JP4338825B2 - Fine grain processing method - Google Patents

Fine grain processing method Download PDF

Info

Publication number
JP4338825B2
JP4338825B2 JP16160999A JP16160999A JP4338825B2 JP 4338825 B2 JP4338825 B2 JP 4338825B2 JP 16160999 A JP16160999 A JP 16160999A JP 16160999 A JP16160999 A JP 16160999A JP 4338825 B2 JP4338825 B2 JP 4338825B2
Authority
JP
Japan
Prior art keywords
slurry
particles
fine
treated water
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16160999A
Other languages
Japanese (ja)
Other versions
JP2000342991A (en
Inventor
堯雄 反後
洋 伊藤
豊 信太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP16160999A priority Critical patent/JP4338825B2/en
Priority to SG1999005288A priority patent/SG73677A1/en
Priority to US09/422,782 priority patent/US6402064B1/en
Priority to KR1019990047392A priority patent/KR20000052354A/en
Priority to IDP991005D priority patent/ID25768A/en
Priority to EP99120904A priority patent/EP0997202A3/en
Priority to CA002287958A priority patent/CA2287958A1/en
Priority to BR9904989A priority patent/BR9904989A/en
Priority to AU57154/99A priority patent/AU5715499A/en
Priority to CN99123287A priority patent/CN1256977A/en
Publication of JP2000342991A publication Critical patent/JP2000342991A/en
Priority to US09/950,936 priority patent/US20020079392A1/en
Application granted granted Critical
Publication of JP4338825B2 publication Critical patent/JP4338825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、重金属類や油性分等で汚染された土壌や焼却炉から搬出された焼却灰などの汚染物質の付着した粒状体を細粒化し、上記細粒化された粒状体から汚染物質を含まないあるいは大部分を除去した粒状体を分離する方法に関するものである。
【0002】
【従来の技術】
近年、化学工場や金属精錬工場等の工場近辺の土壌は、重金属類や有機塩素化合物あるいは油性分等で汚染されていることが問題視されている。また、海難事故等により海に流出した原油で汚染された海浜の土壌や、原油存在地盤のトンネル掘削に伴い搬出される掘削土には原油が付着しているため、その処理が困難となることがしばしばある。更には、産業廃棄物やリサイクルができない生ゴミ等の可燃物は焼却炉にて焼却され、焼却灰として廃棄物処分場に搬出されて埋設されるが、このような焼却灰には、重金属類や焼却過程で生じたダイオキシン等の汚染物質が付着している。そこで、上記汚染土壌から上記汚染物質を除去した後、石,砂,微粒分等を抽出して再利用する技術や、焼却灰から汚染物質を除去した後有効利用できる固体粒子を抽出するとともに、処分場に廃棄する焼却灰の減容化を図る技術の確立が望まれている。
【0003】
一般に、焼却灰は、粒径の小さな粒子同士が団粒状態となった粒状体であり、重金属類やダイオキシン類等の汚染物質は上記粒状体の表面だけでなく、個々の粒子の表面に付着していると考えられている。また、汚染土壌については、塊状になってはいるものの団粒化している部分が少なく、汚染物質は個々の粒子の表面に付着していると考えられている。
そこで、本出願人は、焼却灰のような団粒化された粒状体を種々の大きさの粒子に細粒化するとともに、上記各粒子の表面に付着している重金属類等の汚染物質を効率的に離脱し分離することのできる細粒化装置を提案している(特願平10−310429号)。これは、投入した処理材料を、処理空隙内で加水しながら、圧縮及び粒状体相互間の擦り合わせの力を作用させて、上記焼却灰を独立した粒子に分離するとともに、上記粒状体や粒子の表面に付着している異物を分離する細粒化手段を複数段に渡って設け、焼却灰が各細粒化手段を順次通過するようにするとともに、上記細粒化手段の処理空隙を下流段において次第に狭く設定し、上流段においては主に団粒状の粒状体を、個々の粒子を破壊することなくほぼ独立した粒子に分離して粒状化する解砕処理を行い、下流段においては主に上記粒状化された個々の粒子に対して、主に各粒子相互間の擦り合わせの力を作用させて、粒子同士の摩擦による相互研磨を行わせ、上記個々の粒子の表面に付着している異物を分離する解膠処理を行うようにしたもので、処理材料は上記焼却灰に限らず、上記汚染土壌であっても同様の処理によって上記土壌に付着した汚染物質を分離ことができる。なお、上記分離された重金属類等の汚染物質は処理水中に浮遊または溶解するので、上記処理後の粒状体の内汚染物質を含まない粒径の大きな粒状体には上記汚染物質がほとんど付着されていない。
【0004】
この細粒化装置で処理された粒状体を含む処理水は、フィードサンプに一時貯蔵された後、液体サイクロン等の分級手段によって種々の大きさの粒状体に分級される。このとき、汚染物質を含まない粒径の大きな粒状体は重金属類やダイオキシン類が分離され無害化されているので、セメント用の骨材等に再利用される。また、重金属やダイオキシン類等の微粒片を多く含む有害な汚泥は溶融固化等の処理を施し廃棄し、重金属類が溶解あるいは浮遊している汚水はキレート剤等の添加によって上記重金属類の不溶化塩を形成させ重金属類を不溶化することにより、上記重金属類を上記処理液から分離することで無害化し、再利用あるいは廃棄する。
【0005】
【発明が解決しようとする課題】
ところで、上記細粒化装置では、前段の細粒化手段から排出された粒状体を含む処理水中から、例えば振動スクリーン等の分級手段により、所定の大きさ以上の粒径の粒状体を分級した後、後段の細粒化手段に送っていた。しかしながら、後段の細粒化手段には、前段の細粒化手段よりも粒径の小さな粒状体を含む処理水が投入されるので、後段の細粒化手段での加水量は上記処理水の状態によりその都度決定しなければならなかった。更には、粒径の小さな粒状体の解砕・解膠を行う場合には、処理空隙を狭く設定したとしても、粒状体に加水する水量が多いと粒状体同士の衝突が不十分になるため、上記処理水の状態によっては処理水量が多くなり、解砕及び解膠の効率が低下してしまうといった問題点があった。
【0006】
本発明は、従来の問題点に鑑みてなされたもので、粒子表面に付着した汚染物質を効率良く除去する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の請求項1に記載の細粒化処理方法は、内周面に複数の外羽根を有する円筒状の回転ドラムと、外周面に複数の内羽根を有し上記回転ドラムの内部に回転ドラムに対し偏心して取り付けられたロータとを備え、処理空隙である上記回転ドラムと上記ロータとの間隙に処理材料を投入し、この投入された処理材料に加水して上記処理材料を細粒化する細粒化装置を複数段に渡って設け、上記処理材料を、上記複数段の細粒化装置を順次通過させて細粒化する際に、上記各細粒化装置の処理空隙を下流段において次第に狭く設定するとともに、前段の細粒化装置から排出されたスラリーに脱水処理を施した後、後段の細粒化装置に投入するようにしたことを特徴とする。
【0009】
請求項に記載の細粒化処理方法は、前段の細粒化装置から排出されたスラリーに対し、分級しながら脱水処理を施したことを特徴とする。
【0010】
請求項に記載の細粒化処理方法は、スラリーをベルトコンベアにより振動させながら上り勾配を搬送するとともに、上記勾配の所定の位置で、上記スラリーに加水し粒径の小さな粒子を分離して粒径の大きな粒子を分級する浮遊分級機により、上記スラリーに脱水処理を施したことを特徴とする。
【0011】
請求項に記載の細粒化処理方法は、液体サイクロンの本体下部に設けられた排出口に、弾性体から成るノズルを取り付け、液体サイクロン内部に生じる負圧を大きくし、投入されたスラリーから粒径の小さな粒子を含む処理水を分離する負圧式液体サイクロンにより、上記スラリーに脱水処理を施したことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
図1は、本発明の実施の形態に係わる汚染土壌の処理システムの概要を示す図で、同図において、18は汚染土壌を投入する受入ホッパ、19は上記汚染土壌を搬送するベルトコンベア、20は上記ベルトコンベア19で送られてきた汚染土壌に対して加水しつつ解砕・解膠処理を行い汚染土壌をスラリー化して排出する細粒化装置、30は細粒化装置20から排出された汚染土壌から5mm以上の粒子を選別し分離する振動スクリーン、40は上記振動スクリーン30を通過した5mm以下の粒子含む泥状の汚染土壌を一時貯蔵するとともに、液体サイクロン51に処理水を供給するための液体貯留槽であるフィードサンプ、50は上記液体サイクロン51を備え、フィードサンプ40から送られた汚染土壌を種々の大きさの粒子に分級するための分級手段、60は上記細粒化装置20及び上記フィードサンプ40に処理水を供給する給水部、70は上記分級手段50から排出される処理水を浄化する汚水処理部である。
【0013】
細粒化装置20は、図示しない排出口に設けられた約30mm以上の大型の金属類や挟雑物等の固形物を捕獲するための分級用の網21aを備え、ベルトコンベア19により搬送された汚染土壌に加水し、上記汚染土壌に対して粗い解砕処理を行う一次細粒化機21と、この一次細粒化機21で解砕された汚染土壌から10mm以上の粒状体を選別し分離する振動スクリーン22と、一次細粒化機21で解砕され振動スクリーン22を通過した10mm以下の粒状体となった汚染土壌に加水し、上記汚染土壌に対して更に解砕・解膠処理を行うための二次細粒化機23と、上記振動スクリーン22と二次細粒化機23との間に設けられ、上記振動スクリーン22を通過した粒状体含む処理水の脱水及び分級処理を行う浮遊分級機24とを備えている。
分級手段50は、上記フィードサンプ40に貯蔵された5mm以下の粒子を含んだ泥状の汚染土壌から約50μm以下の粒子を処理水中に浮遊させて分離する液体サイクロン51と、この液体サイクロン51の底部から排出されスピゴットタンク52に一次貯蔵されたスラリーから約50μm以上の砂分を主体とした細粒砂等の粒子を分離する脱水振動スクリーン53と、上記フィードサンプ40の上部から供給された微粒片が浮遊した処理水中の固形物を凝集沈殿させるシックナータンク54と、上記シックナータンク54の底部に沈殿したスラリーを貯蔵するスラリー槽55と、上記スラリー槽55に貯蔵されたスラリーに脱水処理を施すための脱水機56とを備えている。
また、汚水処理部70は、処理水中に溶解あるいは浮遊している重金属類を不溶化する処理水槽71と、この処理水槽71で不溶化された重金属類等や油性分を吸着材で濾過し上記処理水を浄化する液体濾過装置72とを備えている。
【0014】
図2は、上記一次細粒化機21の構成を示す図で、(a)図は側面図、(b)図は(a)図のA−A断面図である。一次細粒化機21は、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根11Wを有する円筒状の回転ドラム11と、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根12Wを有し、上記回転ドラム11の内部に偏心して取付けられたロータ12とを備え、回転ドラム11の外周に設けられた環状歯車13をモータ14により、ロータ12の回転軸15を駆動機構16により、それぞれ互いに逆方向に回転させ、材料投入口17から投入された処理材料S(図(b)の斜線部)に圧縮及びせん断応力を作用させて上記処理材料Sを解砕したり解膠したりするもので、上記処理材料に作用する応力の大きさは、主に回転ドラム11とロータ12との間隔(ロータ12の偏心度)と、回転ドラム11及びロータ12のそれぞれの回転速度とにより調整するようにしている。
また、二次細粒化機23の構成は、上記一次細粒化機21とほぼ同様である。
【0015】
汚染土壌の粗い解砕を行う一次細粒化機21は、図3(a)に示すように、ロータ12の偏心量を小さくすることにより回転ドラム11とロータ12との間隔D1を比較的広くするとともに、回転速度を低速としている。また、汚染土壌の解膠処理を主体とする二次細粒化機23は、図3(b)に示すように、ロータ12の偏心量を大きくして回転ドラム11とロータ12との間隔D2を狭くし、更に、回転速度を上記一次細粒機21の速度よりも高速にするとともに、図4に示すように、下流側のロータ径を上流側のロータ径よりも大きくし、汚染土壌の処理空隙が下流方向において不連続にかつ狭くなるように構成されている。
【0016】
一次細粒化機21,二次細粒化機23中では、図5に示すように、処理空隙である回転ドラム11とロータ12との間隙に投入された汚染土壌Pは、回転ドラム11の外羽根11Wによって上方に掻き上げられるとともに、ロータ12の内羽根12Wによって下方に引き下げられるので、汚染土壌Pには圧縮応力とともにせん断応力が作用し、上記汚染土壌の団粒状の各粒状体は解砕・解膠される。すなわち、図6(a)に示すように、粒子p同士が固着面rで固着されて団粒状態となっている汚染土壌の団粒状の各粒状体Pあるいは粒子同士が固着してはいないが大きさの大きい粒子pに対して圧縮応力及びせん断応力が作用すると、上記団粒状の各粒状体Pが上記固着面rのところから分かれてほぼ独立した細かな粒子pに粒状化される(解砕作用)とともに、上記各粒状体Pの表面に比較的弱く付着されていた重金属類等の汚染物質qが分離される。
また、図6(b)に示すように、粒状体あるいは粒子同士に擦り合わせ方向の力が作用すると、各粒子pの表面に付着された重金属類等の汚染物質qが剥離され粒子pから分離され(解膠作用)、上記分離された汚染物質qは処理水中に浮遊または溶解する。
なお、汚染土壌の処理においては、土粒子が団粒化していることが少ないと思われるので、一次細粒化機21,二次細粒化機23ともに、上記図6(b)に示す解膠作用が主となる。
【0017】
図7(a),(b)は、浮遊分級機24の一構成を示す図で、この浮遊分級機24は、例えば特開平8−164363号公報に記載された公知の選別機と同様の構成である。浮遊分級機24は、一端側が水平で、他端側に上り勾配を有する一対のフレーム1a,1bを備えたメインフレームと、駆動ローラ2a及び従動ローラ2bにより上記フレーム1a,1b間をメインフレーム1の水平部から上り勾配部方向に進行するベルト3と、上記ベルトの材料投入面3aの裏面の幅方向の両側に設けられ、上記ベルト3を支持する複数の回転ローラ4と、上記回転ローラ4の一端をそれぞれ支持する複数の腕部5aと上記回転ローラ4の他端にそれぞれ当接する複数の腕部5bを有し、上記回転ローラ4を支持する振動フレーム5と、上記振動フレーム5を振動させる加振機6と、上記ベルト3の幅方向の両端側に設けられ、上記ベルト3の長手方向に延長する波形状の立壁7と、上記ベルト3上を移動する処理材料に散水する散水機8と、上記ベルト3の勾配部3Kの折り返し部3bの下方に設けられた排出ホッパ9とを備え、上記ベルト3の水平部3Hに投入された処理材料を上り勾配部3K方向に振動させながら搬送するとともに、散水機8により、上記処理材料中の粒径の小さな粒子を除去し、粒径の大きな粒子を排出ホッパ9より排出することにより、処理材料の分級を行うものである。なお、上記散水機8により除去された粒径の小さな粒子は、処理水とともに、上記ベルト3の水平部の折り返し部3cの下方に設けられた図示しない処理水路に送られる。
したがって、浮遊分級機24を用いることにより、振動スクリーン22を通過した粒状体を含む処理水から粒径の大きな粒子を取出すことができ、上記処理水に対して脱水処理を施すことができる。このとき、粒径の小さな粒子や微粒片は、上記散水機8による散水により処理材料から分離され、処理水とともにフィードサンプ40に送られる。
【0018】
次に、本発明の汚染土壌の処理方法について説明する。
受入ホッパ18に投入された汚染土壌はベルトコンベア19により搬送され、細粒化装置20の一次細粒化機21に投入される。一次細粒化機21では、投入された汚染土壌に対して比較的広い処理空間内で加水しながら粗い解砕を行い、汚染土壌を個々の粒子を破壊することなく分離させつつ、上記汚染土壌を一次細粒化機21の下流側に移動させ、図示しない排出口から排出する。このとき、汚染土壌の表面に弱く付着している重金属類等の微粒片は剥離されて処理水中に浮遊する。また、容易に溶解する重金属類は上記処理水中に溶解する。
一次細粒化機21から排出された大型の金属類や挟雑物等の固形物は約30mmの分級用の網21aにより捕獲されて除去され、約30mm以下の粒状体となった汚染土壌は振動スクリーン22に送られ篩い分けされ10〜30mmの粒状体が分離される。
振動スクリーン22を通過した10mm以下の粒状体を含む処理水は、浮遊分級機24で脱水処理及び分級処理された後、二次細粒化機23に送られる。また、上記浮遊分級機24から排出される、粒径の小さな粒子や微粒片を含んだ排水は、フィードサンプ40に送られ一時貯蔵される。
【0019】
二次細粒化機23では、上述したように、一次細粒化機1よりも汚染土壌に作用する応力が大きくし、主に、汚染土壌の個々の粒子間の相互摩擦による解膠作用により、粘性の大きなカーボンや油性分や汚染土壌の個々の粒子に強く付着している重金属類の微粒片を離脱させる。
このとき、二次細粒化機23には、上記浮遊分級機24で脱水処理及び分級処理を施され、解砕・解膠作用にあまり寄与しない粒径の小さな粒子を分離された処理材料が投入されるので、投入材料に対して適度の水を加水して上記解膠処理を行うことができる。したがって、粒状体を効率良く細粒化することができるとともに、汚染土壌の個々の粒子に強く付着していカーボンや油性分や重金属類等の汚染物質を確実に上記粒子から分離することができる。
また、上記処理において、容易に溶解する重金属類は上記処理水中に溶解するとともに、汚染土壌の個々の粒子から分離された上記汚染物質は微粒片となって処理水中に浮遊し、上記解砕・解膠処理された汚染土壌とともに二次細粒化機23の排出口から排出される。
また、二次細粒化機23は、下流側のロータ径を上流側のロータ径よりも大きくし、汚染土壌の処理空隙が下流方向において不連続にかつ狭く構成されているので、処理材料はスムーズには下流側に流れず一部の処理材料は上流側に戻されて滞留するので、処理材料の解膠処理が更に進行する。
【0020】
二次細粒化機23から排出された汚染土壌のスラリーと砂や砂礫等の粒子は、振動スクリーン30により5mm以上の粒子が篩い分され、5mm以下の粒状体はフィードサンプ40に一時貯蔵された後分級手段50に送られ、種々の大きさの粒状体に分級される。
フィードサンプ40に貯蔵された5mm以下の粒子を含んだ泥状の汚染土壌の内、フィードサンプ40の底部の粒径の大きな粒子を含んだスラリーは、分級手段50の液体サイクロン51に送られ分級される。液体サイクロン51では、約50μm以下の微粒子を処理水中に浮遊させて分離し、上記微粒片を含んだ処理水をフィードサンプ40に戻すとともに、液体サイクロン51の底部のスピゴットノズル4から排出される粒径の大きな粒子からなる固形分の多いスラリーはスピゴットタンク52に送られ一時貯蔵される。上記スラリーは、脱水振動スクリーン53により約50μm以上の砂分を主体とした粒子(細粒砂)が分離された後、フィードサンプ40に戻される。
【0021】
シックナータンク54では、フィードサンプ40から供給された微粒片を含んだ処理水をタンク内でゆっくりと回転させ、上記処理水中の固形物を凝集沈殿させる固液分離を行う。上記シックナータンク54の上澄み液には、上述したように、汚染土壌から分離された重金属類が溶解あるいは浮遊しているので、汚水処理部70の処理水槽71に送られ処理される。この処理水槽71では、キレート剤等の添加によって上記重金属類の不溶化塩を形成させ重金属類を不溶化することにより、上記重金属類を上記処理液から分離する。
一方、シックナータンク54の底部に沈殿したスラリー状の汚染土壌は、スラリー槽55に一時貯蔵された後脱水機56に送り脱水し、図示しないフィルタプレスにより脱水ケーキを作製する。
また、脱水機56で脱水された処理水も上記処理水槽71に送られ、重金属類を不溶化した後、液体濾過装置72に送られる。液体濾過装置72では、上記処理水を活性炭等の吸着材で濾過して重金属類を除去して浄化し、上記重金属類を捕獲した吸着材は最終処分場に送られ処理される。
【0022】
このように、本実施の形態では、一次細粒化機21で細粒化した汚染土壌を振動スクリーン22で篩い分けし、振動スクリーン22を通過した10mm以下の粒状体を含む処理水に対して、浮遊分級機24によりで脱水処理及び分級処理を施した後、上記分級された粒径の大きな粒状体を二次細粒化機23に投入するようにしたので、投入材料に対して適度の水を加水して上記解膠処理を行うことができる。したがって、上記粒状体を効率良く細粒化することができるとともに、汚染土壌の個々の粒子に強く付着していカーボンや油性分や重金属類等の汚染物質を確実に上記粒子から分離することができる。
また、浮遊分級機24により、粒径の小さな粒子を分離し、粒径の大きな粒子のみを二次細粒化機23に送るようにしたので、二次細粒化機23の解砕・解膠効率を更に向上させることができる。
【0023】
なお、上記実施の形態では、一次細粒化機21で細粒化され、振動スクリーン22を通過した粒状体を含む処理水に対して、浮遊分級機24により脱水処理を施したが、例えば、脱水振動スクリーン等の他の脱水装置を用いてもよい。また、前段の細粒化装置から排出されたスラリーに凝集剤を添加し、上記スラリーに溶解あるいは浮遊している微粒片を沈降させた後、上記スラリーに脱水処理を施すようにすれば、脱水処理後の水を直接液体濾過装置72に送って重金属類を除去するだけで上記処理水を浄化できるので、処理水の後処理を簡易化することができる。
【0024】
また、以下に示すような負圧式液体サイクロン51Nを用いて、上記粒状体を含む処理水に対し脱水処理及び分級処理を行ってもよい。
負圧式液体サイクロン51Nは、図8に示すように、筒状のサイクロン本体81の内壁に処理材導入管82から導入された種々の大きさの粒状体を含んだ液体を高速で噴射し、この液体が一次回転流と呼ばれる渦を形成しながらサイクロン本体81の内壁に沿って下部方向に移動する時に、サイクロン本体81の中央部の気圧が減少し、上記液体が二次回転流と呼ばれる渦を形成しながら上記一次回転流の内側からサイクロン本体81を上昇する現象を利用し、上記液体中に含まれる粒径の小さな粒子を分級する液体サイクロンの一種で、サイクロン本体81の下部の材料排出管83に弾性体から成るスピゴットノズル84を取付け、動作時には、上述したサイクロン本体81の内部気圧の減少により、上記スピゴットノズル84が吸引されて絞り込まれることにより、スピゴットノズル84の開口部84sを閉じ、サイクロン本体81の下部に発生する負圧を大きくする。
これにより、二次回転流の発生を容易にし、粒径の小さな粒子を効率的に上昇管85に送り込むとともに、泥水中の粒径の大きな粒子からなる固形分を上記スピゴットノズル84の開口部84s付近に蓄積する。上記固形分がある重量以上蓄積されると、スピゴットノズル84が弾性体より構成されているため、自重によりスピゴットノズル84の開口部84sが押し広げられ、固形分の多くなったスラリーが上記開口部84sから排出される。
したがって、一次細粒化機21で細粒化され、振動スクリーン22を通過した粒状体を含む処理水を上記負圧式液体サイクロン51Nにより分級処理し、上記固形分の多くなったスラリーを取出すことにより、上記処理水に対して脱水処理を施すことができる。また、所定の粒径以下の粒子を分離することができるので、二次細粒化機23の解砕・解膠効率を向上させることができる。
なお、負圧式液体サイクロン51Nの上部から排出される粒径の小さな粒子を含んだ処理水はフィードサンプ40に送られ貯蔵される。
【0025】
また、上記例では、汚染土壌の処理方法について説明したが、処理材料が焼却灰あるいは焼却灰を含む汚染土壌である場合にも同様の処理システムで処理することができる。この場合には、焼却灰が団粒化しているので、一次細粒化機21と二次細粒化機23とは、上記図6(a),(b)に示すような解砕・解膠作用を処理材料に対して行う。
更に、本発明の細粒化処理方法は、浚渫土等の砂礫を含んだ土壌を、上記砂礫を破砕することなく細粒化する場合にも適用可能であることは言うまでもない。また、上記例では、一次細粒化機21と二次細粒化機23とを備えた細粒化装置20により解砕・解膠処理した汚染物質が付着した粒状体を液体サイクロン51により分級したが、細粒化装置20の構成はこれに限るものではない。例えば、上記二次細粒化機23と同様の構成の、処理空隙が下流方向において不連続にかつ狭くなるように構成された1台の細粒化装置で細粒化処理を行ってもよいし、一般の破砕機を使用し汚染物質が付着した粒状体を加水しながら細粒化してもよい。
【0026】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、内周面に複数の外羽根を有する円筒状の回転ドラムと、外周面に複数の内羽根を有し上記回転ドラムの内部に回転ドラムに対し偏心して取り付けられたロータとを備え、処理空隙である上記回転ドラムと上記ロータとの間隙に処理材料を投入し、この投入された処理材料に加水して上記処理材料を細粒化する細粒化装置を複数段に渡って設け、上記処理材料を、上記複数段の細粒化装置を順次通過させて細粒化する際に、上記各細粒化装置の処理空隙を下流段において次第に狭く設定するとともに、前段の細粒化装置から排出されたスラリーに脱水処理を施した後、後段の細粒化装置に投入するようにしたので、処理材料の解砕・解膠処理を効率良く行うことができ、汚染土壌の個々の粒子に強く付着しているカーボンや油性分や重金属類等の汚染物質を確実に上記粒子から分離することができるとともに、後段の細粒化装置では、投入材料に対して適度の水を加水して上記解膠処理を行うことができるので、粒状体を効率良く細粒化することができる。
【0028】
請求項に記載の発明によれば、前段の細粒化装置から排出されたスラリーに対し、分級しながら脱水処理を施したので、解砕・解膠作用にあまり寄与しない粒径の小さな粒子を分離し、粒径の大きな粒子のみを後段の細粒化手段に送ことができる。したがって、後段の細粒化手段の解砕・解膠効率を更に向上させることができる。
【0029】
請求項に記載の発明によれば、スラリーをベルトコンベアにより振動させながら上り勾配を搬送するとともに、上記勾配の所定の位置で、上記スラリーに加水し粒径の小さな粒子を分離して粒径の大きな粒子を分級する浮遊分級機により、上記スラリーに脱水処理を施したので、上記スラリーを効率良く分級しながら脱水することができる。
【0030】
請求項に記載の発明によれば、液体サイクロンの本体下部に設けられた排出口に、弾性体から成るノズルを取り付け、液体サイクロン内部に生じる負圧を大きくし、投入されたスラリーから粒径の小さな粒子を含む処理水を分離する負圧式液体サイクロンにより、上記スラリーに脱水処理を施したので、上記スラリーから所定の粒径以下の粒子を分離できるとともに、上記スラリーを確実に脱水することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係わる汚染土壌の処理システムの概要を示す図である。
【図2】 本実施の形態に係わる一次細粒化機の構成を示す図である。
【図3】 一次細粒化機及び二次細粒化機の回転ドラムとロータとの位置関係を示す図である。
【図4】 本実施の形態に係わる二次細粒化機の構成を示す図である。
【図5】 本実施の形態に係わる解砕・解膠処理を説明する図である。
【図6】 本実施の形態に係わる解砕・解膠作用を説明する図である。
【図7】 浮遊分級機の構成を示す図である。
【図8】 負圧式液体サイクロンの構成を示す図である。
【符号の説明】
11 回転ドラム、11W 外羽根、12 ロータ、12W 内羽根、13 環状歯車、14 モータ、15 ロータの回転軸、16 駆動機構、17 材料投入口、 18 受入ホッパ、19 ベルトコンベア、20 細粒化装置、21 一次細粒化機、22 振動スクリーン、23 二次細粒化機、24 浮遊分級機、30 振動スクリーン、40 フィードサンプ、50 分級手段、51 液体サイクロン、52 スピゴットタンク、53 脱水振動スクリーン、54 シックナータンク、55 スラリー槽、56 脱水機、60 給水部、70 汚水処理部、71 処理水槽、72 液体濾過装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention, for example, finely pulverize particles contaminated with contaminants such as soil contaminated with heavy metals or oily components and incinerated ash carried out of an incinerator, and contaminate from the pulverized particles The present invention relates to a method for separating a granular material which does not contain a substance or from which most of the substance is removed.
[0002]
[Prior art]
In recent years, there has been a problem that soil in the vicinity of factories such as chemical factories and metal smelting factories is contaminated with heavy metals, organochlorine compounds or oily components. In addition, since the crude oil is attached to the soil on the beach contaminated with crude oil that has flowed into the sea due to a marine accident, etc., and the excavated soil that is transported when tunneling the ground where the crude oil is present, it becomes difficult to treat it. There are often. In addition, combustibles such as industrial waste and non-recyclable garbage are incinerated in an incinerator and are transported as incineration ash to a waste disposal site where they are buried in heavy metals. Contaminants such as dioxins generated during the incineration process. Therefore, after removing the contaminants from the contaminated soil, extract the stones, sand, fine particles, etc. and reuse them, and extract solid particles that can be used effectively after removing the contaminants from the incineration ash, Establishment of technology to reduce the volume of incinerated ash to be discarded at the disposal site is desired.
[0003]
In general, incineration ash is a granular material in which particles with small particle sizes are aggregated, and contaminants such as heavy metals and dioxins adhere not only to the surface of the granular material but also to the surface of individual particles. It is believed that In addition, the contaminated soil is agglomerated, but there are few aggregated parts, and it is thought that the contaminant is attached to the surface of each particle.
Therefore, the present applicant finely pulverizes aggregated granules such as incinerated ash into particles of various sizes, and removes contaminants such as heavy metals adhering to the surface of each particle. A granulation apparatus that can be separated and separated efficiently is proposed (Japanese Patent Application No. 10-310429). This is to separate the incinerated ash into independent particles by applying the force of compression and rubbing between the granular materials while adding the treated material in the treatment gap, and the granular materials and particles. There are provided a plurality of stages of finely pulverizing means for separating the foreign matter adhering to the surface of the ash, so that the incinerated ash sequentially passes through each of the finely pulverizing means, and downstream of the processing gap of the above-mentioned finely pulverizing means. In the upstream stage, a pulverization process is performed in which mainly the granular particles are separated into almost independent particles without breaking the individual particles and granulated. The above-mentioned granulated individual particles are mainly subjected to a rubbing force between the particles to cause mutual polishing by friction between the particles, and adhere to the surface of the individual particles. Peptide treatment to separate foreign objects In which the process material is not limited to the above ash, even the contaminated soil can be separated contaminants adhering to the soil by the same process. Since the separated contaminants such as heavy metals float or dissolve in the treated water, the contaminants are hardly attached to the granular material having a large particle size that does not contain the contaminants in the treated granular material. Not.
[0004]
The treated water containing the granular material processed by the finer is temporarily stored in a feed sump, and then classified into various sizes of granular material by a classification means such as a liquid cyclone. At this time, since the heavy metal particles and dioxins are separated and detoxified, the large granular material containing no contaminants is reused as cement aggregate. In addition, harmful sludge containing a large amount of fine particles such as heavy metals and dioxins are disposed of after being melted and solidified, etc., and wastewater in which heavy metals are dissolved or suspended is added to the insoluble salts of the above heavy metals by adding a chelating agent or the like. And insolubilizing heavy metals, thereby detoxifying the heavy metals by separating them from the treatment liquid and reusing or discarding them.
[0005]
[Problems to be solved by the invention]
By the way, in the above-mentioned finer device, the granular material having a particle size of a predetermined size or more is classified from the treated water containing the granular material discharged from the previous finer means by a classification means such as a vibrating screen. Later, it was sent to the means for finer graining in the latter stage. However, since the treated water containing granular material having a smaller particle diameter than that of the preceding finer means is input to the subsequent finer means, the amount of water added in the latter finer means is equal to that of the treated water. It had to be decided each time depending on the condition. Furthermore, when crushing and peptizing a granular material having a small particle size, even if the processing gap is set narrow, if the amount of water added to the granular material is large, the collision between the granular materials becomes insufficient. Depending on the state of the treated water, the amount of treated water increases, and the efficiency of pulverization and peptization decreases.
[0006]
The present invention has been made in view of conventional problems, and an object of the present invention is to provide a method for efficiently removing contaminants adhering to the particle surface.
[0007]
[Means for Solving the Problems]
The grain refinement processing method according to claim 1 of the present invention comprises: A cylindrical rotating drum having a plurality of outer blades on the inner peripheral surface, and a rotor having a plurality of inner blades on the outer peripheral surface and mounted eccentrically with respect to the rotating drum inside the rotating drum. A processing material is introduced into a gap between a certain rotating drum and the rotor, and this Provided with a plurality of stages of finely pulverizing equipment that hydrates the processing material that has been added to refine the processing material. , The above multi-stage Sequentially passed through the atomizer Let When finely pulverizing, While gradually setting the processing gap of each of the above-mentioned fine granulating devices in the downstream stage, After the slurry discharged from the first-stage atomizer is dehydrated, it is put into the second-stage atomizer. Like It is characterized by that.
[0009]
Claim 2 The fine graining treatment method described in 1 is characterized in that the slurry discharged from the previous fine graining device is subjected to dehydration while being classified.
[0010]
Claim 3 The fine graining method described in 1) conveys an upward gradient while vibrating the slurry by a belt conveyor, and at a predetermined position of the gradient, the slurry is added to the slurry to separate particles having a small particle size. The slurry is dehydrated by a floating classifier that classifies large particles.
[0011]
Claim 4 In the fine grain processing method described in the above, a nozzle made of an elastic body is attached to the discharge port provided at the lower part of the liquid cyclone body, the negative pressure generated inside the liquid cyclone is increased, and the particle size of the slurry is charged. The slurry is dehydrated by a negative pressure type hydrocyclone that separates treated water containing small particles.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an outline of a contaminated soil treatment system according to an embodiment of the present invention. In FIG. 1, 18 is a receiving hopper for introducing contaminated soil, 19 is a belt conveyor for conveying the contaminated soil, 20 Is a pulverizing device that pulverizes and peptizes while adding water to the contaminated soil sent by the belt conveyor 19 and slurries and discharges the contaminated soil, and 30 is discharged from the pulverizing device 20 Vibrating screen for sorting and separating particles of 5 mm or more from contaminated soil, 40 for temporarily storing muddy contaminated soil containing particles of 5 mm or less that have passed through the vibrating screen 30 and for supplying treated water to the hydrocyclone 51 A feed sump 50, which is a liquid storage tank, includes the liquid cyclone 51, and classifies the contaminated soil sent from the feed sump 40 into particles of various sizes. Classification means for, 60 water supply unit for supplying treated water to the grain refining device 20 and the feed sump 40, 70 is a wastewater treatment unit for purifying the treated water discharged from the classification unit 50.
[0013]
The atomization device 20 includes a classification net 21a provided at a discharge port (not shown) for capturing solids such as large metals of about 30 mm or more, and foreign matters, and is conveyed by a belt conveyor 19. The primary fine granulator 21 that hydrates the contaminated soil and performs coarse crushing treatment on the contaminated soil, and the granular material of 10 mm or more is selected from the contaminated soil crushed by the primary fine granulator 21. The vibration screen 22 to be separated and the contaminated soil that has been crushed by the primary finer 21 and passed through the vibration screen 22 into a granular material of 10 mm or less are hydrated, and further pulverization / peptization treatment is performed on the contaminated soil. The secondary fine granulator 23 for performing the dehydration and the dehydration and classification treatment of the treated water including the granular material that is provided between the vibrating screen 22 and the secondary fine granulator 23 and passes through the vibrating screen 22. With floating classifier 24 There.
The classifying means 50 includes a liquid cyclone 51 that floats and separates particles of about 50 μm or less from the mud-contaminated soil containing particles of 5 mm or less stored in the feed sump 40 in treated water, and the liquid cyclone 51 A dewatering vibrating screen 53 for separating particles such as fine sand mainly composed of sand of about 50 μm or more from the slurry discharged from the bottom and primarily stored in the spigot tank 52, and fine particles supplied from the top of the feed sump 40 The thickener tank 54 for coagulating and precipitating solids in the treated water in which the pieces are floating, the slurry tank 55 for storing the slurry precipitated at the bottom of the thickener tank 54, and the slurry stored in the slurry tank 55 are dehydrated. And a dehydrator 56 for the purpose.
Further, the sewage treatment unit 70 is a treated water tank 71 for insolubilizing heavy metals dissolved or floating in the treated water, and a heavy metal or the like insoluble in the treated water tank 71 or an oily component is filtered with an adsorbent and the treated water. And a liquid filtration device 72 for purifying the water.
[0014]
2A and 2B are diagrams showing a configuration of the primary granulator 21, wherein FIG. 2A is a side view, and FIG. 2B is a cross-sectional view taken along line AA of FIG. The primary atomizer 21 is attached to the inner peripheral surface along the axial direction and is attached to the cylindrical rotary drum 11 having a plurality of outer blades 11W protruding in the central direction, and the outer peripheral surface along the axial direction. A rotor 12 having a plurality of inner blades 12W projecting in the radial direction and eccentrically mounted inside the rotary drum 11, and an annular gear 13 provided on the outer periphery of the rotary drum 11 by a motor 14 The 12 rotating shafts 15 are rotated in opposite directions by the drive mechanism 16, and the above-mentioned processing is performed by applying compression and shear stress to the processing material S (shaded portion in FIG. 5B) input from the material input port 17. The material S is crushed or peptized, and the magnitude of the stress acting on the processing material is mainly determined by the distance between the rotating drum 11 and the rotor 12 (the eccentricity of the rotor 12), and the rotating drum 11. And low It is to be adjusted by the respective rotational speeds of 12.
The configuration of the secondary finer 23 is almost the same as that of the primary finer 21.
[0015]
As shown in FIG. 3A, the primary granulator 21 for coarsely crushing the contaminated soil reduces the eccentric amount of the rotor 12 to reduce the distance D between the rotary drum 11 and the rotor 12. 1 Is relatively wide and the rotation speed is low. Further, as shown in FIG. 3 (b), the secondary granulator 23 mainly composed of the peptization treatment of the contaminated soil increases the eccentric amount of the rotor 12 so that the distance D between the rotary drum 11 and the rotor 12. 2 In addition, the rotational speed is made higher than the speed of the primary fine granulator 21, and the downstream rotor diameter is made larger than the upstream rotor diameter as shown in FIG. The processing gap is configured to be discontinuous and narrow in the downstream direction.
[0016]
In the primary finer 21 and the secondary finer 23, as shown in FIG. 5, the contaminated soil P introduced into the gap between the rotary drum 11 and the rotor 12, which is a processing gap, While being scraped up by the outer blades 11W and pulled down by the inner blades 12W of the rotor 12, shearing stress acts on the contaminated soil P together with compressive stress, and the aggregated granular bodies of the contaminated soil are dissolved. Shattered and peptized. That is, as shown in FIG. 6 (a), the particles p of the contaminated soil in which the particles p are fixed on the fixing surface r and are in a aggregated state, or the particles are not fixed. When compressive stress and shear stress are applied to the large particle p, the aggregated granular material P is separated from the fixed surface r and granulated into almost independent fine particles p (solution Along with the crushing action, the contaminants q such as heavy metals adhering relatively weakly to the surface of each granular material P are separated.
Further, as shown in FIG. 6B, when a force in the rubbing direction acts on the particles or particles, the contaminants q such as heavy metals attached to the surface of each particle p are peeled off and separated from the particle p. (Peptizing action), the separated contaminant q is suspended or dissolved in the treated water.
In the treatment of contaminated soil, it is considered that soil particles are rarely agglomerated, so that both the primary finer 21 and the secondary finer 23 are shown in FIG. The glue action is the main.
[0017]
FIGS. 7A and 7B are diagrams showing a configuration of the floating classifier 24. The floating classifier 24 has the same configuration as a known sorter described in, for example, Japanese Patent Laid-Open No. 8-164363. It is. The floating classifier 24 has a main frame 1 having a pair of frames 1a and 1b having a horizontal end at one end and an ascending slope at the other end, and a main frame 1 between the frames 1a and 1b by a driving roller 2a and a driven roller 2b. A belt 3 that travels in the direction from the horizontal part to the upward slope part, a plurality of rotating rollers 4 that are provided on both sides in the width direction of the back surface of the material input surface 3a of the belt, and that support the belt 3, and the rotating roller 4 A plurality of arm portions 5a that respectively support one end of the rotation roller 5 and a plurality of arm portions 5b that respectively contact the other end of the rotation roller 4, and the vibration frame 5 that supports the rotation roller 4 and the vibration frame 5 are vibrated. And a processing material that moves on the belt 3 and the wave-like standing wall 7 that extends in the longitudinal direction of the belt 3. A water sprinkler 8 for watering and a discharge hopper 9 provided below the folded portion 3b of the gradient portion 3K of the belt 3 are provided, and the processing material put into the horizontal portion 3H of the belt 3 is directed to the upward gradient portion 3K. In addition to being conveyed while being vibrated, the processing material is classified by removing particles having a small particle size in the processing material by the water sprinkler 8 and discharging the particles having a large particle size from the discharge hopper 9. is there. In addition, the small particle | grains removed by the said water sprinkler 8 are sent to the process water channel which is not shown in figure below the folding | returning part 3c of the horizontal part of the said belt 3 with the process water.
Therefore, by using the floating classifier 24, particles having a large particle diameter can be taken out from the treated water containing the granular material that has passed through the vibrating screen 22, and the treated water can be dehydrated. At this time, particles and fine particles having a small particle diameter are separated from the treatment material by watering by the water sprinkler 8, and are sent to the feed sump 40 together with the water to be treated.
[0018]
Next, the processing method of the contaminated soil of this invention is demonstrated.
The contaminated soil thrown into the receiving hopper 18 is conveyed by the belt conveyor 19 and thrown into the primary granulator 21 of the granulator 20. In the primary atomizer 21, the contaminated soil is crushed while being hydrated in a relatively large treatment space, and the contaminated soil is separated without destroying the individual particles. Is moved to the downstream side of the primary atomizer 21 and discharged from a discharge port (not shown). At this time, fine particles such as heavy metals adhering weakly to the surface of the contaminated soil are peeled off and float in the treated water. Further, easily dissolved heavy metals are dissolved in the treated water.
Solid materials such as large metals and interstitial materials discharged from the primary fine granulator 21 are captured and removed by a net 21a for classification of about 30 mm, and the contaminated soil that has become granular bodies of about 30 mm or less It is sent to the vibration screen 22 and sieved to separate 10-30 mm granules.
The treated water containing particulates of 10 mm or less that has passed through the vibrating screen 22 is dehydrated and classified by the floating classifier 24 and then sent to the secondary finer 23. Further, the waste water containing small particles and fine particles discharged from the floating classifier 24 is sent to the feed sump 40 and temporarily stored.
[0019]
In the secondary finer 23, as described above, the stress acting on the contaminated soil is larger than that in the primary finer 1, and mainly due to the peptization due to the mutual friction between the individual particles of the contaminated soil. Remove heavy metal fine particles that are strongly attached to highly viscous carbon, oily components and individual particles of contaminated soil.
At this time, the secondary finer 23 is subjected to a dewatering process and a classifying process by the floating classifier 24, and a processing material from which small particles having a small particle diameter that do not contribute much to the crushing and peptizing action are separated. Since it is charged, it is possible to perform the above-described peptization treatment by adding appropriate water to the charged material. Therefore, the granular material can be efficiently finely divided, and contaminants such as carbon, oily components, and heavy metals that are strongly adhered to individual particles of the contaminated soil can be reliably separated from the particles.
Further, in the treatment, easily dissolved heavy metals dissolve in the treated water, and the contaminants separated from the individual particles of the contaminated soil float as fine particles in the treated water. It is discharged from the outlet of the secondary atomizer 23 together with the polluted soil that has been peptized.
Moreover, since the secondary atomizer 23 is configured such that the downstream rotor diameter is larger than the upstream rotor diameter and the processing void of the contaminated soil is discontinuously and narrowly in the downstream direction, the processing material is Since some of the processing materials do not flow smoothly to the downstream side and return to the upstream side and stay, the peptization processing of the processing materials further proceeds.
[0020]
Contaminated soil slurry and particles such as sand and gravel discharged from the secondary atomizer 23 are sieved to a particle size of 5 mm or more by the vibrating screen 30, and particles of 5 mm or less are temporarily stored in the feed sump 40. After that, it is sent to the classification means 50, where it is classified into granules of various sizes.
Of the mud-like contaminated soil containing particles of 5 mm or less stored in the feed sump 40, the slurry containing large particles at the bottom of the feed sump 40 is sent to the liquid cyclone 51 of the classification means 50 and classified. Is done. In the hydrocyclone 51, fine particles of about 50 μm or less are suspended and separated in the treated water, the treated water containing the fine particles is returned to the feed sump 40, and the particles discharged from the spigot nozzle 4 at the bottom of the hydrocyclone 51 are separated. The slurry containing a large amount of solid particles and having a large solid content is sent to the spigot tank 52 and temporarily stored. The slurry is returned to the feed sump 40 after particles (fine-grained sand) mainly having a sand content of about 50 μm or more are separated by the dewatering vibration screen 53.
[0021]
In the thickener tank 54, the treated water containing the fine particle pieces supplied from the feed sump 40 is slowly rotated in the tank to perform solid-liquid separation in which the solid matter in the treated water is agglomerated and precipitated. As described above, since the heavy metal separated from the contaminated soil is dissolved or floating in the supernatant of the thickener tank 54, it is sent to the treated water tank 71 of the sewage treatment unit 70 for processing. In the treated water tank 71, the heavy metals are separated from the treatment liquid by forming an insolubilized salt of the heavy metals by adding a chelating agent or the like to insolubilize the heavy metals.
On the other hand, the slurry-like contaminated soil precipitated on the bottom of the thickener tank 54 is temporarily stored in the slurry tank 55 and then sent to the dehydrator 56 for dehydration, and a dehydrated cake is produced by a filter press (not shown).
Further, the treated water dehydrated by the dehydrator 56 is also sent to the treated water tank 71, insolubilized heavy metals, and then sent to the liquid filtration device 72. In the liquid filtration device 72, the treated water is filtered with an adsorbent such as activated carbon to remove and purify heavy metals, and the adsorbent that has captured the heavy metals is sent to a final disposal site for processing.
[0022]
As described above, in the present embodiment, the contaminated soil finely divided by the primary finer 21 is sieved by the vibrating screen 22, and the treated water containing granular materials of 10 mm or less that has passed through the vibrating screen 22 is used. In addition, after the dehydration treatment and the classification treatment are performed by the floating classifier 24, the classified granular material having a large particle diameter is charged into the secondary fine granulator 23. The peptization treatment can be performed by adding water. Therefore, the granular material can be efficiently finely divided, and contaminants such as carbon, oily components, and heavy metals that adhere strongly to individual particles of the contaminated soil can be reliably separated from the particles. .
Further, since the particles having a small particle size are separated by the floating classifier 24 and only the particles having a large particle size are sent to the secondary atomizer 23, the crushing / disassembling of the secondary atomizer 23 is performed. The glue efficiency can be further improved.
[0023]
In the above embodiment, the dewatering process is performed by the floating classifier 24 on the treated water containing the granular material that has been finely granulated by the primary fine granulator 21 and passed through the vibrating screen 22. Other dewatering devices such as a dewatering vibrating screen may be used. In addition, if a flocculant is added to the slurry discharged from the previous atomizer and the fine particles dissolved or suspended in the slurry are settled, the slurry is subjected to a dehydration treatment. Since the treated water can be purified simply by sending the treated water directly to the liquid filtration device 72 and removing heavy metals, post-treatment of the treated water can be simplified.
[0024]
Moreover, you may perform a dehydration process and a classification process with respect to the treated water containing the said granular material using the negative pressure type hydrocyclone 51N as shown below.
As shown in FIG. 8, the negative pressure type liquid cyclone 51N ejects liquid containing various sizes of granular materials introduced from the treatment material introduction pipe 82 on the inner wall of the cylindrical cyclone main body 81 at high speed. When the liquid moves downward along the inner wall of the cyclone body 81 while forming a vortex called a primary rotating flow, the pressure at the center of the cyclone body 81 decreases, and the liquid moves a vortex called a secondary rotating flow. A material discharge pipe below the cyclone body 81, which is a type of liquid cyclone that classifies particles having a small particle size contained in the liquid by utilizing the phenomenon that the cyclone body 81 rises from the inside of the primary rotating flow while forming. The spigot nozzle 84 made of an elastic body is attached to the 83, and during operation, the spigot nozzle 84 is sucked by the decrease in the internal pressure of the cyclone main body 81 described above. By being narrowed down, closing the opening 84s of the spigot nozzle 84, increasing the negative pressure generated in the lower portion of the cyclone body 81.
This facilitates the generation of the secondary rotating flow, efficiently feeds particles having a small particle diameter into the riser pipe 85, and converts the solid content of the particles having a large particle diameter in the muddy water into the opening 84s of the spigot nozzle 84. Accumulate nearby. When the solid content is accumulated more than a certain weight, since the spigot nozzle 84 is made of an elastic body, the opening 84s of the spigot nozzle 84 is pushed and spread by its own weight, and the slurry with increased solid content becomes the opening. It is discharged from 84s.
Therefore, the treated water containing the granular material that has been refined by the primary refiner 21 and passed through the vibrating screen 22 is classified by the negative pressure type hydrocyclone 51N, and the slurry having increased solid content is taken out. The dehydrated treatment can be performed on the treated water. Moreover, since the particle | grains below a predetermined particle diameter can be isolate | separated, the crushing and peptization efficiency of the secondary atomizer 23 can be improved.
The treated water containing small particles discharged from the upper part of the negative pressure hydrocyclone 51N is sent to the feed sump 40 and stored.
[0025]
Moreover, in the said example, although the processing method of contaminated soil was demonstrated, when the processing material is incinerated ash or contaminated soil containing incinerated ash, it can process with the same processing system. In this case, since the incinerated ash is agglomerated, the primary pulverizer 21 and the secondary pulverizer 23 are crushed and disassembled as shown in FIGS. 6 (a) and 6 (b). A glue action is performed on the treated material.
Furthermore, it cannot be overemphasized that the refinement | purification processing method of this invention is applicable also when the soil containing gravel, such as dredged soil, is refined without crushing the said gravel. Further, in the above example, the granular material to which the contaminants crushed and peptized by the granulating apparatus 20 including the primary granulator 21 and the secondary granulator 23 are classified by the liquid cyclone 51. However, the structure of the atomization apparatus 20 is not restricted to this. For example, the refining process may be performed by a single refining apparatus having a configuration similar to that of the secondary refining machine 23 and configured such that the processing gap is discontinuously and narrowed in the downstream direction. Then, using a general crusher, the granular material to which the contaminant is attached may be refined while water is added.
[0026]
【The invention's effect】
As described above, according to the invention described in claim 1, A cylindrical rotating drum having a plurality of outer blades on the inner peripheral surface, and a rotor having a plurality of inner blades on the outer peripheral surface and mounted eccentrically with respect to the rotating drum inside the rotating drum. A processing material is introduced into a gap between a certain rotating drum and the rotor, and this Provided with a plurality of stages of finely pulverizing equipment that hydrates the processing material that has been added to refine the processing material. , The above multi-stage Sequentially passed through the atomizer Let When finely pulverizing, While gradually setting the processing gap of each of the above-mentioned fine granulating devices in the downstream stage, After the slurry discharged from the first-stage atomizer is dehydrated, it is put into the second-stage atomizer. Like So It is possible to efficiently disintegrate and peptize treatment materials, and to reliably separate contaminants such as carbon, oily components and heavy metals that adhere strongly to individual particles of contaminated soil from the above particles. As well as In the latter stage of the grain refiner, the above-mentioned peptization treatment can be performed by adding moderate water to the input material. Because The granule can be finely divided efficiently.
[0028]
Claim 2 According to the invention described in, since the slurry discharged from the previous finer device was subjected to dehydration while being classified, small particles having a small particle size that do not contribute much to the crushing and peptizing action are separated. Only the particles having a large particle diameter can be sent to the subsequent finer means. Accordingly, it is possible to further improve the crushing / peptizing efficiency of the finer means in the subsequent stage.
[0029]
Claim 3 According to the invention described in (2), the slurry is transported in an ascending gradient while vibrating the slurry by a belt conveyor, and at a predetermined position of the gradient, the slurry is added to the slurry to separate particles having a small particle diameter, thereby increasing the particle diameter. Since the slurry is dehydrated by a floating classifier that classifies the slurry, the slurry can be dehydrated while being efficiently classified.
[0030]
Claim 4 According to the invention described in the above, a nozzle made of an elastic body is attached to the discharge port provided in the lower part of the main body of the liquid cyclone, the negative pressure generated inside the liquid cyclone is increased, and particles having a small particle diameter are introduced from the charged slurry. Since the slurry is dehydrated by the negative pressure hydrocyclone that separates the treated water containing the particles, particles having a predetermined particle diameter or less can be separated from the slurry, and the slurry can be reliably dehydrated.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a contaminated soil treatment system according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a primary atomizer according to the present embodiment.
FIG. 3 is a view showing a positional relationship between a rotating drum and a rotor of a primary finer and a secondary finer.
FIG. 4 is a diagram showing a configuration of a secondary atomizer according to the present embodiment.
FIG. 5 is a diagram illustrating crushing / peptizing processing according to the present embodiment.
FIG. 6 is a diagram for explaining the crushing and peptizing action according to the present embodiment.
FIG. 7 is a diagram showing a configuration of a floating classifier.
FIG. 8 is a diagram showing a configuration of a negative pressure hydrocyclone.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Rotating drum, 11W Outer blade, 12 Rotor, 12W Inner blade, 13 Ring gear, 14 Motor, 15 Rotor rotating shaft, 16 Drive mechanism, 17 Material input port, 18 Receiving hopper, 19 Belt conveyor, 20 Atomizer , 21 Primary atomizer, 22 Vibrating screen, 23 Secondary atomizer, 24 Floating classifier, 30 Vibrating screen, 40 Feed sump, 50 classification means, 51 Liquid cyclone, 52 Spigot tank, 53 Dehydrating vibrating screen, 54 Thickener tank, 55 Slurry tank, 56 Dehydrator, 60 Water supply part, 70 Sewage treatment part, 71 Treatment water tank, 72 Liquid filtration apparatus.

Claims (4)

内周面に複数の外羽根を有する円筒状の回転ドラムと、外周面に複数の内羽根を有し上記回転ドラムの内部に回転ドラムに対し偏心して取り付けられたロータとを備え、処理空隙である上記回転ドラムと上記ロータとの間隙に処理材料を投入し、この投入された処理材料に加水して上記処理材料を細粒化する細粒化装置を複数段に渡って設け、上記処理材料を、上記複数段の細粒化装置を順次通過させて細粒化する細粒化処理方法において、上記各細粒化装置の処理空隙を下流段において次第に狭く設定するとともに、前段の細粒化装置から排出されたスラリーに脱水処理を施した後、後段の細粒化装置に投入するようにしたことを特徴とする細粒化処理方法 A cylindrical rotating drum having a plurality of outer blades on the inner peripheral surface, and a rotor having a plurality of inner blades on the outer peripheral surface and mounted eccentrically with respect to the rotating drum inside the rotating drum. A processing material is introduced into a gap between a certain rotating drum and the rotor, and a granulating device is provided in a plurality of stages for adding the processing material to the introduced processing material to refine the processing material. In the fine graining processing method for sequentially passing through the plurality of stages of fine granulators, the process gaps of the fine grain refiners are gradually set in the downstream stage, and the fine grains in the previous stage was subjected to a dehydration treatment in the slurry discharged from the apparatus, fine processing method is characterized in that so as to put the subsequent stage of grain refining apparatus. 前段の細粒化装置から排出されたスラリーに対し、分級しながら脱水処理を施したことを特徴とする請求項1記載の細粒化処理方法。To the slurry discharged from the preceding grain refining device, fine processing method according to claim 1 Symbol mounting, characterized in that subjected to dehydration treatment with classification. スラリーをベルトコンベアにより振動させながら上り勾配を搬送することにより脱水するとともに、上記勾配の所定の位置で上記スラリーに加水し、粒径の小さな粒子を分離して粒径の大きな粒子を分級する浮遊分級機により、上記スラリーに脱水処理を施したことを特徴とする請求項記載の細粒化処理方法。The slurry is dewatered by conveying an upward gradient while vibrating the slurry by a belt conveyor, and is added to the slurry at a predetermined position of the gradient to separate small particles and classify large particles. 3. The fine graining method according to claim 2 , wherein the slurry is dehydrated by a classifier. 液体サイクロンの本体下部に設けられた排出口に、弾性体から成るノズルを取り付け、液体サイクロン内部に生じる負圧を大きくし、投入されたスラリーから粒径の小さな粒子を含む処理水を分離する負圧式液体サイクロンにより、上記スラリーに脱水処理を施したことを特徴とする請求項記載の細粒化処理方法。A nozzle made of an elastic body is attached to the discharge port provided in the lower part of the hydrocyclone body, the negative pressure generated inside the hydrocyclone is increased, and the treated water containing particles having a small particle size is separated from the charged slurry. 3. The fine graining treatment method according to claim 2 , wherein the slurry is dehydrated by a pressure type hydrocyclone.
JP16160999A 1998-10-30 1999-06-08 Fine grain processing method Expired - Fee Related JP4338825B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP16160999A JP4338825B2 (en) 1999-06-08 1999-06-08 Fine grain processing method
SG1999005288A SG73677A1 (en) 1998-10-30 1999-10-20 Method and system for carrying out treatment of granular substances with pollutants adhered
US09/422,782 US6402064B1 (en) 1998-10-30 1999-10-21 Method and system for carrying out treatment of granular substances with pollutants adhered
IDP991005D ID25768A (en) 1998-10-30 1999-10-29 METHODS AND SYSTEMS FOR IMPLEMENTING TREATMENT OF GRANTS SUBSTANCED BY POLLUTANTS
EP99120904A EP0997202A3 (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
CA002287958A CA2287958A1 (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
KR1019990047392A KR20000052354A (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
BR9904989A BR9904989A (en) 1998-10-30 1999-10-29 Process for treating granular substances with adherent pollutants and medium and system for treating granular substances with adherent pollutants.
AU57154/99A AU5715499A (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
CN99123287A CN1256977A (en) 1998-10-30 1999-10-29 Method and equipment for processing particle with pollutant
US09/950,936 US20020079392A1 (en) 1998-10-30 2001-09-12 Method and system for carrying out treatment of granular substances with pollutants adhered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16160999A JP4338825B2 (en) 1999-06-08 1999-06-08 Fine grain processing method

Publications (2)

Publication Number Publication Date
JP2000342991A JP2000342991A (en) 2000-12-12
JP4338825B2 true JP4338825B2 (en) 2009-10-07

Family

ID=15738425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16160999A Expired - Fee Related JP4338825B2 (en) 1998-10-30 1999-06-08 Fine grain processing method

Country Status (1)

Country Link
JP (1) JP4338825B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568893B2 (en) * 2001-02-26 2010-10-27 Dowaエコシステム株式会社 Purification method of contaminated soil
KR100624444B1 (en) 2005-04-01 2006-09-20 금광개발 주식회사 The process for recovering petroleum-contaminated construction materials
JP5055524B2 (en) * 2010-08-23 2012-10-24 大起理化工業株式会社 Soil sieve
JP5834272B2 (en) * 2011-09-20 2015-12-16 株式会社湘南数理研究会 Decontamination method for contaminated soil
JP5912525B2 (en) * 2011-12-28 2016-04-27 株式会社鴻池組 Cleaning and volume reduction of radioactive material contaminated earth and sand
JP6778763B2 (en) * 2017-01-20 2020-11-04 環テックス株式会社 Sieving equipment
CN114260288B (en) * 2021-12-27 2022-11-04 江苏大昱环保工程有限公司 Incinerator bottom ash material recovery device
CN114949307B (en) * 2022-06-14 2023-10-03 徐州生物工程职业技术学院 Automatic sterilizing equipment of movable duck house

Also Published As

Publication number Publication date
JP2000342991A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
KR20000052354A (en) Method and system for carrying out treatment of granular substances with pollutants adhered
KR100497318B1 (en) Manufacturing method and apparatus for recycle sand exploiting construction waste concrete
JP4970756B2 (en) Crushing and polishing apparatus and method for treating contaminated soil using this apparatus
EP3655165B1 (en) Incinerator ash wet processing
JP4338825B2 (en) Fine grain processing method
JP4190669B2 (en) Method and apparatus for processing particulate matter with contaminants attached
JP4364889B2 (en) Method and apparatus for treating dredged soil
JP5912525B2 (en) Cleaning and volume reduction of radioactive material contaminated earth and sand
KR100460629B1 (en) Soil Washing Apparatus and Soil Washing Device Using It
JP4132413B2 (en) Method for treating particulate matter with contaminants attached
JP2002254063A (en) Clarification method and separating equipment for polluted soil
JP4137291B2 (en) Method for treating particulate matter with contaminants attached
JP4335369B2 (en) Method for treating particulate matter with contaminants attached
JP4286990B2 (en) Processing equipment for particulate matter with contaminants
JP4236758B2 (en) Fine graining equipment
JP4216943B2 (en) Granulation method
JP2000197878A (en) Apparatus for treating particulate material to which pollutant is adhered
JP2006015327A (en) Earth/sand regeneration system and earth/sand regeneration method
KR200311094Y1 (en) Manufacturing method and apparatus for recycle sand exploiting construction waste concrete
JP2002011434A (en) Process and equipment for treating incineration ash
JP2010234216A (en) Powdery particle material treatment system, and powdery particle material treatment method
JP2005262076A (en) Method for cleaning soil contaminated with oil
RU2606376C1 (en) Method of extracting metal mercury from mercury-containing wastes
JP6618039B2 (en) Decontamination soil treatment apparatus and method
JP2002011435A (en) Process and equipment for treating incineration ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees