedimentation separation in the subsequent fine-grain concentration step becomes excessive.

上記希釈スラリーを湿式サイクロンに導入して粗粒スラリーと細粒スラリーとに分級する。該希釈スラリー中の灰粒子は、高分子凝集剤の架橋作用によって多数の粒子どうしが高次に凝集したフロックを形成している。このため通常の水簸や篩分けを行うと、凝集フロックの粒径サイズに応じた分級が行われるため、本来の灰粒子の粒度分布とは異なる分級結果になる。一方、湿式サイクロンではその遠心力による剪断ストレスによって高分子凝集剤による架橋結合が切断され、一次粒子に分散させる効果があるため、灰粒子の粒度分布に対応する分級結果が得られやすい。   The diluted slurry is introduced into a wet cyclone and classified into a coarse slurry and a fine slurry. The ash particles in the diluted slurry form a floc in which a large number of particles are aggregated in a higher order due to the crosslinking action of the polymer flocculant. For this reason, when performing normal elutriation or sieving, classification according to the particle size of the aggregated flocs is performed, resulting in a classification result different from the original particle size distribution of the ash particles. On the other hand, the wet cyclone has an effect of breaking the cross-linking bond by the polymer flocculant due to the shear stress due to the centrifugal force and dispersing it in the primary particles, so that a classification result corresponding to the particle size distribution of the ash particles is easily obtained.

分級は、50%粒子径30μm以上〜1000μm以下の粗粒を含む粗粒スラリーと50%粒子径が30μm未満の細粒を含む細粒スラリーとに分級するのが好ましい。ここで50%径粒子とは、粒子の体積粒度分布の積算重量割合の分布曲線において、50%を示す粒子径である。一般的に細粒に塩素が濃縮しやすいため、粗粒灰に比べて、細粒灰の塩素濃度の方が高い。希釈スラリーを細粒スラリーと粗粒スラリーに分級することによって、細粒スラリーに塩素を多く移行させ、粗粒スラリーの塩素濃度を低減することができる。粗粒と細粒に分級する基準の粒子径(分級径と云う)は30μm〜100μmが好ましく、より好ましくは30μm〜80μmが望ましい。分級径がこの範囲より小さいと、精密な分級を実施しなければならないため湿式サイクロンの処理流量が低下したり、湿式サイクロンの多段処理を行わなければならないことから、灰重量当たりの処理コストが上がる。一方、分級基準の粒子径がこの範囲より大きいと細粒スラリーに移行する粒子の分配率が高くなりすぎ、後段にある細粒スラリーの固液分離設備への負荷が大きくなる。特に最適な分級基準の粒子径は、塩素含有灰の粒度分布および細粒洗浄灰と固形洗浄灰の重量分配比を考慮して決定するとよい。細粒洗浄灰と固形洗浄灰の重量分配比が1:1前後〜1:3前後となるような分級径が好ましく、より好ましくは、1:1前後となるような分級径が望ましい。分級径は、粒子の遠心力に影響を及ぼす因子、例えばサイクロン内径あるいはサイクロンへのスラリー流量を増減することによって調整することができる。
The classification is preferably performed into a coarse slurry containing coarse particles having a 50% particle size of 30 μm or more and 1000 μm or less and a fine slurry containing fine particles having a 50% particle size of less than 30 μm . Here, the 50% diameter particle is a particle diameter indicating 50% in the distribution curve of the cumulative weight ratio of the volume particle size distribution of the particles. In general, the chlorine concentration of fine ash is higher than that of coarse ash because chlorine tends to be concentrated in fine particles. By classifying the diluted slurry into a fine slurry and a coarse slurry, a large amount of chlorine can be transferred to the fine slurry, and the chlorine concentration of the coarse slurry can be reduced. The standard particle diameter (referred to as a classified diameter) for classification into coarse and fine particles is preferably 30 μm to 100 μm, more preferably 30 μm to 80 μm. If the classification diameter is smaller than this range, precise classification must be performed, so that the treatment flow rate of the wet cyclone must be reduced and the multistage treatment of the wet cyclone must be performed, which increases the treatment cost per ash weight. . On the other hand, if the particle diameter based on classification is larger than this range, the distribution ratio of the particles transferred to the fine slurry becomes too high, and the load on the solid-liquid separation facility for the fine slurry in the subsequent stage becomes large. In particular, the optimum particle size for classification may be determined in consideration of the particle size distribution of the chlorine-containing ash and the weight distribution ratio of the fine-grained washing ash and the solid washing ash. The classification diameter is preferably such that the weight distribution ratio of the fine-grain washing ash and the solid washing ash is about 1: 1 to about 1: 3, and more preferably the classification diameter is about 1: 1. The classification diameter can be adjusted by increasing or decreasing the factor that affects the centrifugal force of the particles, for example, the cyclone inner diameter or the slurry flow rate to the cyclone.

〔細粒濃縮工程〕
細粒スラリーを抜き出して高分子凝集剤を添加し、細粒灰を沈降分離させて細粒濃縮スラリーにする(細粒濃縮工程)。例えば、高分子凝集剤を加えた細粒スラリーを沈降分離槽に導いて細粒灰を凝集フロックとして沈降分離させ、細粒濃縮スラリーを形成する。固形分濃度が細粒スラリーの2倍以上に濃縮したスラリーにするのが好ましい。
[Fine grain concentration process]
A fine-grain slurry is extracted and a polymer flocculant is added, and fine-grained ash is settled and separated into a fine-grain concentrated slurry (fine-grain concentration step). For example, a fine particle slurry to which a polymer flocculant is added is guided to a settling tank, and fine ash is precipitated and separated as agglomerated flocs to form a fine particle concentrated slurry. It is preferable to use a slurry in which the solid concentration is more than twice that of the fine slurry.

スラリーを濃縮することによって、細粒灰に含まれていた塩素を上澄液として系外に排出することができる。スラリーの固形分濃度を該細粒スラリーの2倍以上に濃縮することによって、焼却灰に含まれる塩素量の概ね5〜60%を二次上澄水に移行させて、系外に排出させることができる。沈降分離槽では槽底の細粒濃縮スラリーとその上側の二次上澄水に分離し、該二次上澄水には塩素が比較的多く溶解しているので、該二次上澄水を除去し、上記細粒濃縮スラリーを沈降分離槽から抜き出す。なお、細粒スラリーに脱塩助剤を加えてから高分子凝集剤を加えることによって濃縮時の脱塩を促進しても良い。また、細粒スラリーに高分子凝集剤と共に沈降助剤を加えて沈降分離の速度を促進しても良い。   By concentrating the slurry, chlorine contained in the fine ash can be discharged out of the system as a supernatant. By concentrating the solid content concentration of the slurry to more than twice that of the fine slurry, approximately 5 to 60% of the chlorine content in the incinerated ash can be transferred to the secondary supernatant and discharged out of the system. it can. In the sedimentation separation tank, it is separated into a fine-grained concentrated slurry at the bottom of the tank and the secondary supernatant water on the upper side, and since a relatively large amount of chlorine is dissolved in the secondary supernatant water, the secondary supernatant water is removed, The fine concentrated slurry is extracted from the sedimentation tank. Note that desalting at the time of concentration may be promoted by adding a polymer flocculant after adding a desalting aid to the fine-grain slurry. Further, a sedimentation aid may be added to the fine particle slurry together with the polymer flocculant to accelerate the sedimentation rate.

希釈スラリーを湿式サイクロンに導入して細粒スラリーと粗粒スラリーに分級する工程を複数回行って脱塩効果を高めることができる。分級を二段階に行う例を図2に示す。   The desalting effect can be enhanced by introducing the diluted slurry into a wet cyclone and classifying the slurry into a fine slurry and a coarse slurry a plurality of times. An example in which classification is performed in two stages is shown in FIG.

図2に示すように、希釈スラリーを湿式サイクロンに導入して一次細粒スラリーと一次粗粒スラリーとに分級する。さらに、該一次粗粒スラリーに洗浄水を加えて二次希釈スラリーにする。固形分濃度10〜150g/Lに希釈するのが好ましい。この固形分濃度にするには、概ね、処理開始時の灰重量の0.5倍量〜60倍量の洗浄水を一次細粒スラリーに加えると良い。   As shown in FIG. 2, the diluted slurry is introduced into a wet cyclone and classified into a primary fine grain slurry and a primary coarse grain slurry. Further, wash water is added to the primary coarse slurry to form a secondary diluted slurry. It is preferable to dilute to a solid content concentration of 10 to 150 g / L. In order to obtain this solid content concentration, it is generally preferable to add 0.5 to 60 times as much washing water as the ash weight at the start of the treatment to the primary fine particle slurry.

該二次希釈スラリーを再び湿式サイクロンに導入して二次細粒スラリーと二次粗粒スラリーに分級する。さらに、該二次細粒スラリーと上記一次細粒スラリーを混合して総細粒スラリーにする。該総細粒スラリーに高分子凝集剤を加え、細粒灰を凝集フロックにして沈降分離させて細粒濃縮スラリーにする。   The secondary diluted slurry is again introduced into the wet cyclone and classified into a secondary fine slurry and a secondary coarse slurry. Further, the secondary fine slurry and the primary fine slurry are mixed to make a total fine slurry. A polymer flocculant is added to the total fine-grain slurry, and the fine-grained ash is agglomerated flocs to settle and separate into a fine-grain concentrated slurry.

〔細粒洗浄灰の回収工程〕
細粒濃縮スラリーを沈降分離槽から抜き出して脱水し洗浄する。例えば、微細スラリーをフィルタープレスで脱水し、この脱水ケーキを洗浄してケーキ中の間隙水を洗浄水で置換して脱塩し、細粒固形分(細粒洗浄灰)を回収する。本発明の脱塩処理方法によれば、例えば、処理開始時の灰に含まれる塩素量を1/2〜1/60に低減した細粒洗浄灰を回収することができる。
[Recovery process of fine-grained washed ash]
The fine-grained concentrated slurry is extracted from the sedimentation tank, dehydrated and washed. For example, the fine slurry is dehydrated with a filter press, the dehydrated cake is washed, the pore water in the cake is replaced with washing water, and desalted to recover fine solid content (fine washed ash). According to the desalting method of the present invention, for example, fine-grained washed ash in which the amount of chlorine contained in the ash at the start of treatment is reduced to 1/2 to 1/60 can be recovered.

〔粗粒洗浄灰の回収工程〕
粗粒スラリーまたは二次粗粒スラリーは湿式サイクロンから抜き出し、固液分離して粗粒固形分(粗粒洗浄灰)を回収する。フィルタープレスは価格が高く単位時間当たりの処理量が低いので、粗粒希釈スラリーの固液分離は遠心分離機などの連続処理装置を用い、フィルタープレスへの負荷を軽減すると良い。本発明の脱塩処理方法によれば、例えば、処理開始時の灰に含まれる塩素量を1/2〜1/100に低減した粗粒洗浄灰を回収することができる。粗粒スラリーまたは二次粗粒スラリーの粒子濃度が高すぎて流動化しにくい場合には、固形分濃度が100〜400g/Lになるように水を添加するとよい。
[Coarse-grain washing ash recovery process]
The coarse slurry or the secondary coarse slurry is extracted from the wet cyclone and separated into solid and liquid to collect coarse solids (coarse washed ash). Since filter presses are expensive and have a low throughput per unit time, solid-liquid separation of coarse diluted slurry may be performed using a continuous processing device such as a centrifugal separator to reduce the load on the filter press. According to the desalting treatment method of the present invention, for example, it is possible to collect coarse-grain washed ash in which the amount of chlorine contained in the ash at the start of treatment is reduced to 1/2 to 1/100. When the particle concentration of the coarse particle slurry or the secondary coarse particle slurry is too high to be fluidized, it is preferable to add water so that the solid content concentration becomes 100 to 400 g / L.

また、粗粒スラリーまたは二次粗粒スラリーの塩素濃度が高いときには、固液分離する前に水を添加して塩素を水中に浸出させて排水とともに塩素を排出するとよい。粗粒の含有量が極めて少ない灰の場合、あるいは処理する灰の総量が非常に少ない場合には、粗粒と細粒を別々に処理すると効率が低下することがある。そのような場合には、粗粒スラリーを細粒スラリーと混合してフィルタープレスで処理してもよい。   Further, when the chlorine concentration of the coarse slurry or the secondary coarse slurry is high, it is preferable to add water before solid-liquid separation to leach chlorine into the water and discharge the chlorine together with the waste water. In the case of ash with a very low content of coarse particles, or when the total amount of ash to be treated is very small, the efficiency may be reduced if the coarse particles and fine particles are treated separately. In such a case, the coarse slurry may be mixed with the fine slurry and processed with a filter press.

本発明の上記処理方法において、沈降分離槽から抜き出した二次上澄水あるいは固液分離で発生するろ過水や洗浄水のうち、塩素濃度が低いものは上段の処理工程に戻して再利用すると良い。例えば、塩素濃度が5g/L以下の二次上澄水であれば、塩素含有灰の初期洗浄工程の洗浄水、または初期濃縮スラリーの希釈する洗浄水として再利用することが出来る。固液分離工程のろ過水や洗浄水であれば、塩素含有灰の初期洗浄工程の洗浄水、あるいは初期濃縮スラリーの洗浄水、あるいは一次粗粒スラリーを二次希釈スラリーにする工程の洗浄水に再利用することが出来る。   In the above processing method of the present invention, secondary supernatant water extracted from the sedimentation separation tank or filtered water and washing water generated by solid-liquid separation may be reused by returning to the upper processing step for those having a low chlorine concentration. . For example, if the secondary supernatant water has a chlorine concentration of 5 g / L or less, it can be reused as washing water for the initial washing step of chlorine-containing ash or washing water for diluting the initial concentrated slurry. If it is filtered water or washing water in the solid-liquid separation process, the washing water in the initial washing process of chlorine-containing ash, the washing water in the initial concentrated slurry, or the washing water in the process of making the primary coarse slurry into a secondary dilution slurry Can be reused.

また、上記処理方法において、高分子凝集剤としては市販のアニオン系高分子凝集剤を用いると良い。高分子凝集剤はあらかじめ0.01〜0.1%濃度に溶解した液を使用するとよい。また脱塩助剤として硫酸、硝酸、炭酸、酢酸などの酸類、あるいはそのナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アルミニウム塩、鉄塩などの液体あるいは固形粉末を用いることができる。   In the treatment method, a commercially available anionic polymer flocculant may be used as the polymer flocculant. As the polymer flocculant, a solution previously dissolved in a concentration of 0.01 to 0.1% may be used. Further, as the desalting aid, acids such as sulfuric acid, nitric acid, carbonic acid, acetic acid, or liquids or solid powders thereof such as sodium salt, potassium salt, calcium salt, magnesium salt, aluminum salt, iron salt can be used.

本発明の上記脱塩処理方法を実施例する装置として、塩素含有灰に洗浄水を加えて初期スラリーとして塩素成分を水に浸出させる手段、該初期スラリーに高分子凝集剤を添加する手段、凝集フロックを沈降分離させて初期濃縮スラリーと上澄水とに分離する手段、該上澄水を系外に除去する手段、該初期濃縮スラリーに洗浄水を加えて希釈スラリーにする手段、該希釈スラリーを細粒スラリーと粗粒スラリーに分級する湿式サイクロン、該細粒スラリーに高分子凝集剤を加えて細粒灰を沈降分離させて細粒濃縮スラリーと上澄水に分離する手段、該細粒濃縮スラリーを脱水洗浄して細粒洗浄灰を回収する手段、上記粗粒スラリーを脱水洗浄して粗粒固形分粗粒洗浄灰を回収する手段を備える脱塩処理装置を用いることができる。   As an apparatus for carrying out the above desalination treatment method of the present invention, means for adding washing water to chlorine-containing ash and leaching the chlorine component into water as an initial slurry, means for adding a polymer flocculant to the initial slurry, agglomeration A means for separating the flocs by sedimentation into an initial concentrated slurry and supernatant water, a means for removing the supernatant water out of the system, a means for adding washing water to the initial concentrated slurry to form a diluted slurry, A wet cyclone for classifying into a fine particle slurry and a coarse particle slurry, means for adding a polymer flocculant to the fine particle slurry to precipitate and separate fine ash and separating it into a fine particle concentrated slurry and supernatant water, and the fine particle concentrated slurry A desalinization treatment apparatus provided with means for recovering fine-grained washed ash by dehydration and washing, and means for collecting the coarse-grained slurry by dehydrating and washing the coarse-grain slurry can be used.

本発明の脱塩処理方法は、塩素含有灰をスラリーにして塩素成分を水に浸出させる初期洗浄工程を行い、該スラリーに高分子凝集剤を加えて凝集フロックを沈降分離させて濃縮スラリーを形成するスラリー濃縮工程を行い、次に、このように形成した濃縮スラリーを粗粒スラリーと細粒スラリーに分離する分級工程を組み合わせた処理方法であり、最初にスラリー濃縮することによって早い段階で塩素濃度が高い上澄水を系外に除去するので、後段の脱塩洗浄が容易になり、洗浄灰の塩素濃度を大幅に低減することができる。また、段階的に塩素濃度を低減するので、確実に塩素濃度を下げることができ、洗浄灰の塩素濃度も安定する。さらに、装置の腐食やスケール生成を軽減することができ、また水使用量を削減することができる。   The desalination treatment method of the present invention performs an initial washing step in which chlorine-containing ash is made into a slurry and a chlorine component is leached into water, and a polymer flocculant is added to the slurry to precipitate and separate the aggregated floc to form a concentrated slurry. This is a processing method that combines a classification step of separating the concentrated slurry thus formed into a coarse slurry and a fine slurry, and the chlorine concentration at an early stage by concentrating the slurry first. Since the high supernatant water is removed from the system, the subsequent desalting and washing becomes easy, and the chlorine concentration of the washing ash can be greatly reduced. Further, since the chlorine concentration is gradually reduced, the chlorine concentration can be surely lowered, and the chlorine concentration of the cleaning ash is also stabilized. Furthermore, corrosion and scale generation of the apparatus can be reduced, and the amount of water used can be reduced.

本発明の脱塩処理方法は、初期濃縮工程の後に、湿式サイクロンによる分級を行うので、凝集フロックを破壊して本来の灰粒子の粒度分布に対応する分級が行われ、細粒または粗粒に最適な脱塩洗浄および固液分離がなされるので、高い脱塩効果を得ることができる。分級の前に凝集処理を行うことは、見かけ上は分級効果を低下させるように誤認されやすいので従来の処理方法では行われていないが、本発明の処理方法では、湿式サイクロンの剪断ストレスを利用して凝集フロックを破壊しつつ分級することができるため、分級効果を格段に高めることができる。   In the desalting method of the present invention, after the initial concentration step, classification is performed using a wet cyclone, so that the aggregation floc is broken and classification corresponding to the particle size distribution of the original ash particles is performed. Since optimum desalting washing and solid-liquid separation are performed, a high desalting effect can be obtained. The agglomeration treatment prior to classification is not carried out by the conventional treatment method because it is likely to be mistaken so as to reduce the classification effect, but the treatment method of the present invention utilizes the shear stress of the wet cyclone. Since classification can be performed while destroying the aggregated floc, the classification effect can be greatly enhanced.

本発明の脱塩処理方法によれば、例えば、塩素濃度14wt%〜15wt%の高塩素含有焼却灰等について、粗粒洗浄灰の塩素を96%以上除去し、また細粒洗浄灰の塩素を94%以上除去することができ、この粗粒洗浄灰および細粒洗浄灰はセメント原料として用いることができる。同様の方法で脱塩処理した洗浄灰は、焼成骨材の原料として用いることもできる。また、上記脱塩処理方法は、塩素含有灰を溶融処理するときの前処理として適用することができる。   According to the desalination treatment method of the present invention, for example, 96% or more of coarse washing ash is removed from high-chlorine incinerated ash having a chlorine concentration of 14 wt% to 15 wt%, and the chlorine of fine washing ash is removed. 94% or more can be removed, and the coarse and fine ash can be used as a raw material for cement. The washed ash that has been desalted in the same manner can also be used as a raw material for the calcined aggregate. Moreover, the said desalting process method can be applied as a pre-processing at the time of melt-processing a chlorine containing ash.

細粒洗浄灰の塩素濃度が高くて再利用が困難な場合には、粗粒洗浄灰のみを再利用することができる。この場合、細粒灰は埋め立て処分されるが、脱塩洗浄処理前の灰と比べると、可溶成分および粗粒灰分の重量が減少するために、埋め立て処分する灰重量はおよそ3/10以下に低減しており、大きい減容効果がある。   If the fine-grained washed ash has a high chlorine concentration and is difficult to reuse, only the coarse-grained washed ash can be reused. In this case, the fine ash is disposed of in landfill, but the weight of soluble components and coarse ash is reduced compared with the ash before desalting and washing, so the weight of ash to be disposed of is about 3/10 or less. There is a large volume reduction effect.

本発明の脱塩処理方法は、都市ごみや産業廃棄物の焼却灰(主灰、飛灰、燃え殻、煤塵)に限らず、最終処分場の再生工事で発生する掘り起こし灰、またはセメント工場から発生する塩素バイパスダストなどの塩素濃度の高い焼却灰等を単独あるいは複数を同時に処理することができる。発明の脱塩処理方法はこれらの塩素含有灰を処理する態様を含む。   The desalination treatment method of the present invention is not limited to incineration ash (main ash, fly ash, burning husk, dust) of municipal waste and industrial waste, but is generated from excavated ash generated in the reclamation work at the final disposal site, or from a cement factory Incineration ash having a high chlorine concentration such as chlorine bypass dust can be treated alone or in combination. The desalting method of the invention includes an embodiment for treating these chlorine-containing ashes.

本発明の脱塩処理方法(実施例1、5、7、9)の例を示す工程図。Process drawing which shows the example of the desalinating method (Example 1, 5, 7, 9) of this invention. 本発明の脱塩処理方法(実施例2、6、8、10)の例を示す工程図。Process drawing which shows the example of the desalinating method (Example 2, 6, 8, 10) of this invention. 本発明の脱塩処理方法(実施例4、12)の例を示す工程図。Process drawing which shows the example of the desalination processing method (Example 4, 12) of this invention. 本発明の脱塩処理方法(実施例3、11)の例を示す工程図。Process drawing which shows the example of the desalinating process method (Example 3, 11) of this invention.

本発明の実施例を比較例と共に以下に示す。塩素含有灰の塩素濃度は10%硝酸溶解後に残渣をろ過し、ろ液中の塩素濃度を電量滴定法により測定することで評価した。電量滴定装置は中研コンサルティング社製品のSALMATE−100を使用した。湿式サイクロンは日立造船社製品のサイクロンMD−3を用いた。湿式篩は東京スクリーン社製品の目開き32マイクロメートルの標準ふるいを用いた。   Examples of the present invention are shown below together with comparative examples. The chlorine concentration of the chlorine-containing ash was evaluated by filtering the residue after dissolving 10% nitric acid and measuring the chlorine concentration in the filtrate by a coulometric titration method. The coulometric titration apparatus used was SALMAT-100 manufactured by Chuken Consulting. The wet cyclone used was Hitachi Zosen's Cyclone MD-3. As the wet sieve, a standard sieve having a mesh size of 32 micrometers manufactured by Tokyo Screen was used.

〔実施例1〕
産業廃棄物を焼却処理したときに発生した煤塵(塩素濃度13wt%)10kgを混合撹拌槽に投入し、該煤塵重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、60g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が4.3倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水80.4Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は13.4g/Lであった。
初期濃縮スラリーを沈降分離槽から24.6Lを抜き出した。この固形分濃度は256g/Lであった。初期煤塵重量の5倍量の洗浄水を加えて固形分濃度84g/Lの希釈スラリーにし、10分間混合撹拌した。該希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に粗粒スラリー17.4Lを分級し、オーバーフロー側に細粒スラリー57.2Lを分級した。このとき、粗粒スラリーの50%粒子径は75μmであり、細粒スラリーの50%粒子径は15μmであった。
該粗粒スラリーに初期煤塵重量の4倍量の洗浄水を加えて10分間混合撹拌して固形分濃度71g/Lの粗粒希釈スラリーにした。該粗粒希釈スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期煤塵重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰4.1kgを得た。水分は粗粒濾液として排水した。
一方、細粒スラリーを湿式サイクロンから抜き出して混合撹拌層に導入し、アニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降分離槽に導き、固形分濃度が上記細粒スラリーの4.3倍に濃縮するまで静置して固形分を沈降させ、固形分濃度165g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は3.7g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期煤塵重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰2.2kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.40wt%、0.44wt%であり、何れもセメント原料として利用可能であった。
[Example 1]
10kg of dust (chlorine concentration 13wt%) generated when industrial waste is incinerated is put into a mixing and stirring tank, 10 times the amount of dust is added to washing water, and an initial slurry with a solid content of 95g / L And mixed and stirred for 10 minutes. The solid content concentration after 10 minutes of mixing and stirring was reduced to 60 g / L due to the dissolution of soluble components in water. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the slurry so that the concentration in the stirring tank would be 1 ppm, mixed, and then introduced into the settling tank, where the solid content concentration was 4.3. The mixture was allowed to stand until it was concentrated twice, so that the solid content was settled, and 80.4 L of the upper primary supernatant water was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 13.4 g / L.
24.6 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 256 g / L. Washing water of 5 times the initial dust weight was added to form a diluted slurry having a solid content concentration of 84 g / L, and mixed and stirred for 10 minutes. The diluted slurry was introduced into a wet cyclone, and 17.4 L of coarse slurry was classified on the underflow side, and 57.2 L of fine slurry was classified on the overflow side. At this time, the 50% particle size of the coarse slurry was 75 μm, and the 50% particle size of the fine slurry was 15 μm.
Washing water of 4 times the initial dust weight was added to the coarse slurry and mixed and stirred for 10 minutes to obtain a coarse diluted slurry with a solid content concentration of 71 g / L. After the coarse-grain diluted slurry is put into a centrifuge and dehydrated, the dehydrated cake is washed with washing water having an amount equivalent to the initial dust weight to remove adhering water on the surface, and the coarse-grain washed ash 4 Obtained 1 kg. Water was drained as a coarse filtrate.
On the other hand, the fine slurry is extracted from the wet cyclone and introduced into the mixing and stirring layer, and an anionic polymer flocculant (trade name: Diafloc AP-825B) is added to the stirring tank so that the concentration in the stirring tank is 0.5 ppm. After mixing, the mixture was introduced into a sedimentation separation tank and allowed to stand until the solid concentration was 4.3 times that of the fine particle slurry, so that the solid content was settled to obtain a fine particle concentrated slurry having a solid content concentration of 165 g / L. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant water was 3.7 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice as much as the initial dust weight, and the surface adhering water was removed to obtain 2.2 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse ash and fine ash have a chlorine concentration of 0.40 wt% and 0.44 wt%, respectively, which can be used as cement raw materials.

〔実施例2〕
産業廃棄物を焼却処理したときに発生した煤塵(塩素濃度13wt%)10kgを混合撹拌槽に投入し、該煤塵重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、60g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が4.3倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水80.4Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は13.4g/Lであった。
初期濃縮スラリーを沈降分離槽から24.6Lを抜き出した。この固形分濃度は256g/Lであった。初期煤塵重量の5倍量の洗浄水を加えて固形分濃度84g/Lの一次希釈スラリーにし、10分間混合撹拌した。該一次希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に一次粗粒スラリー17.4Lを分級し、オーバーフロー側に一次細粒スラリー57.2Lを分級した。このとき、一次粗粒スラリーの50%粒子径は75μmであり、一次細粒スラリーの50%粒子径は15μmであった。
該一次粗粒スラリーを湿式サイクロンから抜き出して、初期煤塵重量の4倍量の洗浄水を加えて固形分濃度71g/Lの二次希釈スラリーにし、10分間混合撹拌した。該二次希釈スラリーを湿式サイクロンに導入して、二次粗粒スラリー14.3Lと二次細粒スラリー43.1Lに分級した。このとき、二次粗粒スラリーの50%粒子径は71μmであり、二次細粒スラリーの50%粒子径は18μmであった。該二次粗粒スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期煤塵重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰3.1kgを得た。水分は粗粒濾液として排水した。
一方、一次細粒スラリーと二次細粒スラリーをおのおの湿式サイクロンから抜き出して混合し、総細粒スラリーにした。この総細粒スラリーにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降槽に導き、固形分濃度が総細粒スラリーの4.1倍に濃縮するまで静置して固形分を沈降させ、固形分濃度131g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は2.6g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期煤塵重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰3.2kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.30wt%、0.44wt%であり、何れもセメント原料として利用可能であった。
[Example 2]
10kg of dust (chlorine concentration 13wt%) generated when industrial waste is incinerated is put into a mixing and stirring tank, 10 times the amount of dust is added to washing water, and an initial slurry with a solid content of 95g / L And mixed and stirred for 10 minutes. The solid content concentration after 10 minutes of mixing and stirring was reduced to 60 g / L due to the dissolution of soluble components in water. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the slurry so that the concentration in the stirring tank would be 1 ppm, mixed, and then introduced into the settling tank, where the solid content concentration was 4.3. The mixture was allowed to stand until it was concentrated twice, so that the solid content was settled, and 80.4 L of the upper primary supernatant water was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 13.4 g / L.
24.6 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 256 g / L. Washing water of 5 times the initial dust weight was added to make a primary dilution slurry with a solid concentration of 84 g / L, and the mixture was stirred for 10 minutes. The primary diluted slurry was introduced into a wet cyclone, and 17.4 L of primary coarse slurry was classified on the underflow side, and 57.2 L of primary fine slurry was classified on the overflow side. At this time, the 50% particle size of the primary coarse slurry was 75 μm, and the 50% particle size of the primary fine slurry was 15 μm.
The primary coarse slurry was extracted from the wet cyclone, and washed water of 4 times the initial dust weight was added to make a secondary diluted slurry with a solid concentration of 71 g / L, and mixed and stirred for 10 minutes. The secondary diluted slurry was introduced into a wet cyclone and classified into a secondary coarse slurry 14.3L and a secondary fine slurry 43.1L. At this time, the 50% particle size of the secondary coarse particle slurry was 71 μm, and the 50% particle size of the secondary fine particle slurry was 18 μm. After the secondary coarse slurry is put into a centrifuge and dehydrated, the dehydrated cake is washed with washing water having an amount equivalent to the initial dust weight to remove adhering water on the surface, and the coarse washed ash 3.1 kg was obtained. Water was drained as a coarse filtrate.
On the other hand, the primary fine particle slurry and the secondary fine particle slurry were extracted from each wet cyclone and mixed to obtain a total fine particle slurry. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the total fine particle slurry so that the concentration in the stirring tank was 0.5 ppm, and the mixture was stirred and mixed. The solid content was allowed to settle until it was concentrated to 4.1 times the total fine-grain slurry, to obtain a fine-grain concentrated slurry having a solid content concentration of 131 g / L. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant water was 2.6 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice the initial dust weight to remove the adhering water on the surface to obtain 3.2 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse-grained ash and fine-grained ash had a chlorine concentration of 0.30 wt% and 0.44 wt%, respectively, both of which could be used as cement raw materials.

〔実施例3〕
実施例1と同様の試験を実施し、塩素濃度3.7g/Lの二次上澄水43.9Lと、
粗粒濾液と細粒濾液をそれぞれ全量混合した塩素濃度0.38g/Lの脱水洗浄水90.8Lを得た。該二次上澄水43.9Lと該脱水洗浄水56.1Lを初期スラリーの洗浄水100Lとして、該脱水洗浄水34.7Lを希釈スラリーの洗浄水50Lの一部として再利用する以外は、実施例1と同様に煤塵(塩素濃度13wt%)10kgを処理し、粗粒洗浄灰4.1kg、細粒洗浄灰2.2kgを得た。回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.41wt%、0.46wt%であり、何れもセメント原料として利用可能であった。
Example 3
The same test as in Example 1 was performed, and 43.9 L of secondary supernatant water having a chlorine concentration of 3.7 g / L,
90.8 L of dehydrated washing water having a chlorine concentration of 0.38 g / L was obtained by mixing the whole amount of the coarse filtrate and the fine filtrate. Implementation was performed except that 43.9 L of the secondary supernatant water and 56.1 L of the dehydrated washing water were used as 100 L of the initial slurry washing water, and 34.7 L of the dehydrated washing water was reused as part of the 50 L diluted washing water. In the same manner as in Example 1, 10 kg of soot dust (chlorine concentration: 13 wt%) was treated to obtain 4.1 kg of coarse grain washed ash and 2.2 kg of fine grain washed ash. The recovered coarse ash and fine ash have a chlorine concentration of 0.41 wt% and 0.46 wt%, respectively, and both can be used as cement raw materials.

〔実施例4〕
実施例2と同様の試験を実施し、塩素濃度2.6g/Lの二次上澄水75.8Lと、
粗粒濾液と細粒濾液をそれぞれ全量混合した塩素濃度0.10g/Lの脱水洗浄水58.5Lを得た。該二次上澄水75.8Lと該脱水洗浄水24.2Lを初期スラリーの洗浄水100Lとして、該脱水洗浄水34.3Lを希釈スラリーの洗浄水50Lの一部として再利用する以外は、実施例2と同様に煤塵(塩素濃度13wt%)10kgを処理し、粗粒洗浄灰3.1kg、細粒洗浄灰3.2kgを得た。回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.31wt%、0.47wt%であり、何れもセメント原料として利用可能であった。
Example 4
The same test as in Example 2 was performed, and 75.8 L of secondary supernatant water having a chlorine concentration of 2.6 g / L,
58.5 L of dehydrated washing water having a chlorine concentration of 0.10 g / L was obtained by mixing all of the coarse and fine filtrates. Implementation was performed except that 75.8 L of the secondary supernatant water and 24.2 L of the dehydrated washing water were used as 100 L of the initial slurry washing water, and 34.3 L of the dehydrated washing water was reused as a part of 50 L of the diluted slurry washing water. In the same manner as in Example 2, 10 kg of dust (chlorine concentration: 13 wt%) was treated to obtain 3.1 kg of coarse-grained washed ash and 3.2 kg of fine-grained washed ash. The recovered coarse ash and fine ash have a chlorine concentration of 0.31 wt% and 0.47 wt%, respectively, which can be used as cement raw materials.

〔実施例5〕
産業廃棄物を焼却処理したときに発生した燃え殻(塩素濃度1.6wt%)10kgを混合撹拌槽に投入し、該燃え殻重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、90g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が3.4倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水74.3Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は1.6g/Lであった。
初期濃縮スラリーを沈降分離槽から30.7Lを抜き出した。この固形分濃度は309g/Lであった。初期燃え殻重量の5倍量の洗浄水を加えて固形分濃度118g/Lの希釈スラリーにし、10分間混合撹拌した。該希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に粗粒スラリー18.8Lを分級し、オーバーフロー側に細粒スラリー61.9Lを分級した。このとき、粗粒スラリーの50%粒子径は435μmであり、細粒スラリーの50%粒子径は10μmであった。
該粗粒スラリーに初期燃え殻重量の4倍量の洗浄水を加えて10分間混合撹拌して固形分濃度112g/Lの粗粒希釈スラリーにした。該粗粒希釈スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期燃え殻重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰6.6kgを得た。水分は粗粒濾液として排水した。
一方、細粒スラリーを湿式サイクロンから抜き出して混合撹拌層に導入し、アニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降分離槽に導き、固形分濃度が上記細粒スラリーの3.9倍に濃縮するまで静置して固形分を沈降させ、固形分濃度183g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は0.44g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期燃え殻重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰2.9kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.13wt%、0.16wt%であり、何れもセメント原料として利用可能であった。
Example 5
Put 10kg of husks (chlorine concentration 1.6wt%) generated when incinerating industrial waste into a mixing and stirring tank, and add 10 times the weight of the husk weight of washing water to a solid content concentration of 95g / L. The slurry was prepared as an initial slurry and mixed and stirred for 10 minutes. The solid concentration after mixing and stirring for 10 minutes was reduced to 90 g / L due to the dissolution of soluble components in water. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the slurry so that the concentration in the stirring tank would be 1 ppm, mixed, and then introduced into the settling tank, where the solid content concentration was 3.4. The solid content was settled by allowing to stand until it was concentrated twice, and 74.3 L of the upper primary supernatant was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 1.6 g / L.
30.7 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 309 g / L. Washing water in an amount 5 times the weight of the initial husk was added to form a diluted slurry having a solid content of 118 g / L, and mixed and stirred for 10 minutes. The diluted slurry was introduced into a wet cyclone, and 18.8 L of coarse slurry was classified on the underflow side, and 61.9 L of fine slurry was classified on the overflow side. At this time, the 50% particle diameter of the coarse slurry was 435 μm, and the 50% particle diameter of the fine slurry was 10 μm.
Washing water having an amount of 4 times the initial burning husk weight was added to the coarse slurry and mixed and stirred for 10 minutes to obtain a coarse diluted slurry having a solid content concentration of 112 g / L. The coarse diluted slurry is put into a centrifuge and dehydrated, and then the dehydrated cake is washed with washing water having an amount equal to the initial burning husk weight to remove adhering water on the surface, and the coarse washed ash 6 0.6 kg was obtained. Water was drained as a coarse filtrate.
On the other hand, the fine slurry is extracted from the wet cyclone and introduced into the mixing and stirring layer, and an anionic polymer flocculant (trade name: Diafloc AP-825B) is added to the stirring tank so that the concentration in the stirring tank is 0.5 ppm. After mixing, the mixture was introduced into a sedimentation separation tank and allowed to stand until the solid content was concentrated to 3.9 times that of the fine particle slurry, so that the solid content was settled to obtain a fine particle concentrated slurry having a solid content concentration of 183 g / L. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant water was 0.44 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice the initial burning husk weight to remove the adhering water on the surface to obtain 2.9 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse ash and fine ash have a chlorine concentration of 0.13 wt% and 0.16 wt%, respectively, and both can be used as cement raw materials.

〔実施例6〕
産業廃棄物を焼却処理したときに発生した燃え殻(塩素濃度1.6wt%)10kgを混合撹拌槽に投入し、該燃え殻重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、90g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が3.4倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水74.3Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は1.6g/Lであった。
初期濃縮スラリーを沈降分離槽から30.7Lを抜き出した。この固形分濃度は309g/Lであった。初期燃え殻重量の5倍量の洗浄水を加えて固形分濃度118g/Lの一次希釈スラリーにし、10分間混合撹拌した。該一次希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に一次粗粒スラリー18.8Lを分級し、オーバーフロー側に一次細粒スラリー61.9Lを分級した。このとき、一次粗粒スラリーの50%粒子径は435μmであり、一次細粒スラリーの50%粒子径は10μmであった。
該一次粗粒スラリーを湿式サイクロンから抜き出して、初期燃え殻重量の4倍量の洗浄水を加えて固形分濃度112g/Lの二次希釈スラリーにし、10分間混合撹拌した。該二次希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に二次粗粒スラリー14.7Lを分級し、オーバーフロー側に二次細粒スラリー44.1Lを分級した。このとき、二次粗粒スラリーの50%粒子径は445μmであり、二次細粒スラリーの50%粒子径は12μmであった。該二次粗粒スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期燃え殻重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰4.9kgを得た。水分は粗粒濾液として排水した。
一方、一次細粒スラリーと二次細粒スラリーをおのおの湿式サイクロンから抜き出して混合し、総細粒スラリーにした。この総細粒スラリーにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降槽に導き、固形分濃度が総細粒スラリーの4.0倍に濃縮するまで静置して固形分を沈降させ、固形分濃度174g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は0.28g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期燃え殻重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰4.6kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.11wt%、0.16wt%であり、何れもセメント原料として利用可能であった。
Example 6
Put 10kg of husks (chlorine concentration 1.6wt%) generated when incinerating industrial waste into a mixing and stirring tank, and add 10 times the weight of the husk weight of washing water to a solid content concentration of 95g / L. The slurry was prepared as an initial slurry and mixed and stirred for 10 minutes. The solid concentration after mixing and stirring for 10 minutes was reduced to 90 g / L due to the dissolution of soluble components in water. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the slurry so that the concentration in the stirring tank would be 1 ppm, mixed, and then introduced into the settling tank, where the solid content concentration was 3.4. The solid content was settled by allowing to stand until it was concentrated twice, and 74.3 L of the upper primary supernatant was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 1.6 g / L.
30.7 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 309 g / L. Washing water in an amount 5 times the weight of the initial husk was added to obtain a primary diluted slurry having a solid content concentration of 118 g / L, and mixed and stirred for 10 minutes. The primary diluted slurry was introduced into a wet cyclone, and 18.8 L of primary coarse slurry was classified on the underflow side, and 61.9 L of primary fine slurry was classified on the overflow side. At this time, the 50% particle size of the primary coarse particle slurry was 435 μm, and the 50% particle size of the primary fine particle slurry was 10 μm.
The primary coarse slurry was extracted from the wet cyclone, and washed water having an amount of 4 times the initial burning husk weight was added to form a secondary diluted slurry having a solid concentration of 112 g / L, and mixed and stirred for 10 minutes. The secondary diluted slurry was introduced into a wet cyclone, secondary coarse slurry 14.7L was classified on the underflow side, and secondary fine slurry 44.1L was classified on the overflow side. At this time, the 50% particle size of the secondary coarse particle slurry was 445 μm, and the 50% particle size of the secondary fine particle slurry was 12 μm. After the secondary coarse slurry is put into a centrifuge and dehydrated, the dehydrated cake is washed with washing water having an amount equal to the initial burning husk weight to remove adhering water on the surface, and the coarse washed ash 4.9 kg was obtained. Water was drained as a coarse filtrate.
On the other hand, the primary fine particle slurry and the secondary fine particle slurry were extracted from each wet cyclone and mixed to obtain a total fine particle slurry. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the total fine particle slurry so that the concentration in the stirring tank was 0.5 ppm, and the mixture was stirred and mixed. The solid content was allowed to settle until it was concentrated to 4.0 times the total fine-particle slurry, to obtain a fine-grain concentrated slurry having a solid content concentration of 174 g / L. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant water was 0.28 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice the initial burning husk weight to remove adhering water on the surface to obtain 4.6 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse ash and fine ash have a chlorine concentration of 0.11 wt% and 0.16 wt%, respectively, which can be used as cement raw materials.

〔実施例7〕
産業廃棄物を焼却処理したときに発生した燃え殻(塩素濃度1.6wt%)10kgを混合撹拌槽に投入し、該燃え殻重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、90g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が3.4倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水74.3Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は1.6g/Lであった。
初期濃縮スラリーを沈降分離槽から30.7Lを抜き出した。この固形分濃度は309g/Lであった。初期燃え殻重量の5倍量の洗浄水を加えて固形分濃度118g/Lの希釈スラリーにし、10分間混合撹拌した。該希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に粗粒スラリー17.0Lを分級し、オーバーフロー側に細粒スラリー63.7Lを分級した。このとき、粗粒スラリーの50%粒子径は454μmであり、細粒スラリーの50%粒子径は24μmであった。
該粗粒スラリーに初期燃え殻重量の4倍量の洗浄水を加えて10分間混合撹拌して固形分濃度105g/Lの粗粒希釈スラリーにした。該粗粒希釈スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期燃え殻重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰6.0kgを得た。水分は粗粒濾液として排水した。
一方、細粒スラリーを湿式サイクロンから抜き出して混合撹拌層に導入し、アニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降分離槽に導き、固形分濃度が上記細粒スラリーの3.5倍に濃縮するまで静置して固形分を沈降させ、固形分濃度198g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は0.39g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期燃え殻重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰3.5kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.12wt%、0.17wt%であり、何れもセメント原料として利用可能であった。
Example 7
Put 10kg of husks (chlorine concentration 1.6wt%) generated when incinerating industrial waste into a mixing and stirring tank, and add 10 times the weight of the husk weight of washing water to a solid content concentration of 95g / L. The slurry was prepared as an initial slurry and mixed and stirred for 10 minutes. The solid concentration after mixing and stirring for 10 minutes was reduced to 90 g / L due to the dissolution of soluble components in water. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the slurry so that the concentration in the stirring tank would be 1 ppm, mixed, and then introduced into the settling tank, where the solid content concentration was 3.4. The solid content was settled by allowing to stand until it was concentrated twice, and 74.3 L of the upper primary supernatant was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 1.6 g / L.
30.7 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 309 g / L. Washing water in an amount 5 times the weight of the initial husk was added to form a diluted slurry having a solid content of 118 g / L, and mixed and stirred for 10 minutes. The diluted slurry was introduced into a wet cyclone, and 17.0 L of coarse slurry was classified on the underflow side, and 63.7 L of fine slurry was classified on the overflow side. At this time, the 50% particle size of the coarse slurry was 454 μm, and the 50% particle size of the fine slurry was 24 μm.
Washing water of 4 times the weight of the initial burning husk was added to the coarse slurry and mixed and stirred for 10 minutes to obtain a coarse diluted slurry having a solid content concentration of 105 g / L. The coarse diluted slurry is put into a centrifuge and dehydrated, and then the dehydrated cake is washed with washing water having an amount equal to the initial burning husk weight to remove adhering water on the surface, and the coarse washed ash 6 0.0kg was obtained. Water was drained as a coarse filtrate.
On the other hand, the fine slurry is extracted from the wet cyclone and introduced into the mixing and stirring layer, and an anionic polymer flocculant (trade name: Diafloc AP-825B) is added to the stirring tank so that the concentration in the stirring tank is 0.5 ppm. After mixing, the mixture was guided to a sedimentation separation tank and allowed to stand until the solid content was concentrated to 3.5 times that of the fine slurry, so that the solid content was settled to obtain a fine slurry with a solid content of 198 g / L. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant water was 0.39 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice the initial burning husk weight to remove the surface adhering water to obtain 3.5 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse ash and fine ash have a chlorine concentration of 0.12 wt% and 0.17 wt%, respectively, and both can be used as cement raw materials.

〔実施例8〕
産業廃棄物を焼却処理したときに発生した燃え殻(塩素濃度1.6wt%)10kgを混合撹拌槽に投入し、該燃え殻重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、90g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が3.4倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水74.3Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は1.6g/Lであった。
初期濃縮スラリーを沈降分離槽から30.7Lを抜き出した。この固形分濃度は309g/Lであった。初期燃え殻重量の5倍量の洗浄水を加えて固形分濃度118g/Lの一次希釈スラリーにし、10分間混合撹拌した。該一次希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に一次粗粒スラリー17.0Lを分級し、オーバーフロー側に一次細粒スラリー63.7Lを分級した。このとき、一次粗粒スラリーの50%粒子径は454μmであり、一次細粒スラリーの50%粒子径は24μmであった。
該一次粗粒スラリーを湿式サイクロンから抜き出して、初期燃え殻重量の4倍量の洗浄水を加えて固形分濃度105g/Lの二次希釈スラリーにし、10分間混合撹拌した。該二次希釈スラリーを湿式サイクロンに導入して、二次粗粒スラリー12.0Lと二次細粒スラリー45.0Lとに分級した。このとき、二次粗粒スラリーの50%粒子径は461μmであり、二次細粒スラリーの50%粒子径は26μmであった。該二次粗粒スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期燃え殻重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰4.7kgを得た。水分は粗粒濾液として排水した。
一方、一次細粒スラリーと二次細粒スラリーをおのおの湿式サイクロンから抜き出して混合し、総細粒スラリーにした。この総細粒スラリーにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降槽に導き、固形分濃度が総細粒スラリーの4.1倍に濃縮するまで静置して固形分を沈降させ、固形分濃度186g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は0.21g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期燃え殻重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰4.8kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.10wt%、0.18wt%であり、何れもセメント原料として利用可能であった。
Example 8
Put 10kg of husks (chlorine concentration 1.6wt%) generated when incinerating industrial waste into a mixing and stirring tank, and add 10 times the weight of the husk weight of washing water to a solid content concentration of 95g / L. The slurry was prepared as an initial slurry and mixed and stirred for 10 minutes. The solid concentration after mixing and stirring for 10 minutes was reduced to 90 g / L due to the dissolution of soluble components in water. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the slurry so that the concentration in the stirring tank would be 1 ppm, mixed, and then introduced into the settling tank, where the solid content concentration was 3.4. The solid content was settled by allowing to stand until it was concentrated twice, and 74.3 L of the upper primary supernatant was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 1.6 g / L.
30.7 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 309 g / L. Washing water in an amount 5 times the weight of the initial husk was added to obtain a primary diluted slurry having a solid content concentration of 118 g / L, and mixed and stirred for 10 minutes. The primary diluted slurry was introduced into a wet cyclone, and 17.0 L of the primary coarse slurry was classified on the underflow side, and 63.7 L of the primary fine slurry was classified on the overflow side. At this time, the 50% particle size of the primary coarse particle slurry was 454 μm, and the 50% particle size of the primary fine particle slurry was 24 μm.
The primary coarse slurry was extracted from the wet cyclone, and washed water having an amount 4 times the weight of the initial burning husk was added to obtain a secondary diluted slurry having a solid concentration of 105 g / L, and mixed and stirred for 10 minutes. The secondary dilution slurry was introduced into a wet cyclone and classified into a secondary coarse slurry 12.0 L and a secondary fine slurry 45.0 L. At this time, the 50% particle size of the secondary coarse particle slurry was 461 μm, and the 50% particle size of the secondary fine particle slurry was 26 μm. After the secondary coarse slurry is put into a centrifuge and dehydrated, the dehydrated cake is washed with washing water having an amount equal to the initial burning husk weight to remove adhering water on the surface, and the coarse washed ash 4.7 kg was obtained. Water was drained as a coarse filtrate.
On the other hand, the primary fine particle slurry and the secondary fine particle slurry were extracted from each wet cyclone and mixed to obtain a total fine particle slurry. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the total fine particle slurry so that the concentration in the stirring tank was 0.5 ppm, and the mixture was stirred and mixed. The solid content was allowed to settle until it was concentrated to 4.1 times the total fine-particle slurry, and a solid-concentrated slurry having a solid content concentration of 186 g / L was obtained. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant was 0.21 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice as much as the initial burning husk weight to remove surface adhering water to obtain 4.8 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse-grained ash and fine-grained ash had a chlorine concentration of 0.10 wt% and 0.18 wt%, respectively, both of which could be used as cement raw materials.

〔実施例9〕
産業廃棄物を焼却処理したときに発生した燃え殻(塩素濃度1.6wt%)10kg を混合撹拌槽に投入し、該燃え殻重量の5倍量の洗浄水を投入し、固形分濃度181g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、173g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が2.0倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水27.5Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は3.1g/Lであった。
初期濃縮スラリーを沈降分離槽から27.5Lを抜き出した。この固形分濃度は344g/Lであった。初期燃え殻重量の5倍量の洗浄水を加えて固形分濃度123g/Lの希釈スラリーにし、10分間混合撹拌した。該希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に粗粒スラリー18.1Lを分級し、オーバーフロー側に細粒スラリー59.4Lを分級した。このとき、粗粒スラリーの50%粒子径は442μmであり、細粒スラリーの50%粒子径は11μmであった。
該粗粒スラリーに初期燃え殻重量の4倍量の洗浄水を加えて10分間混合撹拌して固形分濃度112g/Lの粗粒希釈スラリーにした。該粗粒希釈スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期燃え殻重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰6.5kgを得た。水分は粗粒濾液として排水した。
一方、細粒スラリーを湿式サイクロンから抜き出して混合撹拌層に導入し、アニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降分離槽に導き、固形分濃度が上記細粒スラリーの3.5倍に濃縮するまで静置して固形分を沈降させ、固形分濃度176g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は1.1g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期燃え殻重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰3.0kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.20wt%、0.28wt%であり、何れもセメント原料として利用可能であった。
Example 9
Put 10kg of husks (chlorine concentration 1.6wt%) generated when incinerating industrial waste into a mixing and stirring tank, and put in washing water 5 times the weight of the husks. The solid content concentration is 181g / L. The slurry was prepared as an initial slurry and mixed and stirred for 10 minutes. The solid content concentration after 10 minutes of mixing and stirring was reduced to 173 g / L due to dissolution of soluble components in water. An anionic polymer flocculant (trade name Diaflock AP-825B) was added to and mixed with the slurry so that the concentration in the stirring tank was 1 ppm, and then introduced into the settling tank, so that the solid content concentration was 2.0. The solid content was allowed to settle until it was concentrated twice, and 27.5 L of the upper primary supernatant water was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 3.1 g / L.
27.5 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 344 g / L. Washing water of 5 times the weight of the initial husk was added to make a diluted slurry with a solid content concentration of 123 g / L, and mixed and stirred for 10 minutes. The diluted slurry was introduced into a wet cyclone, and 18.1 L of the coarse slurry was classified on the underflow side, and 59.4 L of the fine slurry was classified on the overflow side. At this time, the 50% particle size of the coarse slurry was 442 μm, and the 50% particle size of the fine slurry was 11 μm.
Washing water having an amount of 4 times the initial burning husk weight was added to the coarse slurry and mixed and stirred for 10 minutes to obtain a coarse diluted slurry having a solid content concentration of 112 g / L. The coarse diluted slurry is put into a centrifuge and dehydrated, and then the dehydrated cake is washed with washing water having an amount equal to the initial burning husk weight to remove adhering water on the surface, and the coarse washed ash 6 Obtained 5 kg. Water was drained as a coarse filtrate.
On the other hand, the fine slurry is extracted from the wet cyclone and introduced into the mixing and stirring layer, and an anionic polymer flocculant (trade name: Diafloc AP-825B) is added to the stirring tank so that the concentration in the stirring tank is 0.5 ppm. After mixing, the mixture was introduced into a sedimentation separation tank and allowed to stand until the solid content was concentrated to 3.5 times that of the fine particle slurry, so that the solid content was settled to obtain a fine particle concentrated slurry having a solid content concentration of 176 g / L. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant water was 1.1 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice as much as the initial burning husk weight to remove surface adhering water to obtain 3.0 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse ash and fine ash have a chlorine concentration of 0.20 wt% and 0.28 wt%, respectively, and both can be used as cement raw materials.

〔実施例10〕
産業廃棄物を焼却処理したときに発生した燃え殻(塩素濃度1.6wt%)10kg を混合撹拌槽に投入し、該燃え殻重量の5倍量の洗浄水を投入し、固形分濃度181g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は、可溶成分が水に溶解したことにより、173g/Lに減少した。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に、沈降分離槽に導入し、固形分濃度が2.0倍に濃縮するまで静置して固形分を沈降させて、上側の一次上澄水27.5Lを抜出して除去し、初期濃縮スラリーにした。該一次上澄水の塩素濃度は3.1g/Lであった。
初期濃縮スラリーを沈降分離槽から27.5Lを抜き出した。この固形分濃度は344g/Lであった。初期燃え殻重量の5倍量の洗浄水を加えて固形分濃度123g/Lの一次希釈スラリーにし、10分間混合撹拌した。該一次希釈スラリーを湿式サイクロンに導入して、アンダーフロー側に一次粗粒スラリー18.1Lを分級し、オーバーフロー側に一次細粒スラリー59.4Lを分級した。このとき、一次粗粒スラリーの50%粒子径は442μmであり、一次細粒スラリーの50%粒子径は11μmであった。
該一次粗粒スラリーを湿式サイクロンから抜き出して、初期燃え殻重量の4倍量の洗浄水を加えて固形分濃度112g/Lの二次希釈スラリーにし、10分間混合撹拌した。該二次希釈スラリーを湿式サイクロンに導入して、二次粗粒スラリー14.5Lと二次細粒スラリー43.5Lに分級した。このとき、二次粗粒スラリーの50%粒子径は451μmであり、二次細粒スラリーの50%粒子径は10μmであった。該二次粗粒スラリーを遠心分離機に入れて脱水処理した後に、この脱水ケーキを初期燃え殻重量の1倍量の洗浄水を用いて洗浄し、表面の付着水を除去し、粗粒洗浄灰4.7kgを得た。水分は粗粒濾液として排水した。
一方、一次細粒スラリーと二次細粒スラリーをおのおの湿式サイクロンから抜き出して混合し、総細粒スラリーにした。この総細粒スラリーにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を撹拌槽内濃度が0.5ppmになるように添加して撹拌混合した後に沈降槽に導き、固形分濃度が総細粒スラリーの3.6倍に濃縮するまで静置して固形分を沈降させ、固形分濃度168g/Lの細粒濃縮スラリーにした。該細粒濃縮スラリーの上側の二次上澄水を抜き出した。該二次上澄水の塩素濃度は0.73g/Lであった。該細粒濃縮スラリーをフィルタープレスで脱水し、この脱水ケーキを初期燃え殻重量の2倍量の洗浄水で洗浄し、表面の付着水を除去して細粒洗浄灰4.8kgを得た。水分は細粒濾液として排水した。
回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.12wt%、0.21wt%であり、何れもセメント原料として利用可能であった。
Example 10
Put 10kg of husks (chlorine concentration 1.6wt%) generated when incinerating industrial waste into a mixing and stirring tank, and put in washing water 5 times the weight of the husks. The solid content concentration is 181g / L. The slurry was prepared as an initial slurry and mixed and stirred for 10 minutes. The solid content concentration after 10 minutes of mixing and stirring was reduced to 173 g / L due to dissolution of soluble components in water. An anionic polymer flocculant (trade name Diaflock AP-825B) was added to and mixed with the slurry so that the concentration in the stirring tank was 1 ppm, and then introduced into the settling tank, so that the solid content concentration was 2.0. The solid content was allowed to settle until it was concentrated twice, and 27.5 L of the upper primary supernatant water was extracted and removed to obtain an initial concentrated slurry. The chlorine concentration of the primary supernatant water was 3.1 g / L.
27.5 L of the initial concentrated slurry was extracted from the sedimentation tank. The solid content concentration was 344 g / L. Washing water in an amount 5 times the weight of the initial husk was added to make a primary dilution slurry with a solid content concentration of 123 g / L, and mixed and stirred for 10 minutes. The primary dilution slurry was introduced into a wet cyclone, and the primary coarse slurry 18.1L was classified on the underflow side, and the primary fine slurry 59.4L was classified on the overflow side. At this time, the 50% particle size of the primary coarse particle slurry was 442 μm, and the 50% particle size of the primary fine particle slurry was 11 μm.
The primary coarse slurry was extracted from the wet cyclone, and washed water having an amount of 4 times the initial burning husk weight was added to form a secondary diluted slurry having a solid concentration of 112 g / L, and mixed and stirred for 10 minutes. The secondary dilution slurry was introduced into a wet cyclone and classified into a secondary coarse slurry 14.5L and a secondary fine slurry 43.5L. At this time, the 50% particle size of the secondary coarse particle slurry was 451 μm, and the 50% particle size of the secondary fine particle slurry was 10 μm. After the secondary coarse slurry is put into a centrifuge and dehydrated, the dehydrated cake is washed with washing water having an amount equal to the initial burning husk weight to remove adhering water on the surface, and the coarse washed ash 4.7 kg was obtained. Water was drained as a coarse filtrate.
On the other hand, the primary fine particle slurry and the secondary fine particle slurry were extracted from each wet cyclone and mixed to obtain a total fine particle slurry. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the total fine particle slurry so that the concentration in the stirring tank was 0.5 ppm, and the mixture was stirred and mixed. The solid content was allowed to settle until it was concentrated to 3.6 times the total fine-particle slurry, to obtain a fine-grain concentrated slurry having a solid content concentration of 168 g / L. The secondary supernatant water on the upper side of the fine-grained concentrated slurry was extracted. The chlorine concentration of the secondary supernatant was 0.73 g / L. The fine-grained concentrated slurry was dehydrated with a filter press, and the dehydrated cake was washed with washing water twice as much as the initial burning husk weight to remove surface adhering water to obtain 4.8 kg of fine-grain washed ash. The water was drained as a fine filtrate.
The recovered coarse-grained ash and fine-grained ash had a chlorine concentration of 0.12 wt% and 0.21 wt%, respectively, which could be used as cement raw materials.

〔実施例11〕
実施例9と同様の試験を実施し、塩素濃度1.1g/Lの二次上澄水42.5Lと、
粗粒濾液と細粒濾液をそれぞれ全量混合した塩素濃度0.07g/Lの脱水洗浄水92.8Lを得た。該二次上澄水42.5Lと該脱水洗浄水7.5Lを初期スラリーの洗浄水50Lとして、該脱水洗浄水50Lを希釈スラリーの洗浄水50Lとして、該脱水洗浄水35.3Lを粗粒希釈スラリーの洗浄水40Lの一部として再利用する以外は、実施例9と同様に燃え殻(塩素濃度1.6wt%)10kg を処理し、粗粒洗浄灰6.5kg、細粒洗浄灰3.0kgを得た。回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.29wt%、0.39wt%であり、何れもセメント原料として利用可能であった。
Example 11
A test similar to that of Example 9 was performed, and 42.5 L of secondary supernatant water having a chlorine concentration of 1.1 g / L,
92.8 L of dehydrated washing water having a chlorine concentration of 0.07 g / L was obtained by mixing all of the coarse filtrate and the fine filtrate. 42.5L of the secondary supernatant water and 7.5L of the dehydrated washing water are used as 50L of the initial slurry washing water, 50L of the dehydrated washing water is used as the washing water 50L of the diluted slurry, and 35.3L of the dehydrated washing water is diluted with coarse particles. Except for reusing as a part of 40 L of slurry washing water, 10 kg of husk (chlorine concentration: 1.6 wt%) was treated in the same manner as in Example 9, and 6.5 kg of coarse ash and 3.0 kg of fine ash Got. The recovered coarse-grained ash and fine-grained ash had a chlorine concentration of 0.29 wt% and 0.39 wt%, respectively, which could be used as cement raw materials.

〔実施例12〕
実施例10と同様の試験を実施し、塩素濃度1.1g/Lの二次上澄水74.4Lと、
粗粒濾液と細粒濾液をそれぞれ全量混合した塩素濃度0.08g/Lの脱水洗浄水60.2Lを得た。該二次上澄水50Lを初期スラリーの洗浄水50Lとして、該脱水洗浄水24.4Lと脱水洗浄水25.6Lを希釈スラリーの洗浄水50Lとして、該脱水洗浄水34.6Lを粗粒希釈スラリーの洗浄水40Lの一部として再利用する以外は、実施例10と同様に燃え殻(塩素濃度1.6wt%)10kg を処理し、粗粒洗浄灰4.7kg、細粒洗浄灰4.8kgを得た。回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.20wt%、0.39wt%であり、何れもセメント原料として利用可能であった。
Example 12
The same test as in Example 10 was performed, and 74.4 L of secondary supernatant water having a chlorine concentration of 1.1 g / L,
60.2L of dehydrated washing water having a chlorine concentration of 0.08 g / L was obtained by mixing all of the coarse and fine filtrates. The secondary supernatant water 50L is used as the initial slurry cleaning water 50L, the dehydrated cleaning water 24.4L and the dehydrated cleaning water 25.6L are used as the diluted slurry cleaning water 50L, and the dehydrated cleaning water 34.6L is used as the coarse diluted slurry. Except for reusing as a part of 40L of washing water, 10kg of husk (chlorine concentration 1.6wt%) was treated in the same manner as in Example 10 to obtain 4.7kg of coarse ash and 4.8kg of fine ash. Obtained. The recovered coarse-grained ash and fine-grained ash had a chlorine concentration of 0.20 wt% and 0.39 wt%, respectively, which could be used as cement raw materials.

〔比較例1〕
産業廃棄物を焼却処理したときに発生した煤塵(塩素濃度13wt%)10kgを混合撹拌槽に投入し、該煤塵重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は60g/Lとなった。該スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に沈降分離槽に導入し、固形分濃度が4.3倍に濃縮するまで静置して固形分を沈降させて初期濃縮スラリーにした。この初期濃縮スラリーの上側の一次上澄水80.4Lを抜出して除去した。該一次上澄水の塩素濃度は13.4g/Lであった。
初期濃縮スラリーを沈降分離槽から抜き出して、初期煤塵重量の5倍量の洗浄水を加えて固形分濃度84g/Lの一次希釈スラリーにし、10分間混合撹拌した。該一次希釈スラリーに撹拌槽内濃度が1ppmになるようにアニオン系高分子凝集剤(商品名ダイヤフロックAP-825B)を添加して混合した後に沈降分離槽に導入し、固形分濃度が一次希釈スラリーの2.9倍に濃縮するまで静置して固形分を沈降させて一次濃縮スラリーにした。この一次濃縮スラリーの上側の二次上澄水を抜出して除去した。該二次上澄水の塩素濃度は3.7g/Lであった。
さらに、一次濃縮スラリーを沈降分離槽から抜き出して、初期煤塵重量の4倍量の洗浄水を加えて固形分濃度96g/Lの二次希釈スラリーにし、10分間混合撹拌した。該二次濃縮スラリーを脱水し、この脱水ケーキを初期煤塵重量の3倍量の洗浄水で洗浄し、表面の付着水を除去して洗浄灰6.3kgを得た。この洗浄灰の塩素濃度は0.60wt%であり、塩素濃度が高いのでセメント原料としては好ましくないものであった。
[Comparative Example 1]
10kg of dust (chlorine concentration 13wt%) generated when industrial waste is incinerated is put into a mixing and stirring tank, 10 times the amount of dust is added to washing water, and an initial slurry with a solid content of 95g / L And mixed and stirred for 10 minutes. The solid concentration after mixing and stirring for 10 minutes was 60 g / L. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the slurry so that the concentration in the stirring tank would be 1 ppm, mixed and then introduced into the settling tank, so that the solid content concentration was 4.3 times. The solid content was allowed to settle until it was concentrated to an initial concentrated slurry. 80.4 L of the primary supernatant water on the upper side of the initial concentrated slurry was extracted and removed. The chlorine concentration of the primary supernatant water was 13.4 g / L.
The initial concentrated slurry was extracted from the sedimentation tank, and washed water of 5 times the initial dust weight was added to make a primary diluted slurry with a solid content concentration of 84 g / L, and mixed and stirred for 10 minutes. An anionic polymer flocculant (trade name: Diafloc AP-825B) was added to the primary dilution slurry so that the concentration in the stirring tank would be 1 ppm, mixed and then introduced into the sedimentation tank, where the solid content concentration was the primary dilution. The slurry was allowed to stand until it was concentrated to 2.9 times the slurry, and the solid content was allowed to settle to a primary concentrated slurry. The secondary supernatant water on the upper side of the primary concentrated slurry was extracted and removed. The chlorine concentration of the secondary supernatant water was 3.7 g / L.
Further, the primary concentrated slurry was extracted from the sedimentation tank, and washed water of 4 times the initial dust weight was added to obtain a secondary diluted slurry with a solid content concentration of 96 g / L, and mixed and stirred for 10 minutes. The secondary concentrated slurry was dewatered, and the dewatered cake was washed with washing water 3 times the initial dust weight, and the surface adhering water was removed to obtain 6.3 kg of washing ash. The chlorine concentration of the washed ash was 0.60 wt%, and the chlorine concentration was high, which was not preferable as a cement raw material.

〔比較例2〕
産業廃棄物を焼却処理したときに発生した煤塵(塩素濃度13wt%)10kgを混合撹拌槽に投入し、該煤塵重量の10倍量の洗浄水を投入し、固形分濃度95g/Lの初期スラリーとして調整し、10分間混合撹拌した。10分間混合撹拌後の固形分濃度は60g/Lとなった。該スラリーを脱水し、この脱水ケーキを初期煤塵重量の12倍量の洗浄水で洗浄し、表面の付着水を除去して洗浄灰6.3kgを得た。この洗浄灰の塩素濃度は1.1wt%であり、塩素濃度が高いのでセメント原料としては好ましくないものであった。
[Comparative Example 2]
10kg of dust (chlorine concentration 13wt%) generated when industrial waste is incinerated is put into a mixing and stirring tank, 10 times the amount of dust is added to washing water, and an initial slurry with a solid content of 95g / L And mixed and stirred for 10 minutes. The solid concentration after mixing and stirring for 10 minutes was 60 g / L. The slurry was dewatered, and the dewatered cake was washed with washing water 12 times the initial dust weight, and the surface adhering water was removed to obtain 6.3 kg of washing ash. The chlorine concentration of the washed ash was 1.1 wt%, and the chlorine concentration was high, which was not preferable as a cement raw material.

〔比較例3〕
湿式サイクロンに代えて湿式篩(篩の目開きは32μm)を用いた以外は実施例2と同様にして粗粒洗浄灰4.3kgおよび細粒洗浄灰2.0kgを得た。回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.58wt%、0.60wt%であり、塩素濃度が高いのでセメント原料としては好ましくないものであった。
[Comparative Example 3]
Coarse-grained washed ash 4.3 kg and fine-grained washed ash 2.0 kg were obtained in the same manner as in Example 2 except that a wet sieve (screen opening of 32 μm) was used instead of the wet cyclone. The recovered coarse-grained ash and fine-grained ash had a chlorine concentration of 0.58 wt% and 0.60 wt%, respectively, and the chlorine concentration was high, which was undesirable as a cement raw material.

〔比較例4〕
沈降分離において、アニオン系高分子凝集剤を用いない以外は実施例2と同様にして粗粒洗浄灰3.0kgおよび細粒洗浄灰3.3kgを得た。なお、初期スラリーは固形分濃度が1.5倍に濃縮するまで静置、総細粒スラリーは固形分濃度が1.5倍に濃縮するまで静置した。回収した粗粒洗浄灰と細粒洗浄灰の塩素濃度はおのおの0.55wt%、0.71wt%であり、塩素濃度が高いのでセメント原料としては好ましくないものであった。
[Comparative Example 4]
In the sedimentation separation, 3.0 kg of coarse-grained washed ash and 3.3 kg of fine-grained washed ash were obtained in the same manner as in Example 2 except that the anionic polymer flocculant was not used. The initial slurry was allowed to stand until the solid content concentration was concentrated 1.5 times, and the total fine-grain slurry was allowed to stand until the solid content concentration was concentrated 1.5 times. The recovered coarse-grained ash and fine-grained ash have a chlorine concentration of 0.55 wt% and 0.71 wt%, respectively.

表1に実施例1〜12および比較例1〜4の処理結果を示す。なお、表1において、初期スラリーの固形分濃度は撹拌後の可溶性成分が溶解した後の濃度(g/L)である。初期濃縮スラリーの濃縮比は初期スラリーの固形分濃度Aに対する初期濃縮スラリーの固形分濃度Bの比(B/A)である。50%粒径は粒子の体積粒度分布の積算重量割合の分布曲線において50%を示す粒子径である。細粒濃縮スラリーの濃縮比は細粒スラリーの固形分濃度Cに対する細粒濃縮スラリーの固形分濃度Dの比(D/C)である。ただし、比較例1のみ、一次希釈スラリーの固形分濃度に対する一次濃縮スラリーの固形分濃度の比(3.0倍)を示している。脱水洗浄使用水は、分級操作を実施したものは、粗粒洗浄灰の洗浄脱水に10L、細粒洗浄灰の洗浄脱水に20L、それぞれ使用した。実施例3、実施例4、実施例11、および実施例12は、二次上澄水と、粗粒濾液と細粒濾液を全量混合した脱水洗浄水を再利用して、繰り返し脱塩処理を実施した。   Table 1 shows the processing results of Examples 1-12 and Comparative Examples 1-4. In Table 1, the solid content concentration of the initial slurry is the concentration (g / L) after the soluble component after stirring is dissolved. The concentration ratio of the initial concentrated slurry is the ratio (B / A) of the solid content concentration B of the initial concentrated slurry to the solid content concentration A of the initial slurry. The 50% particle size is a particle size indicating 50% in the distribution curve of the cumulative weight ratio of the volume particle size distribution of the particles. The concentration ratio of the fine-grained concentrated slurry is the ratio (D / C) of the solid content concentration D of the fine-grained concentrated slurry to the solid content concentration C of the fine-grained slurry. However, only Comparative Example 1 shows the ratio (3.0 times) of the solid concentration of the primary concentrated slurry to the solid concentration of the primary diluted slurry. The water used for the dewatering and washing was subjected to the classification operation, and 10 L was used for washing and dewatering of the coarse-grained washing ash, and 20 L was used for washing and dewatering of the fine-grained washing ash. In Example 3, Example 4, Example 11, and Example 12, the secondary supernatant water and the dehydrated washing water in which the whole amount of the coarse filtrate and the fine filtrate were mixed were reused to repeatedly perform desalting treatment. did.

表2に実施例1〜12および比較例1〜4における一次上澄液と二次上澄液への塩素の移行率、および各洗浄灰の塩素の低減割合を示す。塩素の移行率とは、処理開始時の塩素含有灰に元々含まれる塩素量のうち、上澄液に浸出し、上澄液の抜出と除去とともに、系外に排出された塩素量の割合である。塩素の低減割合とは、処理開始時の塩素含有灰に元々含まれる塩素量に対する、処理後の各洗浄灰中の塩素量の割合である。   Table 2 shows the rate of chlorine transfer to the primary and secondary supernatants in Examples 1 to 12 and Comparative Examples 1 to 4, and the chlorine reduction rate of each washing ash. Chlorine transfer rate is the proportion of the amount of chlorine that was leached out of the supernatant, extracted and removed, and discharged out of the system, out of the amount of chlorine originally contained in the chlorine-containing ash at the start of treatment. It is. The reduction ratio of chlorine is the ratio of the amount of chlorine in each washed ash after treatment to the amount of chlorine originally contained in the chlorine-containing ash at the start of treatment.

表1および表2に示すように、本発明の脱塩処理方法によれば、初期濃縮工程の沈降分離による塩素含有上澄水の除去と、湿式サイクロンによる分級工程の組み合わせによって高い脱塩効果が得られる。この脱塩処理した粗粒洗浄灰および細粒洗浄灰はセメント原料あるいは焼成骨材原料に用いることができる。また、二次上澄水と脱水洗浄水を再利用して、繰り返し脱塩処理を実施することによって、清水の使用量を大きく低減させることができる。   As shown in Table 1 and Table 2, according to the desalting method of the present invention, a high desalting effect is obtained by a combination of removal of chlorine-containing supernatant water by sedimentation separation in the initial concentration step and classification step by a wet cyclone. It is done. The desalted coarse washed ash and fine washed ash can be used as a cement raw material or a fired aggregate raw material. Moreover, the amount of fresh water used can be greatly reduced by reusing secondary supernatant water and dehydrated washing water and repeatedly performing desalting.

Figure 0005761544
Figure 0005761544

Figure 0005761544
Figure 0005761544

Claims (11)

塩素含有灰に洗浄水を加えて初期スラリーにして塩素を水に浸出する初期洗浄工程と、該初期スラリーに高分子凝集剤を加えて凝集フロックを沈降分離させて初期濃縮スラリーを形成すると共に該塩素含有灰の塩素を一次上澄水に移行させる初期濃縮工程と、該初期濃縮スラリーを加水した後に湿式サイクロンを用いて細粒スラリーと粗粒スラリーに分離する分級工程と、さらに該細粒スラリーに高分子凝集剤を加えて細粒凝集フロックを沈降分離させて細粒濃縮スラリーを形成すると共に該細粒の塩素を二次上澄水に移行させる細粒濃縮工程とを有し、上記初期濃縮工程の一次上澄水および上記細粒濃縮工程の二次上澄水を排水して脱塩すると共に、上記細粒濃縮スラリーを脱水洗浄して脱塩した細粒洗浄灰を回収する工程と、上記粗粒スラリーを脱水洗浄して脱塩した粗粒洗浄灰を回収する工程を有することを特徴とする塩素含有灰の脱塩処理方法。 An initial washing step of adding washing water to the chlorine-containing ash to form an initial slurry and leaching chlorine into water; adding a polymer flocculant to the initial slurry to precipitate and separate the aggregated flocs to form an initial concentrated slurry; and An initial concentration step of transferring chlorine of the chlorine-containing ash to the primary supernatant, a classification step of separating the finely divided slurry and the coarse slurry using a wet cyclone after adding the initial concentrated slurry, and further adding the finely divided slurry to A fine particle concentration step of adding a polymer flocculant to precipitate and separate the fine particle flocs to form a fine particle concentrated slurry and transferring chlorine of the fine particles to the secondary supernatant water, and the initial concentration step. Draining and desalinating the primary supernatant water and secondary supernatant water of the fine granule concentration step, and dewatering and washing the fine granule concentrate slurry to recover the desalted fine granule wash ash, and the coarse particles The Desalting method chlorine-containing ash and a step of recovering the Lee dehydrated washed coarse cleaning ash desalted. 塩素含有灰に洗浄水を加えて固形分濃度30〜300g/Lの初期スラリーにし、該初期スラリーに高分子凝集剤を添加して固形分濃度が該初期スラリーの2倍以上に濃縮した初期濃縮スラリーと、一次上澄水とに分離し、該一次上澄水に塩素含有灰に含まれる塩素量の40〜90%を移行させて系外に除去する請求項1に記載する塩素含有灰の脱塩処理方法。   Washing water is added to the chlorine-containing ash to form an initial slurry with a solid content concentration of 30 to 300 g / L, and a polymer flocculant is added to the initial slurry, so that the solid concentration is concentrated to more than twice that of the initial slurry. 2. The chlorine-containing ash desalting according to claim 1, wherein the chlorine-containing ash is separated into slurry and primary supernatant water, and 40 to 90% of the chlorine content contained in the chlorine-containing ash is transferred to the primary supernatant water and removed from the system. Processing method. 初期濃縮スラリーに洗浄水を加えて固形分濃度10〜150g/Lの希釈スラリーにし、該希釈スラリーを湿式サイクロンに導入して、50%粒子径が30μm以上〜1000μm以下の粗粒を含む粗粒スラリーと、50%粒子径が30μm未満の細粒を含む細粒スラリーとに分級する請求項1または請求項2に記載する塩素含有灰の脱塩処理方法。 Washing water is added to the initial concentrated slurry to form a diluted slurry having a solid content concentration of 10 to 150 g / L. The diluted slurry is introduced into a wet cyclone, and coarse particles containing coarse particles having a 50% particle size of 30 μm to 1000 μm. The method for desalinating chlorine-containing ash according to claim 1 or 2, wherein the slurry is classified into a slurry and a fine slurry containing fine particles having a 50% particle diameter of less than 30 µm . 細粒スラリーに高分子凝集剤を添加して細粒灰を沈降分離させて固形分濃度が該細粒スラリーの2倍以上に濃縮した細粒濃縮スラリーと、二次上澄水とに分離し、該二次上澄水に塩素含有灰に含まれる塩素量の5〜60%を移行させて系外に除去し、該細粒濃縮スラリーを回収する請求項1〜請求項3の何れかに記載する塩素含有灰の脱塩処理方法。   A fine particle slurry is added to a polymer flocculant to precipitate and separate the fine ash, and the solid content is separated into a fine particle concentrated slurry in which the concentration is more than twice that of the fine particle slurry, and the secondary supernatant water, The secondary supernatant water is transferred to 5 to 60% of the amount of chlorine contained in the chlorine-containing ash and removed from the system, and the fine-grained concentrated slurry is recovered. A method for desalinating chlorine-containing ash. 回収した細粒濃縮スラリーを脱水洗浄して、処理開始時の塩素含有灰に含まれる塩素量を1/2〜1/60に低減した細粒洗浄灰を回収する請求項1〜請求項4の何れかに記載する塩素含有灰の脱塩処理方法。   The collected fine-grained concentrated slurry is dewatered and washed, and the fine-grained washed ash with the chlorine content contained in the chlorine-containing ash at the start of treatment reduced to 1/2 to 1/60 is collected. A method for desalinating chlorine-containing ash according to any one of the above. 粗粒スラリーを洗浄し固液分離して、処理開始時の塩素含有灰に含まれる塩素量を1/2〜1/100に低減した粗粒洗浄灰を回収する請求項1〜請求項4の何れかに記載する塩素含有灰の脱塩処理方法。   The coarse-grain slurry is washed and solid-liquid separated, and the coarse-grain wash ash with the chlorine content contained in the chlorine-containing ash at the start of treatment reduced to 1/2 to 1/100 is recovered. A method for desalinating chlorine-containing ash according to any one of the above. 希釈スラリーを湿式サイクロンに導入して細粒スラリーと粗粒スラリーに分級する工程を複数回行う請求項1〜請求項6の何れかに記載する塩素含有灰の脱塩処理方法。   The method for desalinating chlorine-containing ash according to any one of claims 1 to 6, wherein the step of introducing the diluted slurry into a wet cyclone and classifying the slurry into a fine slurry and a coarse slurry is performed a plurality of times. 希釈スラリーを湿式サイクロンに導入して一次細粒スラリーと一次粗粒スラリーに分級し、該一次粗粒スラリーに洗浄水を加えて固形分濃度10〜150g/Lの二次希釈スラリーにし、該二次希釈スラリーを再び湿式サイクロンに導入して二次細粒スラリーと二次粗粒スラリーに分級し、該二次細粒スラリーと上記一次細粒スラリーを混合して総細粒スラリーにし、該総細粒スラリーに高分子凝集剤を加え、細粒を沈降させて細粒濃縮スラリーにする請求項7に記載する塩素含有灰の脱塩処理方法。   The diluted slurry is introduced into a wet cyclone and classified into a primary fine particle slurry and a primary coarse particle slurry. Washing water is added to the primary coarse particle slurry to obtain a secondary diluted slurry having a solid content concentration of 10 to 150 g / L. The secondary dilution slurry is again introduced into the wet cyclone and classified into a secondary fine slurry and a secondary coarse slurry, and the secondary fine slurry and the primary fine slurry are mixed to form a total fine slurry. The method for desalinating chlorine-containing ash according to claim 7, wherein a polymer flocculant is added to the fine particle slurry, and the fine particles are settled to obtain a fine particle concentrated slurry. 粗粒洗浄灰および細粒洗浄灰を回収してセメント原料として用いる請求項1〜請求項8の何れかに記載する塩素含有灰の脱塩処理方法。   The method for desalinating chlorine-containing ash according to any one of claims 1 to 8, wherein the coarse-grained ash and the fine-grained ash are collected and used as a cement raw material. 都市ごみの中間処理から発生する主灰および飛灰、産業廃棄物の中間処理から発生する燃え殻および煤塵、埋め立て処分場の再生工事で発生する掘り起こし灰、またはセメント工場から発生する塩素バイパスダストを処理する請求項1〜請求項9の何れかに記載する塩素含有灰の脱塩処理方法。   Treats main ash and fly ash generated from the intermediate treatment of municipal waste, burning husks and soot generated from the intermediate treatment of industrial waste, excavated ash generated from reclamation work at landfill sites, or chlorine bypass dust generated from cement factories The method for desalinating chlorine-containing ash according to any one of claims 1 to 9. 塩素含有灰に洗浄水を加えて初期スラリーにして塩素を水に浸出する手段、該初期スラリーを撹拌する手段、該初期スラリーに高分子凝集剤を添加する手段、凝集フロックを沈降分離させて初期濃縮スラリーを形成すると共に該塩素含有灰の塩素を一次上澄水に移行させて上澄水と分離する手段、該上澄水を系外に除去する手段、該初期濃縮スラリーに洗浄水を加えて希釈スラリーにする手段、該希釈スラリーを細粒スラリーと粗粒スラリーに分級する湿式サイクロン、該細粒スラリーに高分子凝集剤を加えて細粒を沈降分離させて細粒濃縮スラリーを形成すると共に該細粒の塩素を上澄水に移行させて上澄水と分離する手段、該細粒濃縮スラリーを脱水洗浄して脱塩した細粒洗浄灰を回収する手段、上記粗粒スラリーを脱水洗浄して脱塩した粗粒洗浄灰を回収する手段を備えることを特徴とする塩素含有灰の脱塩処理装置。
Means for adding washing water to chlorine-containing ash to form an initial slurry, leaching chlorine into water, means for stirring the initial slurry, means for adding a polymer flocculant to the initial slurry, and initializing the aggregated floc by settling and separation A means for forming a concentrated slurry and transferring chlorine from the chlorine-containing ash to the primary supernatant water to separate it from the supernatant water; a means for removing the supernatant water from the system; and a dilution slurry by adding washing water to the initial concentrated slurry A wet cyclone for classifying the diluted slurry into a fine-grained slurry and a coarse-grained slurry, and adding a polymer flocculant to the fine-grained slurry to precipitate and separate the fine grains to form a fine-grained concentrated slurry. means for separating the upper supernatant water by migrating grain chlorine above supernatant water, means for recovering fine cleaning ash desalted dehydrated washed said sub grain concentrated slurry, desalted and dehydrated washing the coarse slurry Shi Further comprising means for recovering the coarse cleaning ash desalination apparatus chlorine-containing ash, characterized in.
JP2014212930A 2014-10-17 2014-10-17 Method and apparatus for desalinating chlorine-containing ash Active JP5761544B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212930A JP5761544B1 (en) 2014-10-17 2014-10-17 Method and apparatus for desalinating chlorine-containing ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212930A JP5761544B1 (en) 2014-10-17 2014-10-17 Method and apparatus for desalinating chlorine-containing ash

Publications (2)

Publication Number Publication Date
JP5761544B1 true JP5761544B1 (en) 2015-08-12
JP2016077976A JP2016077976A (en) 2016-05-16

Family

ID=53887749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212930A Active JP5761544B1 (en) 2014-10-17 2014-10-17 Method and apparatus for desalinating chlorine-containing ash

Country Status (1)

Country Link
JP (1) JP5761544B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252653B1 (en) * 2016-10-31 2017-12-27 三菱マテリアル株式会社 Method and system for treating chlorine-containing ash
CN107597416A (en) * 2017-10-27 2018-01-19 尤灵革 A kind of steel mill's electro-precipitating dust comprehensive recycling process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605293B (en) * 2019-09-11 2021-10-01 攀钢集团攀枝花钢铁研究院有限公司 Initial dechlorination process for titanium extraction tailings
JP7365581B2 (en) 2020-02-27 2023-10-20 三菱マテリアル株式会社 Method for measuring chlorine concentration in chlorine-containing ash
JP7434014B2 (en) 2020-03-25 2024-02-20 Ube三菱セメント株式会社 Washing system and method for controlling the washing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061365A (en) * 2007-09-04 2009-03-26 Sumitomo Osaka Cement Co Ltd Washing method for incineration ash
JP2009090173A (en) * 2007-10-04 2009-04-30 Mhi Environment Engineering Co Ltd Water-washing treatment method/system of incineration ash
JP2009142790A (en) * 2007-12-18 2009-07-02 Ube Ind Ltd Method and system of treating dust extracted from cement kiln waste gas
JP2014193456A (en) * 2013-02-27 2014-10-09 Taiheiyo Cement Corp Method and device for converting garbage incineration ash into cement raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061365A (en) * 2007-09-04 2009-03-26 Sumitomo Osaka Cement Co Ltd Washing method for incineration ash
JP2009090173A (en) * 2007-10-04 2009-04-30 Mhi Environment Engineering Co Ltd Water-washing treatment method/system of incineration ash
JP2009142790A (en) * 2007-12-18 2009-07-02 Ube Ind Ltd Method and system of treating dust extracted from cement kiln waste gas
JP2014193456A (en) * 2013-02-27 2014-10-09 Taiheiyo Cement Corp Method and device for converting garbage incineration ash into cement raw material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252653B1 (en) * 2016-10-31 2017-12-27 三菱マテリアル株式会社 Method and system for treating chlorine-containing ash
JP2018069171A (en) * 2016-10-31 2018-05-10 三菱マテリアル株式会社 Treatment method and treatment system for chlorine-containing ash
CN107597416A (en) * 2017-10-27 2018-01-19 尤灵革 A kind of steel mill's electro-precipitating dust comprehensive recycling process

Also Published As

Publication number Publication date
JP2016077976A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5761544B1 (en) Method and apparatus for desalinating chlorine-containing ash
KR101783364B1 (en) Treatment method and treatment device for converting chlorine-containing waste into raw material for cement
JP4823387B1 (en) Material recycling system for producing sand products from mineral mixtures
US20130313167A1 (en) Ash processing and metals recovery systems and methods
JP6252653B1 (en) Method and system for treating chlorine-containing ash
JP7084883B2 (en) Waste incineration ash resource recycling method and resource recycling equipment
US20120298562A1 (en) Ash processing and metals recovery systems and methods
JP2007268398A (en) Treatment method and treatment facility of burnt ash
JP3818924B2 (en) Ash cleaning method and apparatus
JP2017029960A (en) Desalination processing system and desalination processing method of chlorine-containing ash
JP5378301B2 (en) Construction sludge treatment method and reclaimed sand from construction sludge
JP5359197B2 (en) Waste chromium removal method and chromium removal apparatus
JP6436390B2 (en) Method and apparatus for treating incineration ash
JP4595099B2 (en) Method and system for cleaning contaminated soil
JP5417933B2 (en) Method for processing oil-containing granular materials
JP2000197877A (en) Method and apparatus for treating particulate material to which pollutant is adhered
CN110937835A (en) Method for resource utilization of waste incineration slag
RU2407814C2 (en) Procedure for extracting metal from mineral ore containing refractory ore in barren rock and installation for implementation of this procedure
JP6391012B2 (en) Cleaning method for arsenic contaminated soil
JP6497650B2 (en) Cleaning method for arsenic contaminated soil
JP6198651B2 (en) Method and apparatus for converting incinerated ash into cement raw material
JP4348046B2 (en) Treatment method of kiln exhaust gas dust
JP6274978B2 (en) Muddy water treatment system and muddy water treatment method
JP7090564B2 (en) Waste incineration ash resource recycling method and resource recycling equipment
JP2001087739A (en) Recovering method of heavy metal from fly ash

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5761544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150