JP2000197877A - Method and apparatus for treating particulate material to which pollutant is adhered - Google Patents
Method and apparatus for treating particulate material to which pollutant is adheredInfo
- Publication number
- JP2000197877A JP2000197877A JP11223764A JP22376499A JP2000197877A JP 2000197877 A JP2000197877 A JP 2000197877A JP 11223764 A JP11223764 A JP 11223764A JP 22376499 A JP22376499 A JP 22376499A JP 2000197877 A JP2000197877 A JP 2000197877A
- Authority
- JP
- Japan
- Prior art keywords
- granules
- granular material
- contaminants
- particulate matter
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003344 environmental pollutant Substances 0.000 title claims abstract description 14
- 231100000719 pollutant Toxicity 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims description 42
- 239000011236 particulate material Substances 0.000 title abstract description 5
- 238000011282 treatment Methods 0.000 claims abstract description 54
- 239000002245 particle Substances 0.000 claims abstract description 22
- 239000008187 granular material Substances 0.000 claims description 182
- 239000000356 contaminant Substances 0.000 claims description 86
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 70
- 238000012545 processing Methods 0.000 claims description 40
- 239000013618 particulate matter Substances 0.000 claims description 39
- 239000010419 fine particle Substances 0.000 claims description 21
- 238000007670 refining Methods 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 238000012958 reprocessing Methods 0.000 claims description 7
- 238000005469 granulation Methods 0.000 claims description 6
- 230000003179 granulation Effects 0.000 claims description 6
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 43
- 150000002013 dioxins Chemical class 0.000 abstract description 33
- 239000002689 soil Substances 0.000 abstract description 26
- 239000002956 ash Substances 0.000 description 82
- 239000000463 material Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000002002 slurry Substances 0.000 description 13
- 238000010298 pulverizing process Methods 0.000 description 12
- 239000004576 sand Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000001935 peptisation Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 238000007711 solidification Methods 0.000 description 10
- 239000002562 thickening agent Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 239000010865 sewage Substances 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000011221 initial treatment Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000001784 detoxification Methods 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000010813 municipal solid waste Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Crushing And Grinding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、汚染土壌や焼却灰
等の汚染物質が付着された粒状体を細粒化するととも
に、上記粒状体の表面に付着している重金属類やダイオ
キシン類等の汚染物質を離脱させる方法とその装置に関
するものである。BACKGROUND OF THE INVENTION The present invention relates to a method for reducing the size of a granular material to which contaminants such as contaminated soil and incineration ash are attached, and for reducing the weight of heavy metals and dioxins attached to the surface of the granular material. The present invention relates to a method and an apparatus for releasing contaminants.
【0002】[0002]
【従来の技術】従来、リサイクルができない生ゴミ等の
可燃物は、主に、ストーカ式焼却炉あるいは流動床式焼
却炉において焼却され、焼却灰として廃棄物処分場に搬
出されて埋設される。実際の焼却灰には、上記可燃物に
混って焼却された金属屑やガラスあるいは陶器類の欠片
や土砂等も含まれているので、焼却灰の成分としては、
各種金属やシリカ,アルミナ,石灰等が混ざっている。
このような焼却灰は、廃棄量が多いことや、重金属類や
焼却過程で生じたダイオキシン等の有害物質が焼却灰に
付着していることから、焼却灰の減容化及び無害化の方
法あるいは再利用の技術の確立が望まれている。焼却灰
に含まれる鉛,亜鉛,銅,カドミウム等の有害な重金属
類を無害とする方法としては、(1)溶融固化、(2)
セメント固化、(3)薬剤処理、(4)酸やその他の溶
媒による安定化、(5)炭酸塩化処理、(6)水洗浄な
どがある。これらの内で最も確実な方法は(1)の溶融
固化で、これは焼却灰を約1500℃以上の高温で溶融
した後廃棄物処分場に廃棄、または粉砕して微粒片とし
再利用する方法で、この処理方法は現在実用化されてい
る。この処理方法では、重金属類は溶融物の内部に封じ
込められいるので、上記溶融物が水に触れた場合でも上
記重金属類が溶出することはないといわれている。
(2)のセメント固化は、焼却灰にセメントを入れるた
め、廃棄物の量が増大してしまうという致命的な欠点が
ある。その上、セメントの混入によって処理された焼却
灰はアルカリ性が強くなり、かえって鉛などが溶出する
危険性が高い。(3)の薬剤処理では、pH調整が重要
であるが、焼却灰に含まれる物質が一定せずかつ多様な
ことからpH調整が難しく、不適切であると薬剤添加の
効果がないので疑問視されている。(4)の酸やその他
の溶媒による安定化は、重金属類を残存させた状態で安
定化させるので、長期的に溶出を防止することは難し
い。(5)の炭酸塩化処理は維持管理が難しく、その上
装置が複雑なので実用的ではない。(6)の水洗浄は、
酸性雨等で酸性環境にならなければ、比較的容易に重金
属類が除去できるといわれているが、その効果は粉体状
の飛灰で確認されているだけで、焼却灰の場合のよう
に、団粒状態にあるような粒状体に付着されている重金
属類やダイオキシン類に対しては、十分な効果が期待で
きない。また、上述した溶融固化は、焼却灰の処理温度
が高いため、ダイオキシン類を熱分解して無害化するこ
とができるので、現状では、この溶融固化による処理が
最も効果的であるといわれており、この溶融固化が焼却
灰の処理方法の主流となっている。2. Description of the Related Art Conventionally, combustible materials such as garbage that cannot be recycled are mainly incinerated in a stoker-type incinerator or a fluidized-bed incinerator, carried out as incinerated ash to a waste disposal site and buried. The actual incineration ash contains metal scraps, glass or pottery shards, earth and sand, etc., which are incinerated with the above combustibles.
Various metals, silica, alumina, lime, etc. are mixed.
Such incinerated ash has a large amount of waste, and heavy metals and harmful substances such as dioxin generated in the incineration process adhere to the incinerated ash. The establishment of a reuse technology is desired. Methods to render harmful heavy metals such as lead, zinc, copper, and cadmium contained in incinerated ash harmless include (1) melt solidification, (2)
Cement hardening, (3) chemical treatment, (4) stabilization with acid or other solvent, (5) carbonation treatment, (6) water washing. Of these, the most reliable method is the solidification of (1), which is a method of melting incinerated ash at a high temperature of about 1500 ° C or higher and then discarding it at a waste disposal site or pulverizing it and reusing it as fine particles. This processing method is currently in practical use. In this treatment method, since the heavy metals are sealed in the melt, it is said that the heavy metals do not elute even if the melt contacts water.
The cement solidification of (2) has a fatal disadvantage that the amount of waste increases because cement is put into incinerated ash. In addition, the incineration ash treated by the incorporation of cement has a high alkalinity and has a high risk of elution of lead and the like. In the chemical treatment of (3), pH adjustment is important, but it is difficult to adjust the pH because the substances contained in the incineration ash are not constant and various, and if it is inappropriate, there is no effect of adding the chemical, so it is questionable. Have been. The stabilization of (4) with an acid or other solvent is carried out in a state in which heavy metals remain, so that it is difficult to prevent elution over a long period of time. The carbonation treatment of (5) is difficult to maintain and, furthermore, impractical due to the complicated equipment. (6) water washing
It is said that heavy metals can be removed relatively easily if the environment does not become acidic due to acid rain, but the effect has only been confirmed with powdered fly ash. Sufficient effects cannot be expected on heavy metals and dioxins adhering to granular materials in a state of aggregate. Further, in the above-mentioned melt-solidification, since the processing temperature of incinerated ash is high, dioxins can be decomposed by thermal decomposition, and at present, this melt-solidification treatment is said to be the most effective. This melting and solidification is the mainstream of incineration ash processing methods.
【0003】しかしながら、長期的にみると、溶融固化
においても、処分場に埋設された溶融物の内部に封じ込
められている重金属類が溶出する可能性は否定できな
い。また、溶融固化では、焼却灰を高温で溶融するため
に、溶融炉等の大型設備を必要とすることや、多大な燃
料を必要とすることから、設備の建設費や処理コストが
高いといった問題点がある。[0003] However, in the long run, the possibility of elution of heavy metals contained in the melt buried in the disposal site cannot be denied even in the case of melt solidification. In addition, melt solidification requires large equipment such as a melting furnace to melt incinerated ash at a high temperature, and requires a large amount of fuel. There is a point.
【0004】一方、近年、化学工場や金属精錬工場等の
工場近辺の土壌が、重金属類や有機塩素化合物あるいは
油性分等で汚染されていることが問題視されている。ま
た、海難事故等により海に流出した原油で汚染された海
浜の土壌や、原油存在地盤のトンネル掘削に伴い搬出さ
れる掘削土には原油が付着しているため、その処理が困
難となることがしばしばある。更に、問題となる汚染物
質が付着した土壌(汚染土壌)としては、上述した焼却
灰の混入により汚染された土壌も含まれる。このような
汚染土壌に対しても、上記汚染物質を除去し、石,砂,
微粒分等を抽出して再利用する技術の確立が望まれてい
る。On the other hand, in recent years, it has been considered that soil near factories such as chemical factories and metal refining factories is contaminated with heavy metals, organic chlorine compounds, oily components, and the like. In addition, the treatment of the soil on the beach contaminated with crude oil spilled into the sea due to a marine accident or the excavated soil carried out due to the excavation of the tunnel on the ground where crude oil exists is difficult because the crude oil adheres to it. There are often. Further, the soil (contaminated soil) to which the pollutant in question is attached includes the soil contaminated by the incineration ash. For such contaminated soil, the above contaminants are removed and stone, sand,
It is desired to establish a technique for extracting and reusing fine particles and the like.
【0005】一般に、焼却灰に付着しているダイオキシ
ン類は、焼却灰中の2mm以下の大きさの粒状体表面に
比較的強く付着しているといわれている。そこで、焼却
灰中の5mm以上の大きさの粒状体を分級し、上記粒状
体表面に比較的弱く付着しているダイオキシン類を取り
除く処理すれば、この粒状体は無害であり再利用可能と
考えられる。しかしながら、粒状体同士が団粒状態にあ
るような焼却灰を、個々の粒状体を破壊することなく分
離する方法や、ダイオキシン類の比較的強く付着してい
る2mm以下の大きさの粒状体からダイオキシン類を離
脱させる方法については、発明者の知るところでは提案
されていない。更に、焼却灰は軟らかい組織であるの
で、一般の破砕機では焼却灰に付着したダイオキシン類
を離脱させることが困難であるだけでなく、例えば、ボ
ールミル等を用いて焼却灰を粉砕すると、焼却灰の粒状
体も細粒化されてしまい、ダイオキシン類の付着した粒
状体を分離できずかえって減容化が難しくなってしま
う。また、汚染土壌は、粒状体同士が団粒状態となって
いる部分は少ないものの、上記粒状体に付着している重
金属類や油性分等の汚染物質は粒径が極めて小さいた
め、上記焼却灰と同様に、一般の破砕機では上記汚染物
質を離脱させることが困難であるだけでなく、汚染土壌
の土粒子も細粒化されてしまい、上記汚染物質を分離す
ることが困難となる。In general, it is said that dioxins adhering to incinerated ash are relatively strongly attached to the surface of granular material having a size of 2 mm or less in the incinerated ash. Therefore, if the particulate matter having a size of 5 mm or more in the incinerated ash is classified and treated to remove dioxins adhering relatively weakly to the surface of the particulate matter, the particulate matter is considered to be harmless and reusable. Can be However, there is a method of separating incinerated ash in which the granular materials are in a state of aggregate without destruction of the individual granular materials, or from a granular material of 2 mm or less having relatively strong adhesion of dioxins. A method of releasing dioxins has not been proposed to the knowledge of the inventors. Furthermore, since incinerated ash has a soft structure, it is not only difficult to remove dioxins adhering to the incinerated ash with a general crusher, but also, for example, when the incinerated ash is pulverized using a ball mill or the like, The granular material is also finely divided, and the granular material to which dioxins are attached cannot be separated, but it becomes difficult to reduce the volume. In the contaminated soil, although there are few portions where the granular materials are in the aggregated state, the pollutants such as heavy metals and oily substances attached to the granular materials have extremely small particle diameters. Similarly to the conventional crusher, it is difficult not only to remove the contaminant, but also the soil particles of the contaminated soil are finely divided, and it becomes difficult to separate the contaminant.
【0006】ところで、特開平8−164363号公報
には、砂礫や粘土等を含む浚渫土を粉砕することなく、
浚渫土中の石等の鋭角部を取り除くとともに土塊や砂塊
等を破砕する破砕機が開示されている。図9(a),
(b)は、この破砕機10の構成を示す図で、(a)図
は側面図、(b)図は(a)図のA−A断面図である。
破砕機10は、内周面に軸方向に沿って取付けられ、中
心方向に突出する複数の外羽根6Wを有する円筒状の回
転ドラム6と、外周面に軸方向に沿って取付けられ、径
方向に突出する複数の内羽根7Wを有し、上記回転ドラ
ム6の内部に偏心して取付けられたロータ7とを備え、
回転ドラム6の外周に設けられた環状歯車6aをモータ
8により、ロータ7に取付けられた回転軸7aを駆動機
構7bにより、それぞれ互いに逆方向に回転させ、破砕
機10に投入された浚渫土等の投入物に圧縮及びせん断
応力を作用させて上記投入物を破砕したり、破砕された
投入物間の相互摩擦により破砕物を研磨するものであ
る。なお、上記破砕機10による破砕処理は、砕石を研
磨する場合には乾式あるいは湿式で行い、砂礫や粘土等
を含む浚渫土等の土砂を細粒化する場合には、上記投入
物に加水しつつ行う。また、上記投入物に作用する応力
の大きさは、主に、回転ドラム6とロータ7との間隔
(ロータ7の偏心度)と、回転ドラム6及びロータ7の
それぞれの回転速度により調整する。[0006] Japanese Patent Application Laid-Open No. 8-164363 discloses that dredged soil containing gravel, clay, etc., is not crushed.
There is disclosed a crusher for removing an acute angle portion of a stone or the like in a dredged soil and crushing a lump of earth or sand. FIG. 9 (a),
(B) is a figure which shows the structure of this crusher 10, (a) is a side view, (b) is AA sectional drawing of (a).
The crusher 10 is attached to the inner peripheral surface along the axial direction, and has a cylindrical rotary drum 6 having a plurality of outer blades 6W protruding in the center direction. A rotor 7 having a plurality of inner blades 7W protruding from the rotary drum 6 and eccentrically mounted inside the rotary drum 6.
The ring gear 6a provided on the outer periphery of the rotating drum 6 is rotated by the motor 8 and the rotating shaft 7a attached to the rotor 7 is rotated in the opposite directions by the driving mechanism 7b. The above-mentioned materials are subjected to compression and shear stress to crush the above-mentioned materials, or the crushed materials are polished by mutual friction between the crushed materials. The crushing process by the crusher 10 is performed in a dry or wet manner when grinding crushed stones, and when the sand is reduced into fine particles such as dredged soil including gravel and clay, the crushed water is added to the input material. While doing. The magnitude of the stress acting on the input material is adjusted mainly by the distance between the rotary drum 6 and the rotor 7 (the eccentricity of the rotor 7) and the respective rotational speeds of the rotary drum 6 and the rotor 7.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記破
砕機10では、礫や石などを含む浚渫土を破砕する例に
ついては開示されているが、生ゴミや可燃物等の有機物
源を燃焼させた焼却灰のような団粒化された粒状体を、
上記粒状体を破壊することなく分離する方法や、焼却灰
中の粒状体に付着している重金属類やダイオキシン類を
分離して、焼却灰を無害化する方法については何ら示唆
されてはいない。更に、上記破砕機10では、処理材料
がカーボンや油性分のような粘性の大きな汚染物質が付
着している汚染土壌である場合や、汚染物質である重金
属類が個々の粒状体に強く付着しているような場合に
は、上記粒子に付着している汚染物質を有効に離脱させ
ることが困難であった。また、従来の浚渫土を破砕する
工程を一工程のみとしているので、焼却灰や汚染土壌な
どの汚染物質が付着した粒状体を対象としたときには処
理効率がよくなかった。However, in the above-mentioned crushing machine 10, although an example of crushing dredged soil including gravels and stones is disclosed, organic sources such as garbage and combustibles are burned. Agglomerated granules such as incineration ash,
There is no suggestion about a method of separating the above-mentioned granules without destroying them, or a method of separating heavy metals and dioxins adhering to the granules in the incineration ash to make the incineration ash harmless. Furthermore, in the crushing machine 10, when the treatment material is a contaminated soil to which a highly viscous contaminant such as carbon or an oily substance is adhered, or when heavy metals as the contaminant strongly adhere to individual granules, In such a case, it has been difficult to effectively remove contaminants attached to the particles. In addition, since the conventional process of crushing the dredged soil is only one process, the treatment efficiency is not good when the target is a granular material to which contaminants such as incineration ash and contaminated soil are attached.
【0008】本発明は、従来の問題点に鑑みてなされた
もので、汚染土壌や焼却灰等の汚染物質の付着した粒状
体を細粒化するとともに、上記汚染物質を効率的に分離
して除去することのできる汚染物質が付着した粒状体の
処理方法及びその装置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the conventional problems, and is intended to reduce the size of particulate matter to which contaminants such as contaminated soil and incinerated ash are attached and to efficiently separate the contaminants. It is an object of the present invention to provide a method and an apparatus for treating particulate matter to which contaminants that can be removed are attached.
【0009】[0009]
【課題を解決するための手段】本発明の請求項1に記載
の汚染物質が付着した粒状体の処理方法は、汚染物質が
付着した粒状体を処理空隙内に投入し、加水しながら、
圧縮及び粒状体相互間の擦り合わせの力を作用させて、
上記粒状体を独立した粒状体に分離するとともに、上記
粒状体の表面に付着している汚染物質を分離する細粒化
手段により上記粒状体を細粒化する工程を有する汚染物
質が付着した粒状体の処理方法であって、上記細粒化工
程において、上記粒状体に作用する応力を順次大きくす
るようにしたもので、詳細には、はじめに、投入した汚
染物質が付着した粒状体に圧縮応力を作用させ、多数の
粒状体同士が固着している団粒状の汚染物質が付着した
粒状体を、上記粒状体を破壊することなくほぼ独立した
粒状体に分離して細粒化する処理(以下、解砕処理とい
う)を主に行い、次に、上記粒状体に加える応力を大き
くし、上記細粒化された粒状体に対して、主に粒状体相
互間の擦り合わせの力を作用させて、粒状体同士の摩擦
による相互研磨を行わせ、上記粒状体の表面に付着して
いる汚染物質を分離する処理(以下、解膠処理)を行う
ようにしたことを特徴とする汚染物質が付着した粒状体
の処理方法である。According to a first aspect of the present invention, there is provided a method for treating particulate matter to which contaminants are attached, wherein the particulate matter to which contaminants are attached is charged into a treatment space, and water is added thereto.
By applying the force of compression and rubbing between granules,
A step of separating the granules into independent granules and a step of refining the granules by a granulating means for separating contaminants adhering to the surface of the granules; A method for treating a body, wherein the stress acting on the granules is sequentially increased in the fine-graining step. Specifically, first, a compressive stress is applied to the granules to which the contaminant added is attached. To separate the granules to which the aggregated contaminants having a large number of granules adhered into the substantially independent granules without destroying the granules, and to refine the granules (hereinafter referred to as “fine granules”). , A crushing process), and then increase the stress applied to the granules, and mainly apply the force of rubbing between the granules to the refined granules. To achieve mutual polishing by friction between granular materials. Align, processing for separating the contaminants adhering to the surface of the granules (hereinafter, peptizing process) is a method of treating granulate contaminants adhering, characterized in that it has to perform.
【0010】請求項2に記載の汚染物質が付着した粒状
体の処理方法は、1台の細粒化手段により、投入した汚
染物質が付着した粒状体を細粒化処理した後、再度同じ
細粒化手段に投入して再処理を行うとともに、再処理時
には、上記粒状体に加える応力を前回より大きくするよ
うにしたことを特徴とする。According to a second aspect of the present invention, there is provided a method for treating particulate matter to which contaminants have adhered, wherein the granular material to which the contaminants have been applied is refined by a single grain refiner, and then the same fine particles are again processed. It is characterized in that it is supplied to the granulating means for reprocessing, and at the time of reprocessing, the stress applied to the granular material is made larger than the previous time.
【0011】また、請求項3に記載の汚染物質が付着し
た粒状体の処理装置は、処理空隙内に投入された汚染物
質が付着した粒状体に、加水しながら、圧縮及び粒状体
相互間の擦り合わせの力を作用させ、上記粒状体を独立
した粒状体に分離するとともに、上記粒状体の表面に付
着している汚染物質を分離する1台の細粒化手段を有す
る汚染物質が付着した粒状体の処理装置において、上記
細粒化手段における粒状体の処理空隙を下流方向におい
て狭く設定し、汚染物質が付着した粒状体を効率良く解
砕・解膠できるようにしたものである。Further, in the apparatus for treating particulate matter to which contaminants have adhered according to claim 3, the particulate matter to which the contaminants are introduced into the processing space is compressed and mixed between the particulate matter while adding water. A contaminant having one fine-granulating means for separating the contaminants adhering to the surface of the granules is attached while applying the force of rubbing to separate the granules into independent granules. In the granular material processing apparatus, the processing space of the granular material in the above-mentioned fine-granulating means is set narrow in the downstream direction so that the granular material to which the contaminant adheres can be efficiently crushed and peptized.
【0012】請求項4に記載の汚染物質が付着した粒状
体の処理装置は、上記処理空隙を段階的、すなわち不連
続に狭く設定したものである。According to a fourth aspect of the present invention, there is provided an apparatus for treating particulate matter to which contaminants are attached, wherein the processing gap is set stepwise, that is, discontinuously narrow.
【0013】請求項5に記載の汚染物質が付着した粒状
体の処理装置は、処理空隙内に投入された汚染物質が付
着した粒状体に、加水しながら、圧縮及び粒状体相互間
の擦り合わせの力を作用させ、上記粒状体を独立した粒
状体に分離するとともに、上記粒状体の表面に付着して
いる汚染物質を分離する細粒化手段を複数段に渡って設
け、上記粒状体が各細粒化手段を順次通過するようにす
るとともに、上記細粒化手段の処理空隙を下流段におい
て次第に狭く設定したものである。According to a fifth aspect of the present invention, there is provided an apparatus for treating a particulate matter to which contaminants have adhered, the compression and rubbing between the particulate matter while adding water to the particulate matter to which the contaminant has been adhered, which has been introduced into the processing space. Force, to separate the granules into independent granules, and to provide a plurality of stages of fine-graining means for separating contaminants adhering to the surface of the granules, wherein the granules are In this case, the material passes through each of the fine-graining means sequentially, and the processing space of the fine-graining means is set to be gradually narrower in the downstream stage.
【0014】請求項6に記載の汚染物質が付着した粒状
体の処理装置は、細粒化手段により細粒化処理された粒
状体の中から、汚染物質を含まない粒径の大きな粒状体
を分離する手段を備えたものである。According to a sixth aspect of the present invention, there is provided an apparatus for treating a particulate matter to which contaminants are adhered, from among the particulate substances which have been subjected to the fine-graining treatment by the fine-granulating means, the granular substance having a large particle diameter containing no contaminants. It is provided with a separating means.
【0015】請求項7に記載の汚染物質が付着した粒状
体の処理装置は、上記細粒化手段を、内周面に軸方向に
沿って取付けられ、中心方向に突出する複数の外羽根を
有する円筒状の回転ドラムと、外周面に軸方向に沿って
取付けられ径方向に突出する複数の内羽根を有し、上記
回転ドラムの内部に回転ドラムに対し偏心して取付けら
れた、上記回転ドラムと逆方向に回転するロータとを備
えた構成としたものである。According to a seventh aspect of the present invention, there is provided an apparatus for treating particulate matter to which contaminants are adhered, comprising a plurality of outer blades attached to an inner peripheral surface of the granule body along an axial direction and projecting in a central direction. The rotary drum having a cylindrical rotary drum having a plurality of inner blades mounted on an outer peripheral surface along an axial direction and projecting in a radial direction, and mounted eccentrically with respect to the rotary drum inside the rotary drum. And a rotor rotating in the opposite direction.
【0016】[0016]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面に基づき説明する。 実施の形態1.図1は、本発明の実施の形態1に係わる
汚染物質が付着した粒状体の処理装置の構成を示すブロ
ック図である。同図において、1は粒状体の細粒化装置
(手段)であり、これは、処理材料である汚染物質が付
着した粒状体に加水し、上記粒状体の粗い解砕処理を行
うための第1の細粒化手段である一次細粒化機11と、
この一次細粒化機11で解砕処理された上記粒状体に加
水し、上記粒状体の解砕・解膠処理を行うための第2の
細粒化手段である二次細粒化機12とを備えている。1
3は処理する汚染物質が付着した粒状体を投入する受け
入れホッパ、14は上記受け入れホッパ13に投入され
た上記粒状体から数cm以上の夾雑物を排除するための
予備選別手段、15は上記細粒化装置1で解砕・解膠処
理された粒状体を含んだスラリーの中から5mm以上の
粒状体を選別し分離する振動スクリーン、16は液体サ
イクロンやシックナータンク等の分級手段を備え、上記
振動スクリーン15から送出された5mm以下の粒状体
含むスラリーの中から種々の大きさの粒状体を分級する
ための分級手段である。また、17は上記細粒化装置1
及び上記分級手段16に処理水を供給する給水部、18
は上記分級手段16から排出される処理水を浄化する汚
水処理部である。Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. FIG. 1 is a block diagram illustrating a configuration of a processing apparatus for a granular material to which a contaminant adheres according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a granule refiner (means) for adding fine particles to which contaminants, which are processing materials, are adhered and for performing coarse crushing of the granules. A primary refiner 11 which is a first refiner,
A secondary granulator 12 as a second granulating means for adding water to the granules crushed by the primary granulator 11 and crushing and pulverizing the granules. And 1
Numeral 3 denotes a receiving hopper for charging the granular material to which the contaminant to be treated is attached, numeral 14 denotes a preliminary sorting means for removing impurities of several cm or more from the granular material charged to the receiving hopper 13, and numeral 15 denotes the fine particle. A vibrating screen for selecting and separating granules having a size of 5 mm or more from a slurry containing granules pulverized and peptized by the granulator 1; 16 is provided with a classification means such as a liquid cyclone or a thickener tank; This is a classification means for classifying various sizes of granules from a slurry containing granules of 5 mm or less sent from the vibrating screen 15. Reference numeral 17 denotes the above-mentioned grain refining apparatus 1
And a water supply section 18 for supplying treated water to the classification means 16,
Is a sewage treatment section for purifying treated water discharged from the classification means 16.
【0017】図2は、細粒化装置1の一構成例を示す図
で、細粒化装置1は、一次細粒化機11と二次細粒化機
12とを1つのシェル2内に組み込み、共通の動力機3
により稼動するように構成されている。なお、図2にお
いて、4は処理材料である汚染物質が付着した粒状体を
投入する処理材料投入口、5は一次細粒化機11及び二
次細粒化機12のそれぞれの処理空隙内で順次解砕・解
膠された上記粒状体を排出する処理材料排出口である。
上記一次細粒化機11と上記二次細粒化機12の基本構
造は、ともに、上述した従来の破砕機10と略同様であ
るが、稼動条件が上記破砕機10の破砕を主体とした条
件とは異なり、一次細粒化機11は解砕を主とする処理
を行うような条件に設定され、二次細粒化機12は解膠
を主とする処理を行うような条件に設定されている。す
なわち、汚染物質が付着した粒状体に対して粗い解砕処
理を行う一次細粒化機11は、図3(a)に示すよう
に、ロータ7の偏心量を小さくすることにより回転ドラ
ム6とロータ7との間隔D1を比較的広くするととも
に、回転速度を低速としている。また、上記粒状体に対
して解膠を主体とする処理を行う二次細粒化機12で
は、図3(b)に示すように、ロータ7の偏心量を大き
くて回転ドラム6とロータ7との間隔D2を狭くし、か
つ回転速度を高速にしている。なお、上記従来の破砕機
10は、破砕処理を主としているので、この二次細粒化
機12よりも更に回転ドラム6とロータ7との間隔が狭
く回転速度も高速であると考えられる。FIG. 2 is a diagram showing an example of the structure of the grain refiner 1. The grain refiner 1 includes a primary grain refiner 11 and a secondary grain refiner 12 in a single shell 2. Built-in, common power machine 3
It is configured to operate. In FIG. 2, reference numeral 4 denotes a processing material input port for inputting a granular material to which a contaminant, which is a processing material, is attached. Reference numeral 5 denotes a processing space in each of the primary and secondary granulating machines 11 and 12. This is a processing material discharge port for discharging the granular material that has been sequentially pulverized and peptized.
The basic structures of the primary crusher 11 and the secondary crusher 12 are substantially the same as those of the conventional crusher 10 described above, but the operating conditions are mainly crushing of the crusher 10. Unlike the conditions, the primary granulator 11 is set to a condition for performing a process mainly for pulverization, and the secondary granulator 12 is set to a condition for performing a process mainly for pulverization. Have been. That is, as shown in FIG. 3A, the primary fine-granulating machine 11 that performs a coarse crushing process on the granular material to which the contaminant adheres can reduce the amount of eccentricity of the rotor 7 so that with relatively wide spacing D 1 of the rotor 7, and the rotational speed and low speed. In addition, in the secondary fine-granulating machine 12 which performs a process mainly based on peptization of the above-mentioned granular material, as shown in FIG. to reduce the distance D 2 between and has a rotational speed to high speed. Since the conventional crusher 10 mainly performs the crushing process, it is considered that the interval between the rotary drum 6 and the rotor 7 is narrower and the rotation speed is higher than that of the secondary granulator 12.
【0018】一次細粒化機11または二次細粒化機12
中では、図4に示すように、処理空隙である回転ドラム
6とロータ7との間隙に投入された汚染物質が付着した
粒状体Sは、回転ドラム6の外羽根6Wによって上方に
掻き上げられるとともに、ロータ7の内羽根7Wによっ
て下方に引き下げられるので、上記粒状体Sには圧縮応
力とともにせん断応力が作用し上記粒状体Sは解砕・解
膠処理される。すなわち、図5(a)に示すように、粒
状体同士が固着面rで固着されて団粒状態となっている
汚染物質が付着した粒状体の各粒状体pあるいは粒状体
同士が固着してはいないが大きさの大きい粒状体pに圧
縮応力及びせん断応力が作用し、上記団粒状の各粒状体
が上記固着面rのところから分かれてほぼ独立した細か
な粒状体pに細粒化される(解砕)とともに、図5
(b)に示すように、粒状体同士に擦り合わせ方向の力
が作用し、粒状体p相互の摩擦により各粒状体の表面に
付着された重金属類やダイオキシン類などの汚染物質q
の粒状片が剥離され粒状体pから分離される(解膠)。
なお、上記汚染物質qは、団粒状の粒状体の表面だけで
なく、各粒状体pの表面である上記固着面rにも付着さ
れている(図5(a)参照)。したがって、解砕時に
は、団粒状の粒状体の表面に付着されている異物や汚染
物質qの一部は剥離されることもあるが、ほとんどは上
記解膠処理の際に粒状体pの表面から分離される。ま
た、一部の大きさの大きい粒状体の中には破砕されて細
粒化されるものもある。このとき、上記一次細粒化機1
1及び二次細粒化機12には、給水部17からの処理水
が図示しない給水口を通って供給される。細粒化装置1
に投入された汚染物質が付着した粒状体は、上記処理水
が加水された状態で解砕・解膠されるので、上記剥離さ
れた汚染物質の内、重金属類あるいはダイオキシン類
は、上記処理水中に溶解したりあるいは微粒片として浮
遊する。[0018] Primary refiner 11 or secondary refiner 12
In the inside, as shown in FIG. 4, the granular material S attached to the gap between the rotating drum 6 and the rotor 7, which is the processing gap, to which the contaminant adheres is scraped upward by the outer blades 6 </ b> W of the rotating drum 6. At the same time, since the granular material S is pulled down by the inner blades 7W of the rotor 7, a compressive stress and a shear stress act on the granular material S, and the granular material S is pulverized and peptized. That is, as shown in FIG. 5 (a), the granular materials p or the granular materials adhered to the aggregated contaminants are adhered to each other at the adhered surface r. However, compressive stress and shear stress act on the large-sized granular material p, and the aggregated granular materials are separated from the fixing surface r to be finely divided into almost independent fine granular materials p. Fig. 5
As shown in (b), a force in the rubbing direction acts on the granular materials, and contaminants q such as heavy metals and dioxins attached to the surface of each granular material due to friction between the granular materials p.
Is separated from the granular material p (peptization).
The contaminant q is attached not only to the surface of the aggregated granular material, but also to the fixing surface r, which is the surface of each granular material p (see FIG. 5A). Therefore, at the time of pulverization, some of the foreign matter and the contaminant q attached to the surface of the aggregated granular material may be peeled off, but most of the foreign matter and the contaminant q are removed from the surface of the granular material p during the peptization treatment. Separated. Some large-sized granular materials are crushed and refined. At this time, the primary granulating machine 1
The treated water from the water supply unit 17 is supplied to the primary and secondary grain refiners 12 through a water supply port (not shown). Atomizer 1
The particulate matter to which the contaminants are attached is pulverized and deflocculated in a state in which the treated water is hydrolyzed, and among the separated contaminants, heavy metals or dioxins are contained in the treated water. Dissolved in water or suspended as fine particles.
【0019】次に、処理材料が焼却灰である場合を例に
とって、上記処理装置による汚染物質が付着した粒状体
の処理方法について説明する。まず、受け入れホッパ1
3に投入された焼却灰は、予備選別機14により、数c
m以上の夾雑物を排除された後、細粒化装置1の処理材
料投入口4から一次細粒化機11に投入される。回転ド
ラム6とロータ7との間隔の広い一次細粒化機11で
は、処理水と混合された焼却灰に対して粗い解砕を行
い、団粒状となっている焼却灰の個々の粒状体を破壊す
ることなく分離させつつ、上記焼却灰を一次細粒化機1
1の下流側に移動させ、二次細粒化機12に送る。この
とき、焼却灰の表面に弱く付着している重金属類やダイ
オキシン等の微粒片は剥離されて処理水中に浮遊し、容
易に溶解する重金属類は上記処理水中に溶解する。な
お、上記一次細粒化機11においては、焼却灰にかかる
応力を従来装置である破砕機10よりも十分低く設定し
てあるので、焼却灰に混入されている砂礫や陶器片等の
粒状体は破砕されずに排出される。二次細粒化機12
は、一次細粒化機11よりも回転ドラム6とロータ7と
の間隔が狭く、かつ高速回転であるので、焼却灰を更に
細かい粒状体に分離したり(解砕)、大きさの大きい粒
状体の一部を細粒化するとともに、焼却灰に強く付着し
ている重金属類やダイオキシンの微粒片を粒状体相互の
摩擦により離脱(解膠)させつつ上記焼却灰を下流側に
移動させ、処理材料排出口5から振動スクリーン15に
送出する。このとき、容易に溶解する重金属類は上記処
理水中に溶解するとともに、粒状体より分離された重金
属類やダイオキシン等の微粒片は処理水中に浮遊された
状態で、上記焼却灰とともに処理材料排出口5から排出
される。Next, a method of treating particulate matter to which contaminants are attached by the above-described treatment apparatus will be described, taking as an example a case where the treatment material is incinerated ash. First, receiving hopper 1
The incineration ash charged in 3 is subjected to several c
After the impurities of m or more have been removed, the impurities are introduced into the primary granulator 11 through the treatment material inlet 4 of the granulator 1. In the primary granulator 11 in which the distance between the rotary drum 6 and the rotor 7 is wide, coarse incineration of the incinerated ash mixed with the treated water is performed to separate the individual granulated incinerated ash. The above incinerated ash is separated into primary crushers 1 without breaking.
1 and sent to the secondary granulator 12. At this time, fine particles such as heavy metals and dioxin that are weakly adhered to the surface of the incinerated ash are separated and float in the treated water, and the heavy metals that are easily dissolved are dissolved in the treated water. In the primary granulator 11, since the stress applied to the incinerated ash is set sufficiently lower than that of the conventional crusher 10, the granular material such as gravel and pottery pieces mixed in the incinerated ash. Is discharged without crushing. Secondary refiner 12
Since the distance between the rotary drum 6 and the rotor 7 is narrower than that of the primary granulator 11 and the rotation speed is high, the incinerated ash is separated into finer granules (crushed) or the larger Along with making part of the body finer, the above incinerated ash is moved to the downstream side while separating (peptizing) heavy metal and dioxin fine particles that are strongly attached to the incinerated ash by friction between the granular materials, The material is sent from the processing material discharge port 5 to the vibrating screen 15. At this time, the heavy metals that are easily dissolved dissolve in the treatment water, and fine particles such as heavy metals and dioxins separated from the granular material are suspended in the treatment water, and the treatment material outlet is disposed together with the incineration ash. Exhausted from 5
【0020】振動スクリーン15は、細粒化装置1から
送られてきた泥状の焼却灰に加水しながら、上記焼却灰
から5mm以上の粒状体を篩い分けするものである。こ
の振動スクリーン15を通過する5mm以下の粒状体は
分級手段16に送られ、種々の大きさの粒状体に分級さ
れる。上記粒状体から離脱した重金属類やダイオキシン
類は、処理水中とともに分級手段16に送られ処理され
たり、分級手段16を経由して汚水処理部18に送られ
処理される。一方、上記振動スクリーン15で捕獲され
た5mm以上の粒状体(主に礫や細かい陶器片等)は、
ダイオキシン類の付着がほとんどないので、無害であり
再利用可能である。The vibrating screen 15 sifts granules of 5 mm or more from the incinerated ash while adding water to the mud-like incinerated ash sent from the granulating apparatus 1. Granules having a size of 5 mm or less passing through the vibrating screen 15 are sent to a classification means 16 and classified into granules having various sizes. The heavy metals and dioxins released from the granular material are sent to the classification means 16 together with the treated water for treatment, or sent to the sewage treatment unit 18 via the classification means 16 for treatment. On the other hand, the granular material (mainly gravels and fine ceramic pieces, etc.) of 5 mm or more captured by the vibrating screen 15 is
Since there is almost no adhesion of dioxins, it is harmless and can be reused.
【0021】分級手段16では、5mm以下の粒状体を
含む泥状の焼却灰から、砂分や微粒砂や灰の成分である
細かな粒状体等の種々の大きさの粒状体を分級する。な
お、分級手段16で分級した約20μm以下の微粒片は
ダイオキシン類を多く含む微粒片と見做し、例えば溶融
固化するなどの無害化処理を行う。一方、処理水中に浮
遊または溶出した重金属類は、汚水処理部18において
薬品処理などを施されて処理水から分離され、上記浄化
された処理水は循環水として再利用される。また、約2
0μm以上の粒状体を含んだ泥土は、重金属類やダイオ
キシン類が取り除かれて無害化されているので再利用さ
れる。The classification means 16 classifies various sizes of granules such as sand, fine granules and fine granules which are components of ash from mud-like incinerated ash containing granules of 5 mm or less. The fine particles having a size of about 20 μm or less classified by the classification means 16 are regarded as fine particles containing a large amount of dioxins, and are subjected to detoxification treatment such as melting and solidification. On the other hand, heavy metals floating or eluted in the treated water are subjected to chemical treatment or the like in the sewage treatment section 18 to be separated from the treated water, and the purified treated water is reused as circulating water. Also, about 2
Mud containing particulate matter of 0 μm or more is reused because heavy metals and dioxins are removed and made harmless.
【0022】汚染土壌の処理方法も、上記焼却灰の場合
と同様であるが、土粒子は団粒化していることが少ない
と思われるので、細粒化装置1においては、一次細粒化
機11,二次細粒化機12ともに、上記図5(b)に示
す解膠作用が主となる。なお、焼却灰を含んだ汚染土壌
の場合には、一次細粒化機11では粗い解砕処理を行
い、二次細粒化機12では解砕及び解膠処理を行う。The method of treating contaminated soil is the same as that of the above-mentioned incinerated ash. However, it is considered that the soil particles are hardly aggregated. Both the pulverizer 11 and the secondary granulator 12 mainly have the peptizing action shown in FIG. 5B. In the case of contaminated soil containing incinerated ash, the primary crusher 11 performs a coarse crushing process, and the secondary crusher 12 performs a crushing and deflocculation process.
【0023】このように、本実施の形態1によれば、回
転ドラム6とロータ7との間隔D1を比較的広くすると
ともに、回転速度を低速とした一次細粒化機11によ
り、汚染物質が付着した粒状体に対して粗い解砕を行っ
て上記粒状体を細粒化した後、回転ドラム6とロータ7
との間隔D2を狭くし、かつ回転速度を高速にした二次
細粒化機12により、上記一次細粒化機11で細粒化さ
れた粒状体に対して、主に粒状体相互間の擦り合わせの
力を作用させて粒状体同士の摩擦による相互研磨を行わ
せ、上記粒状体表面に強く付着している重金属類あるい
はダイオキシン類などの汚染物質を分離するようにした
ので、汚染土壌や焼却灰に付着した汚染物質を効率よく
取り除くことができるとともに、上記粒状体の分級を容
易にすることができる。また、振動スクリーン15と分
級手段16により、細粒化装置1手段により細粒化処理
された粒状体の中から、汚染物質を含まない粒状体を分
離するようにしたので、汚染物質が分離され無害化され
た粒状体をリサイクル可能な資源にして再使用すること
ができる。As described above, according to the first embodiment, the distance D 1 between the rotary drum 6 and the rotor 7 is relatively widened, and the contaminant is reduced by the primary granulator 11 having a low rotation speed. After coarsely crushing the granular material to which the particles have adhered to make the granular material finer, the rotating drum 6 and the rotor 7
To reduce the distance D 2 between and by the rotational speed and the high speed secondary comminution machine 12 for fine grained particulate material in the primary comminution device 11, mainly between granules mutual The frictional force between the granular materials is applied to each other to cause mutual polishing by friction between the granular materials to separate contaminants such as heavy metals or dioxins strongly adhered to the surface of the granular materials. And the contaminants attached to the incineration ash can be efficiently removed, and the classification of the granular material can be facilitated. In addition, since the vibrating screen 15 and the classifying means 16 separate the granular material containing no pollutant from the granular material which has been subjected to the fine-graining treatment by the fine-granulating device 1, the pollutant is separated. The detoxified granules can be reused as recyclable resources.
【0024】なお、上記実施の形態1においては、一次
細粒化機11と二次細粒化機12の2台の細粒化機(細
粒化手段)を用いて解砕・解膠処理を行ったが、1台の
細粒化機11により、解砕・解膠の再処理を複数回行う
とともに、再処理時には、ロータ7の偏心量を前回より
も大きくして回転ドラム6とロータ7との間隔を小さく
するか、あるいは回転ドラム6とロータ7との相対的な
回転速度を早くするか、ないしは偏心量を大きくすると
ともに上記回転速度を高速にし、汚染物質が付着した粒
状体に加える応力を前回より大きくすることにより、上
記粒状体の解砕・解膠処理を行うようにしてもよい。あ
るいは、図6(a)に示すように、ロータ7の下流側の
内羽根72Wの周方向の高さを、上流側の内羽根71W
の高さよりも高くして、処理空隙であるロータ7と回転
ドラム6との間隔を下流方向において段階的に、すなわ
ち不連続に狭く設定した1台の細粒化装置を用いること
により、投入された汚染物質が付着した粒状体に加える
応力を順次大きくした解砕・解膠処理を行ってもよい。
すなわち、1台の装置において、汚染物質が付着した粒
状体を処理する処理空隙を下流方向において急激に狭く
なるような構成とすることにより、上記細粒化装置の上
流側における上記粒状体の滞留時間を長くし、上記粒状
体に対して解砕を主とする処理を十分に行った後、下流
側で上記粒状体に加える応力を大きくして、上流側で独
立した個々の粒状体に分離された粒状体に対して解膠を
主とした処理を行うことができる。これにより、1台の
装置であっても汚染物質が付着した粒状体の解砕・解膠
処理を連続的にかつ効率良く行うことができる。なお、
ロータ7と回転ドラム6との間隔を下流方向において小
さく設定するには、図6(b)に示すように、ロータ7
の内羽根7Wの高さは全て同じにして、ロータ7の下流
側7Rの外径を、上流側7Fの外形よりも大きくするよ
うな構成としてもよい。In the first embodiment, the pulverizing / pulverizing process is performed by using two refining machines (refining means) of the primary refining machine 11 and the secondary refining machine 12. However, reprocessing of crushing and deflocculation is performed a plurality of times by one granulation machine 11, and at the time of reprocessing, the amount of eccentricity of the rotor 7 is made larger than the previous time, so that the rotating drum 6 7 or the relative rotational speed of the rotating drum 6 and the rotor 7 is increased, or the eccentricity is increased and the rotational speed is increased to reduce the amount of contaminant-adhered particles. The crushing and peptizing treatment of the granular material may be performed by increasing the applied stress from the previous time. Alternatively, as shown in FIG. 6A, the height of the inner blade 72 </ b> W on the downstream side of the rotor 7 in the circumferential direction is changed to the inner blade 71 </ b> W on the upstream side.
, And the gap between the rotor 7 and the rotating drum 6, which is the processing gap, is stepwisely set in the downstream direction, that is, by using a single grain refiner that is set to be discontinuously narrow. Pulverization and peptization may be performed by sequentially increasing the stress applied to the granular material to which the pollutant adheres.
That is, in one apparatus, the processing gap for treating the particulate matter to which the contaminant adheres is configured to be sharply narrowed in the downstream direction, so that the particulate matter is retained on the upstream side of the grain refiner. After lengthening the time and sufficiently performing processing mainly on crushing of the granular material, increasing the stress applied to the granular material on the downstream side to separate the granular material into individual particles on the upstream side The pulverized particles can be subjected to treatment mainly for peptization. Thus, even with a single device, it is possible to continuously and efficiently perform the crushing and peptizing treatment of the granular material to which the contaminant has adhered. In addition,
To set the distance between the rotor 7 and the rotating drum 6 small in the downstream direction, as shown in FIG.
And the outer diameter of the downstream side 7R of the rotor 7 may be larger than the outer diameter of the upstream side 7F.
【0025】また、上記図1〜図3の例では、汚染物質
が付着した粒状体を解砕・解膠処理する手段を2段とし
たが、処理段数はこれに限るものではない。例えば、二
次細粒化機12の下流に、更に、上記二次細粒化機12
よりもロータ7と回転ドラム6との間隔を小さく設定し
た三次細粒化機を設けて、上記二次細粒化機12で処理
された粒状体の解膠を更に進めるようにすれば、上記粒
状体に強く付着している重金属類あるいはダイオキシン
類を確実に離脱させることができる。Further, in the examples shown in FIGS. 1 to 3, the means for crushing and pulverizing the granular material to which the contaminant adheres is provided in two stages, but the number of processing stages is not limited to this. For example, downstream of the secondary granulator 12,
By providing a tertiary granulator in which the distance between the rotor 7 and the rotary drum 6 is set to be smaller than that, and further pulverizing the granular material processed by the secondary granulator 12, Heavy metals or dioxins strongly adhered to the granular material can be reliably removed.
【0026】実施の形態2.図7は、本発明の実施の形
態2に係わる焼却灰の処理システムの処理フローを示す
図で、本実施の形態2では、上述した実施の形態1と同
様の細粒化装置1を用いて投入された焼却灰を連続的に
処理し、焼却灰を細粒化するとともに、効率良く焼却灰
中の有害物を除去し、排出された無害な粒状体を再利用
するようにしたものである。まず、受け入れホッパ13
に投入された焼却灰をベルトコンベアにより搬送して一
次細粒化機11に投入する。一次細粒化機11では、給
水部17の後述する二次処理水槽53からの処理水を上
記焼却灰に加水し、上記焼却灰に対して粗い解砕を行
い、焼却灰を種々の大きさの粒状体に分離するととも
に、焼却灰の表面に弱く付着しているダイオキシン類や
重金属類を上記処理水中に浮遊あるいは溶解した状態で
離脱させつつ、上記焼却灰を下流側に移動させ、一次細
粒化機11の排出口11aから排出する。一次細粒化機
11では、回転ドラム6とロータ7との間隔が広く、か
つ低速回転であるので、大型の金属類や挟雑物等の固形
物は解砕されずに排出される。この大型の固形物は、上
記排出口11aに設けられた約30mmの分級用の網1
1bにより捕獲されて除去され、ベルトコンベアにより
搬出される。一方、約30mm以下の粒状体となった焼
却灰は、5mm〜10mm程度の一次選別振動スクリー
ン20により篩い分けされる。篩い分けされた10mm
以下の焼却灰は、磁気式金属除去機21において、焼却
灰中の金属片を取り除いた後に、二次細粒化機12に送
られる。一方、10mm〜30mm程度の大きさの粒状
体はベルトコンベアにより搬出され再利用または破棄さ
れる。なお、上記一次選別振動スクリーン20には給水
部17から水が供給され、一次選別振動スクリーン20
を通過した水は、後述する第1のフィードサンプ23に
送られる。Embodiment 2 FIG. FIG. 7 is a diagram showing a processing flow of the incineration ash processing system according to the second embodiment of the present invention. In the second embodiment, the same granulation apparatus 1 as in the first embodiment is used. The incinerated ash is continuously treated to reduce the incinerated ash, and the harmful substances in the incinerated ash are efficiently removed, and the harmless particulate matter discharged is reused. . First, the receiving hopper 13
The incineration ash charged in the hopper is transported by a belt conveyor and is charged into the primary granulator 11. In the primary granulator 11, treated water from a secondary treatment water tank 53, which will be described later, of the water supply unit 17 is added to the incinerated ash, and the incinerated ash is coarsely crushed, and the incinerated ash is reduced in size. While separating dioxins and heavy metals that are weakly adhering to the surface of the incinerated ash while floating or dissolving them in the treated water, the incinerated ash is moved to the downstream side, It is discharged from the discharge port 11a of the granulator 11. In the primary granulator 11, since the distance between the rotary drum 6 and the rotor 7 is wide and the rotation speed is low, solids such as large metals and contaminants are discharged without being crushed. This large solid material is supplied to the discharge net 11a with a classifying mesh 1 of about 30 mm.
It is captured and removed by 1b and carried out by a belt conveyor. On the other hand, the incinerated ash formed into a granular material having a size of about 30 mm or less is sieved by the primary screening vibrating screen 20 of about 5 mm to 10 mm. 10mm sieved
The following incinerated ash is sent to the secondary grain refiner 12 after removing metal pieces in the incinerated ash in the magnetic metal remover 21. On the other hand, granules having a size of about 10 mm to 30 mm are carried out by a belt conveyor and reused or discarded. In addition, water is supplied from the water supply unit 17 to the primary sorting vibrating screen 20, and the primary sorting vibrating screen 20 is supplied.
Is sent to a first feed sump 23 described later.
【0027】一次選別振動スクリーン20を通過した焼
却灰は、概ね10mm以下の粒状体となっているので、
二次細粒化機12では、給水部17からの処理水を上記
焼却灰に加水するともに、回転ドラム6とロータ7との
間隔を狭くしかつ回転速度を高速にし、焼却灰に対し
て、主に粒状体同士の摩擦による相互研磨を行わせ、焼
却灰に強く付着している重金属類やダイオキシン類を離
脱させつつ上記焼却灰を下流側に移動させ、二次細粒化
機12の排出口12aから、二次選別振動スクリーン2
2に送る。二次選別振動スクリーン22は、上記焼却灰
から5mm以下の粒状体を篩い分けるもので、二次選別
振動スクリーン22から排出される5mm以下の砂分や
細粒化された灰粒子等の粒状体を含んだ泥状の焼却灰
は、第1のフィードサンプ23に一時貯蔵され後、分級
手段16により種々の大きさの粒状体に分級される。ま
た、上記二次選別振動スクリーン22で篩い分けされた
5mm〜10mm程度の砂礫や細かい陶器片を主とした
粒状体は搬出され再利用あるいは廃棄される。The incinerated ash that has passed through the primary sorting vibrating screen 20 is in the form of granular material having a size of approximately 10 mm or less.
In the secondary grain refiner 12, the treated water from the water supply unit 17 is added to the incineration ash, and the interval between the rotary drum 6 and the rotor 7 is reduced and the rotation speed is increased. The incineration ash is moved to the downstream side while the heavy metals and dioxins strongly adhering to the incineration ash are removed by causing mutual polishing mainly by friction between the granular bodies, and the secondary crusher 12 is discharged. From the outlet 12a, the secondary sorting vibrating screen 2
Send to 2. The secondary sorting vibrating screen 22 is used for sieving a granular material of 5 mm or less from the incinerated ash, and the granular material such as sand or fine ash particles of 5 mm or less discharged from the secondary sorting vibrating screen 22. Is temporarily stored in the first feed sump 23 and then classified by the classification means 16 into granules of various sizes. Further, the granular material mainly composed of gravel and fine porcelain pieces of about 5 mm to 10 mm sieved by the secondary sorting vibrating screen 22 is carried out and reused or discarded.
【0028】次に、分級手段16における分級処理につ
いて詳細に説明する。フィードサンプ23に貯蔵された
5mm以下の粒状体を含んだ泥状の焼却灰は、第1の液
体サイクロン30に送られ分級される。第1の液体サイ
クロン30では、約100μm以下の粒状体を処理水中
に浮遊させて分離する。上記第1の液体サイクロン30
の上部から排出された約100μm以下の粒状体を含ん
だ処理水は、第1のフィードサンプ23に一時貯蔵され
た後、第2のフィードサンプ33に送られる。一方、第
1の液体サイクロン30の底部から排出された粒径が1
00μmを越える粒状体を含むスラリーは、第1のスピ
ゴットタンク31に送られた後、第1の脱水振動スクリ
ーン32で約100μm以上の砂分を主体とした粒状体
が分離されて、第2のフィードサンプ33に送られる。
同様に、第2のフィードサンプ33に貯蔵された約10
0μm以下の粒状体となった焼却灰は、第2の液体サイ
クロン34と第2の脱水振動スクリーン36とにより、
20〜100μmの微粒砂を主とした粒状体と20μm
以下の微粒片とに分級される。すなわち、第2の液体サ
イクロン34の上部から排出された約20μm以下の微
粒片を含んだ処理水は、第2のフィードサンプ33に一
時貯蔵された後、ゴミ処理トロンメル37を介してシッ
クナータンク40に送られる。また、一方、第1の液体
サイクロン30の底部から排出された粒径が20μmを
越える粒状体を含むスラリーは、第2のスピゴットタン
ク35に送られた後、第2の脱水振動スクリーン36に
より、約20μm以上の微粒砂を主体とした粒状体が分
離されて、シックナータンク40に送られる。Next, the classification process in the classification means 16 will be described in detail. The mud-like incineration ash containing the granular material of 5 mm or less stored in the feed sump 23 is sent to the first liquid cyclone 30 and classified. In the first hydrocyclone 30, particles having a size of about 100 μm or less are separated by being suspended in treated water. The first hydrocyclone 30
The treated water containing particulate matter having a size of about 100 μm or less discharged from the upper portion is temporarily stored in the first feed sump 23 and then sent to the second feed sump 33. On the other hand, when the particle diameter discharged from the bottom of the first hydrocyclone 30 is 1
After the slurry containing the particulate matter exceeding 00 μm is sent to the first spigot tank 31, the particulate matter mainly composed of sand of about 100 μm or more is separated by the first dewatering vibration screen 32, It is sent to the feed sump 33.
Similarly, about 10% of the second feed sump 33 is stored.
The incinerated ash that has become a granular material of 0 μm or less is formed by the second liquid cyclone 34 and the second dehydration vibrating screen 36.
20 to 100 µm granular material mainly composed of fine sand and 20 µm
It is classified into the following fine particles. That is, the treated water containing fine particles of about 20 μm or less discharged from the upper part of the second hydrocyclone 34 is temporarily stored in the second feed sump 33, and then is transferred to the thickener tank 40 via the trash treatment trommel 37. Sent to On the other hand, the slurry containing the particulate matter having a particle diameter exceeding 20 μm discharged from the bottom of the first hydrocyclone 30 is sent to the second spigot tank 35, Granules mainly composed of fine sand of about 20 μm or more are separated and sent to the thickener tank 40.
【0029】シックナータンク40では、上記約20μ
m以下の微粒片を含んだ処理水と泥状の焼却灰とをタン
ク内でゆっくりと回転させ、粒状体等の固形物を凝集沈
殿させる固液分離を行う。上記シックナータンク40の
上澄み液には、上述したように、焼却灰から分離された
重金属類が溶解あるいは浮遊しているので、汚水処理部
18の一次処理水槽50に送られ処理される。この一次
処理水槽50では、キレート剤等の添加によって上記重
金属類の不溶化塩を形成させ重金属類を不溶化すること
により、上記重金属類を上記処理液から分離する。一
方、シックナータンク40の底部に沈殿したスラリー状
の焼却灰は、第1のスラリータンク41に貯蔵された
後、遠心分離器42において、ダイオキシン類等の微粒
片を除去した後、第2のスラリータンク43に送られ貯
蔵される。遠心分離器42で分離された、ダイオキシン
類等の微粒片を多く含む有害な汚泥は、溶融固化等の処
理を施すなどして廃棄される。一方、第2のスラリータ
ンク43に貯蔵されたスラリーは、重金属類やダイオキ
シン類が除去されて無害化されているので、脱水機44
に送り、このスラリーから、図示しないフィルタプレス
により脱水ケーキを作製するなどして再利用することが
できる。In the thickener tank 40, about 20 μm
The treated water containing fine particles of m or less and the mud-like incinerated ash are slowly rotated in a tank to perform solid-liquid separation for coagulating and sedimenting solids such as particulates. As described above, since the heavy metals separated from the incineration ash are dissolved or suspended in the supernatant liquid of the thickener tank 40, they are sent to the primary treatment water tank 50 of the sewage treatment section 18 for treatment. In the primary treatment water tank 50, the heavy metals are separated from the treatment liquid by adding a chelating agent or the like to form an insolubilizing salt of the heavy metals and insolubilize the heavy metals. On the other hand, the slurry-like incineration ash that has settled at the bottom of the thickener tank 40 is stored in the first slurry tank 41, and after removing fine particles such as dioxins in the centrifuge 42, the second slurry It is sent to the tank 43 and stored. The harmful sludge containing a large amount of fine particles such as dioxins separated by the centrifugal separator 42 is discarded by performing a process such as melting and solidification. On the other hand, the slurry stored in the second slurry tank 43 is rendered harmless by removing heavy metals and dioxins.
The slurry can be reused by preparing a dewatered cake from the slurry by a filter press (not shown).
【0030】なお、脱水機44で脱水された水は、濾過
水返却用タンク51に送られ一時貯蔵され、その後、一
次処理水槽50で重金属類を不溶化した後、液体濾過装
置52に送られる。液体濾過装置52では、上記処理水
を活性炭等の吸着材で濾過して重金属類やダイオキシン
類を除去して浄化する。この浄化された処理水は給水部
である二次処理水槽53に送られる。また、シックナー
タンク40から一次処理水槽50に送られた処理水も、
上記液体濾過装置52で浄化された後、二次処理水槽5
3に送られる。二次処理水槽53に戻された処理水は、
補給用の清水と混合されて、再び、一次細粒化機11,
二次細粒化機12及び一次選別振動スクリーン20等に
供給される。The water dehydrated by the dehydrator 44 is sent to a filtered water return tank 51 for temporary storage, and thereafter, after the heavy metals are insolubilized in a primary treatment water tank 50, the water is sent to a liquid filtration device 52. In the liquid filtration device 52, the treated water is filtered with an adsorbent such as activated carbon to remove heavy metals and dioxins to purify the treated water. The purified treated water is sent to a secondary treated water tank 53 that is a water supply unit. The treated water sent from the thickener tank 40 to the primary treated water tank 50 also
After being purified by the liquid filtration device 52, the secondary treatment water tank 5
Sent to 3. The treated water returned to the secondary treatment water tank 53 is
Mixed with fresh water for replenishment, and again
It is supplied to the secondary refiner 12 and the primary sorting vibrating screen 20.
【0031】図8は、本実施の形態2における焼却灰の
処理結果を示す図で、(a)図は重金属類の溶出試験結
果示す表で、(b)図はその一部を棒グラフで表したも
のである。また、(c)図はダイオキシン類濃度の測定
結果を示す表である。図8(a)から明らかなように、
本処理システムで得られた解膠処理後の砂質分からは、
鉛,カドミウム,セレン等の有害な重金属類は検出され
ておらず、原灰に含まれていた微量(基準値の1/30
0)の銅も約1/5に減少している。また、約20μm
以下の微粒片から作製した脱水ケーキからも鉛,カドミ
ウム,セレン等の有害な重金属類は検出されていない。
一方、洗浄排水からは、原灰に含まれている量の約86
%の鉛が検出されただけでなく、基準値程度のカドミウ
ム,セレンも検出された。これは、焼却灰の処理過程に
おいて、焼却灰に付着していた重金属類が処理水中に溶
出ないしは浮遊していたことを示しており、解膠工程で
の焼却灰からの重金属類の分離が確実に行われたことを
示している。ダイオキシン類は、図8(c)に示すよう
に、シックナータンク40から排出されるスラリー状の
焼却灰(同図の堆積泥土)からは検出されているが、本
発明の処理システムで得られた5mm以上の粒状体(同
図の礫)または5mm以下の粒状体(砂)にはほとんど
付着していないので、ダイオキシン類の分離も十分行わ
れたことがわかる。上記無害な粒状体は再利用可能であ
る。また、シックナータンク40から排出される水(同
図の沈殿槽上澄み水)にはダイオキシン類が若干検出さ
れていることから、解膠工程で焼却灰から剥離したダイ
オキシン類の大部分は、微粒片として上述したスラリー
状の焼却灰に含まれるが、一部が微粒粉となって処理水
中に浮遊するものと考えられる。したがって、分級され
た5mm以上及び5mm以下の粒状体、脱水ケーキ、金
属片等はリサイクル可能な資源とすることができ、分離
された重金属類やダイオキシン類を多く含む汚泥は最終
処分場に埋設することができるので、焼却灰の減容化と
無害化とを確実に実現することができる。FIGS. 8A and 8B show the results of the treatment of incinerated ash in the second embodiment. FIG. 8A is a table showing the results of the dissolution test of heavy metals, and FIG. It was done. FIG. 3C is a table showing the measurement results of dioxin concentrations. As is clear from FIG.
From the pulverized sand obtained by this treatment system,
Harmful heavy metals such as lead, cadmium and selenium were not detected, and trace amounts contained in the raw ash (1/30 of the reference value)
The copper of 0) is also reduced to about 1/5. Also, about 20 μm
Harmful heavy metals such as lead, cadmium, and selenium were not detected in the dehydrated cake made from the following fine particles.
On the other hand, approximately 86% of the amount contained in the raw ash
% Of cadmium and selenium were also detected, as well as% of lead. This indicates that the heavy metals adhering to the incineration ash were eluted or suspended in the treated water during the incineration ash treatment process, and the separation of the heavy metals from the incineration ash in the deflocculation process was reliable. It shows that it was done. As shown in FIG. 8 (c), dioxins are detected in the slurry-like incineration ash (sedimentary mud in FIG. 8) discharged from the thickener tank 40, but are obtained by the treatment system of the present invention. Since it hardly adheres to the granular material of 5 mm or more (gravel in the figure) or the granular material of 5 mm or less (sand), it can be seen that dioxins were sufficiently separated. The harmless granules can be reused. In addition, since dioxins are slightly detected in the water discharged from the thickener tank 40 (the supernatant water in the sedimentation tank in the same figure), most of the dioxins peeled off from the incineration ash in the peptizing process are fine particles. Is contained in the above-mentioned incinerated ash in the form of slurry, but it is considered that a part thereof becomes fine powder and floats in the treated water. Therefore, the classified granular material of 5 mm or more and 5 mm or less, dewatered cake, metal pieces, etc. can be used as recyclable resources, and sludge containing a large amount of separated heavy metals and dioxins is buried in the final disposal site. Therefore, volume reduction and detoxification of incinerated ash can be reliably realized.
【0032】なお、上記実施の形態2においては、焼却
灰の処理システムについて説明したが、汚染土壌につい
ても、上記処理システムと同様の処理システムにより、
土粒子に付着した汚染物質を効率よく取り除くことがで
きるとともに、汚染土壌中の石,砂,微粒分等を抽出し
て再利用することができる。Although the incineration ash treatment system has been described in the second embodiment, contaminated soil can be treated by the same treatment system as the above treatment system.
The contaminants attached to the soil particles can be efficiently removed, and stones, sand, fine particles and the like in the contaminated soil can be extracted and reused.
【0033】[0033]
【発明の効果】以上説明したように、請求項1に記載の
発明によれば、汚染物質が付着した粒状体を処理空隙内
に投入し、加水しながら、圧縮及び粒状体相互間の擦り
合わせの力を作用させて、上記粒状体を独立した粒状体
に分離するとともに、上記粒状体の表面に付着している
汚染物質を分離する細粒化手段により上記粒状体を細粒
化する際に、上記粒状体に作用する応力を順次大きくし
て上記粒状体を細粒化処理するようにしたので、汚染物
質が付着した粒状体の解砕・解膠処理を効率的に行うこ
とができ、上記粒状体の分級を容易にすることができ
る。As described above, according to the first aspect of the present invention, the granular material to which the contaminant is attached is put into the processing space, and the compressed and rubbed particles are mixed while adding water. When the granules are separated into independent granules by applying the force described above, and when the granules are refined by the granulation means for separating contaminants attached to the surface of the granules, Since, by sequentially increasing the stress acting on the granular material and performing the fine-graining treatment on the granular material, it is possible to efficiently perform the crushing and peptizing treatment of the granular material to which the contaminant is attached, Classification of the granular material can be facilitated.
【0034】請求項2に記載の発明によれば、1台の細
粒化手段により、投入した汚染物質が付着した粒状体を
細粒化処理した後、再度同じ細粒化手段に投入して再処
理を行うとともに、再処理時には、上記粒状体に加える
応力を前回より大きくして、1台の装置で汚染物質が付
着した粒状体の解砕・解膠を行うことができるようにし
たので、設備の小型化を図ることができる。According to the second aspect of the present invention, the granular material to which the contaminant has been applied is subjected to a fine-graining treatment by a single fine-graining means, and then is again supplied to the same fine-granulating means. In addition to performing reprocessing, the stress applied to the granules during reprocessing was increased compared to the previous time, so that the granules with contaminants attached could be disintegrated and deflocculated with a single device. In addition, the size of the equipment can be reduced.
【0035】請求項3に記載の発明によれば、処理空隙
内に投入された汚染物質が付着した粒状体に、加水しな
がら、圧縮及び粒状体相互間の擦り合わせの力を作用さ
せ、上記粒状体を独立した粒状体に分離するとともに、
上記粒状体の表面に付着している汚染物質を分離する1
台の細粒化手段を有する汚染物質が付着した粒状体の処
理装置において、上記細粒化手段における粒状体の処理
空隙を下流方向において狭く設定することにより、1台
の装置を通過させるだけで、汚染物質が付着した粒状体
の解砕・解膠を連続して行うことができるようにしたの
で、設備の効率化と小型化とを同時に図ることができ
る。According to the third aspect of the present invention, the compressive force and the rubbing force between the granular materials are acted on the granular material to which the contaminant charged in the processing space is adhered while adding water. Separating the granules into independent granules,
Separation of contaminants adhering to the surface of the granular material 1
In the apparatus for treating particulate matter to which contaminants have adhered, the apparatus has a step of narrowing the processing gap of the granular material in the downstream direction in the downstream direction so that only one apparatus can be passed. Since the crushing and peptizing of the granular material to which the contaminant adheres can be continuously performed, the efficiency and the size of the equipment can be improved at the same time.
【0036】請求項4に記載の発明によれば、上記処理
空隙を段階的、すなわち不連続に狭く設定することによ
り、上流側での汚染物質が付着した粒状体の滞留時間を
長して解砕を主とした処理を十分に行った後、下流側で
上記粒状体に対して解膠を主とした処理を行うことがで
きるようにしたので、1台の装置での汚染物質が付着し
た粒状体の解砕・解膠処理を効率良く行うができる。According to the fourth aspect of the present invention, the processing gap is set stepwise, that is, discontinuously narrow, so that the residence time of the particulate matter to which the contaminant adheres on the upstream side can be increased. After sufficiently performing the processing mainly on crushing, it was made possible to perform the processing mainly on deflocculation on the above-mentioned granular material on the downstream side, so that the contaminants adhered to one apparatus. Pulverization and peptization of the granular material can be performed efficiently.
【0037】また、請求項5にに記載の発明によれば、
汚染物質が付着した粒状体の処理装置を、処理空隙内に
投入された汚染物質が付着した粒状体に、加水しなが
ら、圧縮及び粒状体相互間の擦り合わせの力を作用さ
せ、上記粒状体を独立した粒状体に分離するとともに、
上記粒状体の表面に付着している汚染物質を分離する細
粒化手段を複数段に渡って設け、上記粒状体が各細粒化
手段を順次通過するようにするとともに、上記細粒化手
段の処理空隙を下流段において次第に狭く設定した構成
としたので、汚染物質が付着した粒状体の解砕・解膠を
効率的に行うことができるとともに、上記粒状体から有
害な重金属類やダイオキシン類などの汚染物質を確実に
分離することができる。According to the fifth aspect of the present invention,
The treatment apparatus for the contaminant-attached granular material is applied to the granular material to which the contaminant is attached in the processing space by applying a compressing and rubbing force between the granular materials while adding water to the granular material. As well as separating into independent granules,
Granulation means for separating contaminants adhering to the surface of the granules are provided in a plurality of stages, and the granules are sequentially passed through each of the granulation means. The processing space is gradually narrowed in the downstream stage, so that it is possible to efficiently disintegrate and pulverize the particulate matter to which contaminants are attached, and to remove harmful heavy metals and dioxins from the particulate matter. And other contaminants can be reliably separated.
【0038】また、請求項6に記載の発明によれば、細
粒化手段により細粒化処理された粒状体の中から、汚染
物質を含まない粒径の大きな粒状体を分離する手段を備
え、重金属類やダイオキシン類などの汚染物質が分離さ
れ無害化された粒状体を、例えば脱水ケーキ等のリサイ
クル可能な資源にして再使用することができるようにし
たので、汚染物質が付着した粒状体の無害化及び減容化
に対して著しい効果をもたらすことができる。Further, according to the present invention, there is provided a means for separating, from the granular material subjected to the fine-graining treatment by the fine-granulating means, a granular material having a large particle diameter containing no pollutant. Since the pollutants such as heavy metals and dioxins have been separated and made harmless, they can be reused as recyclable resources such as dehydrated cakes, so that the particulate matter to which the pollutants adhere can be used. This can have a remarkable effect on detoxification and volume reduction of the steel.
【0039】また、請求項7に記載の発明によれば、上
記細粒化手段を、内周面に軸方向に沿って取付けられ、
中心方向に突出する複数の外羽根を有する円筒状の回転
ドラムと、外周面に軸方向に沿って取付けられ径方向に
突出する複数の内羽根を有し、上記回転ドラムの内部に
回転ドラムに対し偏心して取付けられ、上記回転ドラム
と逆方向に回転するロータとを備えた構成としたので、
汚染物質が付着した粒状体に対して、圧縮及び粒状体相
互間の擦り合わせの力を有効に作用させることができ、
解砕・解膠処理を効率良くかつ確実に行うができる。According to the seventh aspect of the present invention, the grain refiner is attached to the inner peripheral surface along the axial direction,
A cylindrical rotating drum having a plurality of outer blades projecting in the center direction, and a plurality of inner blades mounted along the axial direction on the outer peripheral surface and projecting in the radial direction. Since it is configured to have the rotor eccentrically mounted and the rotor rotating in the opposite direction to the rotating drum,
Compression and rubbing force between the particles can be effectively applied to the particles to which the contaminants are attached,
Pulverization / deflocculation can be performed efficiently and reliably.
【図1】 本発明の実施の形態1に係わる汚染物質が付
着した粒状体処理装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of a granular material processing apparatus to which contaminants adhere according to a first embodiment of the present invention.
【図2】 本実施の形態1に係わる細粒化装置の側面図
である。FIG. 2 is a side view of the grain refiner according to the first embodiment.
【図3】 本実施の形態1の細粒化手段の設定条件を示
す図である。FIG. 3 is a diagram showing setting conditions of the grain refiner according to the first embodiment.
【図4】 本実施の形態1の解砕・解膠作用を説明する
ための図である。FIG. 4 is a diagram for explaining the crushing and peptizing action of the first embodiment.
【図5】 本実施の形態1の解砕・解膠作用を説明する
ための図である。FIG. 5 is a diagram for explaining a crushing / deflocculating action of the first embodiment.
【図6】 本発明の細粒化装置の他の例を示す図であ
る。FIG. 6 is a view showing another example of the grain refiner of the present invention.
【図7】 本発明の実施の形態2に係わる焼却灰の処理
システムの構成と処理フローを示す図である。FIG. 7 is a diagram showing a configuration and a processing flow of an incineration ash processing system according to a second embodiment of the present invention.
【図8】 本実施の形態2における焼却灰の処理結果を
示す図である。FIG. 8 is a diagram showing a processing result of incinerated ash in the second embodiment.
【図9】 従来の破砕機の構造を示す図である。FIG. 9 is a view showing the structure of a conventional crusher.
1 細粒化装置、2 シェル、3 動力機、4 処理材
料投入口、5 処理材料排出口、6 回転ドラム、6W
外羽根、7 ロータ、7W 内羽根、11 一次細粒
化機、12 二次細粒化機、13 受け入れホッパ、1
4 予備選別手段、15 振動スクリーン、16 分級
手段、17 給水部、18 汚水処理部、20 一次選
別振動スクリーン、21 磁気式金属除去機、22 二
次選別振動スクリーン、23 第1のフィードサンプ、
30 第1の液体サイクロン、31 第1のスピゴット
タンク、32 第1の脱水振動スクリーン、33 第2
のフィードサンプ、34 第2の液体サイクロン、35
第2のスピゴットタンク、36 第2の脱水振動スク
リーン、37 ゴミ処理トロンメル、40 シックナー
タンク、41 第1のスラリータンク、42 遠心分離
器、43 第2のスラリータンク、44 脱水機、50
一次処理水槽、51 濾過水返却用タンク、52 液
体濾過装置、53 二次処理水槽。1 Atomizer, 2 shell, 3 motor, 4 processing material inlet, 5 processing material outlet, 6 rotating drum, 6W
Outer blade, 7 rotor, 7W inner blade, 11 primary granulator, 12 secondary granulator, 13 receiving hopper, 1
4 Pre-sorting means, 15 vibrating screen, 16 classifying means, 17 water supply section, 18 sewage treatment section, 20 primary sorting vibrating screen, 21 magnetic metal remover, 22 secondary sorting vibrating screen, 23 first feed sump,
30 first hydrocyclone, 31 first spigot tank, 32 first dehydration vibrating screen, 33 second
Feed sump, 34 second hydrocyclone, 35
2nd spigot tank, 36 2nd dehydration vibrating screen, 37 waste treatment trommel, 40 thickener tank, 41 first slurry tank, 42 centrifuge, 43 second slurry tank, 44 dehydrator, 50
Primary treatment water tank, 51 Filtered water return tank, 52 Liquid filtration device, 53 Secondary treatment water tank.
フロントページの続き (71)出願人 390014568 東芝プラント建設株式会社 東京都大田区蒲田五丁目37番1号 (72)発明者 反後 堯雄 東京都新宿区新宿2丁目3番13号 溶融資 源株式会社内 (72)発明者 伊藤 洋 東京都新宿区津久戸町2番1号 株式会社 熊谷組東京本社内 (72)発明者 信太 豊 埼玉県大里郡寄居町桜沢265番地 新六精 機株式会社内 (72)発明者 中山 汎 東京都港区西新橋3丁目7番1号 東芝プ ラント建設株式会社内Continuing from the front page (71) Applicant 390014568 Toshiba Plant Construction Co., Ltd. 5-37-1, Kamata, Ota-ku, Tokyo (72) Inventor Takao Sango Go 2-3-1, Shinjuku, Shinjuku-ku, Tokyo Inside the company (72) Inventor Hiroshi Ito 2-1, Tsukudo-cho, Shinjuku-ku, Tokyo Headquarters, Kumagaya Gumi Tokyo head office (72) Inventor Yutaka Shinta 265 Sakurazawa, Yorii-cho, Osato-gun, Saitama 72) Inventor Pan Nakayama 3-7-1 Nishi-Shimbashi, Minato-ku, Tokyo Toshiba Plant Construction Co., Ltd.
Claims (7)
に投入し、加水しながら、圧縮及び粒状体相互間の擦り
合わせの力を作用させて、上記粒状体を独立した粒状体
に分離するとともに、上記粒状体の表面に付着している
汚染物質を分離する細粒化手段により上記粒状体を細粒
化する工程を有する汚染物質が付着した粒状体の処理方
法であって、上記細粒化工程において、上記粒状体に作
用する応力を順次大きくするようにしたことを特徴とす
る汚染物質が付着した粒状体の処理方法。1. A granular material to which a contaminant is attached is charged into a processing space, and while being added with water, a compressive force and a rubbing force between the granular materials are applied to separate the granular material into independent granular materials. A method of treating a particulate matter to which contaminants are attached, the method comprising: a step of refining the particulate matter by means for refining the contaminants attached to the surface of the particulate matter. In the granulating step, a stress acting on the granular material is sequentially increased, and the method for treating a granular material to which contaminants adhere is characterized.
物質が付着した粒状体を細粒化処理した後、再度同じ細
粒化手段に投入して再処理を行うとともに、再処理時に
は、上記粒状体に加える応力を前回より大きくするよう
にしたことを特徴とする請求項1記載の汚染物質が付着
した粒状体の処理方法。2. A single grain refining unit performs a grain refining process on the granular material to which the contaminant is added, and then re-enters the same grain refining unit to perform reprocessing. 2. The method according to claim 1, wherein the stress applied to the granular material is made larger than that of the previous time.
した粒状体に、加水しながら、圧縮及び粒状体相互間の
擦り合わせの力を作用させ、上記粒状体を独立した粒状
体に分離するとともに、上記粒状体の表面に付着してい
る汚染物質を分離する1台の細粒化手段を有する汚染物
質が付着した粒状体の処理装置において、上記細粒化手
段における粒状体の処理空隙を下流方向において狭く設
定したことを特徴とする汚染物質が付着した粒状体の処
理装置。3. The compressive and rubbing forces between the granules are applied to the granules to which the contaminants charged in the processing space are adhered while adding water, and the granules are separated into independent granules. And an apparatus for treating contaminant-adhered granules having one refining means for separating contaminants adhering to the surface of the granules. The apparatus for treating particulate matter to which contaminants are attached, characterized in that the width is set narrower in the downstream direction.
とを特徴とする請求項3記載の汚染物質が付着した粒状
体の処理装置。4. The apparatus for treating particulate matter to which contaminants have adhered according to claim 3, wherein the processing space is set stepwise narrow.
した粒状体に、加水しながら、圧縮及び粒状体相互間の
擦り合わせの力を作用させ、上記粒状体を独立した粒状
体に分離するとともに、上記粒状体の表面に付着してい
る汚染物質を分離する細粒化手段を複数段に渡って設
け、上記粒状体が各細粒化手段を順次通過するようにす
るとともに、上記細粒化手段の処理空隙を下流段におい
て次第に狭く設定したことを特徴とする汚染物質が付着
した粒状体の処理装置。5. A compressive and rubbing force between the granules is applied to the granules adhering to the contaminants charged in the processing space while adding water to the granules to separate the granules into independent granules. At the same time, fine-graining means for separating contaminants adhering to the surface of the granular material are provided in a plurality of stages so that the granular material sequentially passes through each fine-graining means. An apparatus for treating particulate matter to which contaminants adhere, characterized in that the treatment space of the granulation means is set gradually narrower in the downstream stage.
体の中から、汚染物質を含まない粒径の大きな粒状体を
分離する手段を備えたことを特徴とする請求項3記載ま
たは請求項5記載の汚染物質が付着した粒状体の処理装
置。6. The apparatus according to claim 3, further comprising means for separating, from the fine particles subjected to the fine-graining treatment by the fine-graining means, a granular material having a large particle diameter containing no pollutant. An apparatus for treating particulate matter to which the contaminant according to claim 5 has adhered.
って取付けられ、中心方向に突出する複数の外羽根を有
する円筒状の回転ドラムと、外周面に軸方向に沿って取
付けられ径方向に突出する複数の内羽根を有し、上記回
転ドラムの内部に回転ドラムに対し偏心して取付けられ
た、上記回転ドラムと逆方向に回転するロータとを備え
たことを特徴とする請求項3または5記載の汚染物質が
付着した粒状体の処理装置。7. The grain refining means is attached to an inner peripheral surface along an axial direction and has a cylindrical rotating drum having a plurality of outer blades projecting in a central direction, and an outer peripheral surface along an axial direction. A rotor having a plurality of inner blades mounted and protruding in the radial direction, the rotor being provided eccentrically with respect to the rotary drum inside the rotary drum, and having a rotor rotating in the opposite direction to the rotary drum. An apparatus for treating a granular material to which the contaminant according to claim 3 is attached.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22376499A JP4190669B2 (en) | 1998-10-30 | 1999-08-06 | Method and apparatus for processing particulate matter with contaminants attached |
SG1999005288A SG73677A1 (en) | 1998-10-30 | 1999-10-20 | Method and system for carrying out treatment of granular substances with pollutants adhered |
US09/422,782 US6402064B1 (en) | 1998-10-30 | 1999-10-21 | Method and system for carrying out treatment of granular substances with pollutants adhered |
KR1019990047392A KR20000052354A (en) | 1998-10-30 | 1999-10-29 | Method and system for carrying out treatment of granular substances with pollutants adhered |
EP99120904A EP0997202A3 (en) | 1998-10-30 | 1999-10-29 | Method and system for carrying out treatment of granular substances with pollutants adhered |
BR9904989A BR9904989A (en) | 1998-10-30 | 1999-10-29 | Process for treating granular substances with adherent pollutants and medium and system for treating granular substances with adherent pollutants. |
CN99123287A CN1256977A (en) | 1998-10-30 | 1999-10-29 | Method and equipment for processing particle with pollutant |
CA002287958A CA2287958A1 (en) | 1998-10-30 | 1999-10-29 | Method and system for carrying out treatment of granular substances with pollutants adhered |
AU57154/99A AU5715499A (en) | 1998-10-30 | 1999-10-29 | Method and system for carrying out treatment of granular substances with pollutants adhered |
IDP991005D ID25768A (en) | 1998-10-30 | 1999-10-29 | METHODS AND SYSTEMS FOR IMPLEMENTING TREATMENT OF GRANTS SUBSTANCED BY POLLUTANTS |
US09/950,936 US20020079392A1 (en) | 1998-10-30 | 2001-09-12 | Method and system for carrying out treatment of granular substances with pollutants adhered |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-310429 | 1998-10-30 | ||
JP31042998 | 1998-10-30 | ||
JP22376499A JP4190669B2 (en) | 1998-10-30 | 1999-08-06 | Method and apparatus for processing particulate matter with contaminants attached |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000197877A true JP2000197877A (en) | 2000-07-18 |
JP4190669B2 JP4190669B2 (en) | 2008-12-03 |
Family
ID=26525669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22376499A Expired - Lifetime JP4190669B2 (en) | 1998-10-30 | 1999-08-06 | Method and apparatus for processing particulate matter with contaminants attached |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4190669B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003103248A (en) * | 2001-09-28 | 2003-04-08 | Dowa Mining Co Ltd | Method for treating contaminated soil |
JP2004261795A (en) * | 2003-02-10 | 2004-09-24 | Kankyo Eng Co Ltd | Method of removing nonvolatile contaminant in soil |
JP2006326434A (en) * | 2005-05-24 | 2006-12-07 | Eco Techno:Kk | Polluted soil cleaning method |
JP2007050347A (en) * | 2005-08-18 | 2007-03-01 | Shinroku Seiki Kk | Crushing polishing apparatus and treating method of contaminated soil using it |
JP2011194349A (en) * | 2010-03-23 | 2011-10-06 | Kiyota Chuki:Kk | Automatic crusher for solidified object |
KR101194925B1 (en) * | 2012-03-22 | 2012-10-25 | 현대건설주식회사 | Particle size selective remediation system and method for heavy metals-contaminated soils by dry-disintegration and separation |
JP2013208592A (en) * | 2012-03-30 | 2013-10-10 | Ube Machinery Corporation Ltd | Method for treating contaminated soil and treatment system for contaminated soil |
JP2014142311A (en) * | 2013-01-25 | 2014-08-07 | Ibaraki Univ | Method for decontaminating contaminated soil or incineration ash |
JP2016165684A (en) * | 2015-03-10 | 2016-09-15 | 井口 学 | Treatment device of coal combustion ash and treatment method of coal combustion ash using the device |
JP2017015529A (en) * | 2015-06-30 | 2017-01-19 | 清水建設株式会社 | Decontamination treatment method and decontamination treatment apparatus |
CN113234897A (en) * | 2021-04-16 | 2021-08-10 | 石美 | Heat treatment device with overheat protection function for machining center |
-
1999
- 1999-08-06 JP JP22376499A patent/JP4190669B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003103248A (en) * | 2001-09-28 | 2003-04-08 | Dowa Mining Co Ltd | Method for treating contaminated soil |
JP2004261795A (en) * | 2003-02-10 | 2004-09-24 | Kankyo Eng Co Ltd | Method of removing nonvolatile contaminant in soil |
JP4583771B2 (en) * | 2003-02-10 | 2010-11-17 | 日鉄環境エンジニアリング株式会社 | Method for removing non-volatile pollutants in soil |
JP2006326434A (en) * | 2005-05-24 | 2006-12-07 | Eco Techno:Kk | Polluted soil cleaning method |
JP2007050347A (en) * | 2005-08-18 | 2007-03-01 | Shinroku Seiki Kk | Crushing polishing apparatus and treating method of contaminated soil using it |
JP2011194349A (en) * | 2010-03-23 | 2011-10-06 | Kiyota Chuki:Kk | Automatic crusher for solidified object |
KR101194925B1 (en) * | 2012-03-22 | 2012-10-25 | 현대건설주식회사 | Particle size selective remediation system and method for heavy metals-contaminated soils by dry-disintegration and separation |
JP2013208592A (en) * | 2012-03-30 | 2013-10-10 | Ube Machinery Corporation Ltd | Method for treating contaminated soil and treatment system for contaminated soil |
JP2014142311A (en) * | 2013-01-25 | 2014-08-07 | Ibaraki Univ | Method for decontaminating contaminated soil or incineration ash |
JP2016165684A (en) * | 2015-03-10 | 2016-09-15 | 井口 学 | Treatment device of coal combustion ash and treatment method of coal combustion ash using the device |
JP2017015529A (en) * | 2015-06-30 | 2017-01-19 | 清水建設株式会社 | Decontamination treatment method and decontamination treatment apparatus |
CN113234897A (en) * | 2021-04-16 | 2021-08-10 | 石美 | Heat treatment device with overheat protection function for machining center |
CN113234897B (en) * | 2021-04-16 | 2023-12-22 | 石美 | Heat treatment device with overheat protection function for machining center |
Also Published As
Publication number | Publication date |
---|---|
JP4190669B2 (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6402064B1 (en) | Method and system for carrying out treatment of granular substances with pollutants adhered | |
JP4438329B2 (en) | Method for treating waste containing organic matter | |
JP4256505B2 (en) | How to treat dredged soil | |
JP4190669B2 (en) | Method and apparatus for processing particulate matter with contaminants attached | |
JP4338825B2 (en) | Fine grain processing method | |
JP4132413B2 (en) | Method for treating particulate matter with contaminants attached | |
JP4335369B2 (en) | Method for treating particulate matter with contaminants attached | |
CN110937835A (en) | Method for resource utilization of waste incineration slag | |
JP4286990B2 (en) | Processing equipment for particulate matter with contaminants | |
JP2000197878A (en) | Apparatus for treating particulate material to which pollutant is adhered | |
JP2006043532A (en) | Method and system for cleaning contaminated soil | |
JP4236758B2 (en) | Fine graining equipment | |
JP2002011434A (en) | Process and equipment for treating incineration ash | |
JP2001129506A (en) | Method for landfill disposal of waste and cover material used for landfill disposal of waste | |
JP2002011435A (en) | Process and equipment for treating incineration ash | |
JP4137291B2 (en) | Method for treating particulate matter with contaminants attached | |
JP2002018390A (en) | Treating method for incineration ash and equipment the same | |
JP4421088B2 (en) | Incineration ash disposal method and waste final disposal site | |
TW450839B (en) | Method and system for carrying out treatment of granular substances with pollutants adhered | |
JP2002018410A (en) | Incinerator ash treatment method and apparatus therefor | |
JP4216943B2 (en) | Granulation method | |
JP2002018391A (en) | Method for treating granular material | |
JP2003073153A (en) | Method of disposing incinerated ash | |
JP2002011449A (en) | Method for treating incineration ash and its device | |
JP2004067399A (en) | Method of producing regenerated sand from construction sludge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060718 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4190669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |