JP4286990B2 - Processing equipment for particulate matter with contaminants - Google Patents

Processing equipment for particulate matter with contaminants Download PDF

Info

Publication number
JP4286990B2
JP4286990B2 JP22376699A JP22376699A JP4286990B2 JP 4286990 B2 JP4286990 B2 JP 4286990B2 JP 22376699 A JP22376699 A JP 22376699A JP 22376699 A JP22376699 A JP 22376699A JP 4286990 B2 JP4286990 B2 JP 4286990B2
Authority
JP
Japan
Prior art keywords
granular
granular material
granular materials
rotor
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22376699A
Other languages
Japanese (ja)
Other versions
JP2000197879A (en
Inventor
堯雄 反後
謙治 川口
豊 信太
汎 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP22376699A priority Critical patent/JP4286990B2/en
Priority to SG1999005288A priority patent/SG73677A1/en
Priority to US09/422,782 priority patent/US6402064B1/en
Priority to IDP991005D priority patent/ID25768A/en
Priority to CN99123287A priority patent/CN1256977A/en
Priority to CA002287958A priority patent/CA2287958A1/en
Priority to KR1019990047392A priority patent/KR20000052354A/en
Priority to EP99120904A priority patent/EP0997202A3/en
Publication of JP2000197879A publication Critical patent/JP2000197879A/en
Priority to US09/950,936 priority patent/US20020079392A1/en
Application granted granted Critical
Publication of JP4286990B2 publication Critical patent/JP4286990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土壌や焼却灰等の汚染物質が付着された粒状体の無害化を実現するための汚染物質が付着した粒状体の処理装置に関するものである。
【0002】
【従来の技術】
従来、リサイクルができない生ゴミ等の可燃物は、主に、ストーカ式焼却炉あるいは流動床式焼却炉において焼却され、焼却灰として廃棄物処分場に搬出されて埋設される。実際の焼却灰には、上記可燃物に混って焼却された金属屑やガラスあるいは陶器類の欠片や土砂等も含まれているので、焼却灰の成分としては、各種金属やシリカ,アルミナ,石灰等が混ざっている。このような焼却灰は、廃棄量が多いことや、重金属類や焼却過程で生じたダイオキシン等の有害物質が焼却灰に付着していることから、焼却灰の減容化及び無害化の方法あるいは再利用の技術の確立が望まれている。
焼却灰に含まれる鉛,亜鉛,銅,カドミウム等の有害な重金属類を無害とする方法として、(1)溶融固化、(2)セメント固化、(3)薬剤処理、(4)酸やその他の溶媒による安定化、(5)炭酸塩化処理、(6)水洗浄などがある。これらの内で最も確実な方法は(1)の溶融固化で、これは焼却灰を約1500℃以上の高温で溶融した後廃棄物処分場に廃棄、または粉砕して微粒片とし再利用する方法で、この処理方法は現在実用化されている。この処理方法では、重金属類は溶融物の内部に封じ込められているので、上記溶融物が水に触れた場合でも上記重金属類が溶出することはないといわれている。(2)のセメント固化は、焼却灰にセメントを入れるため、廃棄物の量が増大してしまうという致命的な欠点がある。その上、セメントの混入によって処理された焼却灰はアルカリ性が強くなり、かえって鉛などが溶出する危険性が高い。(3)の薬剤処理では、pH調整が重要であるが、焼却灰に含まれる物質が一定せずかつ多様なことからpH調整が難しく、不適切であると薬剤添加の効果がないので疑問視されている。(4)の酸やその他の溶媒による安定化は、重金属類を残存させた状態で安定化させるので、長期的に溶出を防止することは難しい。(5)の炭酸塩化処理は維持管理が難しく、その上装置が複雑なので実用的ではない。(6)の水洗浄は、酸性雨等で酸性環境にならなければ、比較的容易に重金属類が除去できるといわれているが、その効果は粉体状の飛灰で確認されているだけで、焼却灰の場合のように、団粒状態にあるような粒状体に付着されている重金属類やダイオキシン類に対しては、十分な効果が期待できない。
また、上述した溶融固化は、焼却灰の処理温度が高いため、ダイオキシン類を熱分解して無害化することができるので、現状では、この溶融固化による処理が最も効果的であるといわれており、この溶融固化が焼却灰の処理方法の主流となっている。
【0003】
しかしながら、長期的にみると、溶融固化においても、処分場に埋設された溶融物の内部に封じ込められいる重金属類が溶出する可能性は否定できない。また、溶融固化では、焼却灰を高温で溶融するために、溶融炉等の大型設備を必要とすることや、多大な燃料を必要とすることから、設備の建設費や処理コストが高いといった問題点がある。そこで、処分場に焼却灰を廃棄する以前に重金属類やダイオキシン類等の有害性のものを除去した後、再利用可能な石,砂,微粒分等を抽出することで廃棄量の減容化を図る技術の確立が望まれるところである。
【0004】
一方、近年、化学工場や金属精錬工場等の工場近辺の土壌が、重金属類や有機塩素化合物あるいは油性分等で汚染されていることが問題視されている。また、海難事故等により海に流出した原油で汚染された海浜の土壌や、原油存在地盤のトンネル掘削に伴い搬出される掘削土には原油が付着しているため、その処理が困難となることがしばしばある。更に、問題となる汚染物質が付着した土壌(汚染土壌)としては、上述した焼却灰の混入により汚染された土壌も含まれる。
このような汚染土壌に対しても、上記汚染物質を除去し、石,砂,微粒分等を抽出して再利用する技術の確立が望まれている。
【0005】
一般に、焼却灰に付着しているダイオキシン類は、焼却灰中の2mm以下の大きさの粒状体表面に比較的強く付着しているといわれている。そこで、焼却灰中の5mm以上の大きさの粒状体を分級し、上記粒状体表面に比較的弱く付着しているダイオキシン類を取り除く処理をすれば、この粒状体は無害であり再利用可能と考えられる。しかしながら、粒状体同士が団粒状態にあるような焼却灰を、個々の粒状体を破壊することなく分離する方法や、ダイオキシン類の比較的強く付着している2mm以下の大きさの粒状体からダイオキシン類を離脱させる方法については、発明者の知るところでは提案されていない。
更に、焼却灰は軟らかい組織であるので、一般の破砕機では焼却灰に付着したダイオキシン類を離脱させることが困難であるだけでなく、例えば、ボールミル等を用いて焼却灰を粉砕すると、焼却灰の粒状体も細粒化されしまい、ダイオキシン類の付着した粒状体を分離できず、かえって減容化が難しくなってしまう。
一方、汚染土壌は、粒状体同士が団粒状態となっている部分は少ないものの、上記粒状体に付着している重金属類や油性分等の汚染物質は粒径が極めて小さいので、上記焼却灰と同様に、一般の破砕機では上記汚染物質を離脱させることが困難であるだけでなく、汚染土壌の粒状体も細粒化されしまい、上記汚染物質を分離することが困難となる。
【0006】
ところで、特開平8−164363号公報には、砂礫や粘土等を含む浚渫土を粉砕することなく浚渫土中の石等の鋭角部を取り除くとともに、土塊や砂塊等を破砕する破砕機が開示されている。図7(a),(b)は、この破砕機10の構成を示す図で、(a)図は側面図、(b)図は(a)図のA−A断面図である。破砕機10は、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根6Wを有する円筒状の回転ドラム6と、外周面に軸方向に沿って取付けられ、径方向に突出する複数の内羽根7Wを有し、上記回転ドラム6の内部に偏心して取付けられたロータ7とを備え、回転ドラム6の外周に設けられた環状歯車6aをモータ8により、ロータ7に取付けられた回転軸7aを駆動機構7bにより、それぞれ互いに逆方向に回転させ、破砕機10に投入された浚渫土等の投入物に圧縮及びせん断応力を作用させて上記投入物を破砕したり、破砕された投入物間の相互摩擦により破砕物を研磨するものである。なお、上記破砕機10による破砕処理は、砕石を研磨する場合には乾式あるいは湿式で行い、砂礫や粘土等を含む浚渫土等の土砂を細粒化する場合には、上記投入物に加水しつつ行う。また、上記投入物に作用する応力の大きさは、主に、回転ドラム6とロータ7との間隔(ロータ7の偏心度)と、回転ドラム6及びロータ7のそれぞれの回転速度により調整する。
【0007】
【発明が解決しようとする課題】
しかしながら、上記破砕機10では、礫や石などを含む浚渫土を破砕する例については開示されているが、生ゴミや可燃物等の有機物源を燃焼させた焼却灰のような団粒化された粒状体を、上記粒状体を破壊することなく分離する方法や、焼却灰中の粒状体に付着している重金属類やダイオキシン類を分離して、焼却灰を無害化する方法については何ら示唆されてはいない。
更に、上記破砕機10では、処理材料がカーボンや油性分のような粘性の大きな汚染物質が付着している汚染土壌である場合や、汚染物質である重金属類が個々の粒状体に強く付着しているような場合には、上記粒子に付着している汚染物質を有効に離脱させることが困難であった。
【0008】
本発明は、従来の問題点に鑑みてなされたもので、汚染土壌や焼却灰等の汚染物質の付着した粒状体を細粒化するとともに、上記汚染物質を効率的に分離して除去し、更に、上記汚染物質が分離された無害な粒状体を再利用することのできる汚染物質が付着した粒状体の処理装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
の請求項1に記載の汚染物質が付着した粒状体の処理装置は、前段の細粒化手段と後段の細粒化手段と分離手段とを備えた粒状体の処理装置であって、上記前段及び後段の細粒化手段は、それぞれ、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられた、上記回転ドラムと逆方向に回転するロータとを備え、上記前段の細粒化手段は、処理空隙である上記ロータと上記回転ドラムとの間隙に投入された汚染物質が付着した粒状体に、加水しながら、圧縮及び粒状体相互間の擦り合わせの力を作用させ、上記粒状体を独立した粒状体に分離する解砕処理を行い、上記分離手段は、上記前段の細粒化手段から排出された粒状体の中から、5mm〜10mm径の間の所定の径以上の大きさの粒状体と上記粒状体よりも大きさの小さな粒状体とを分離し、上記後段の細粒化手段は、上記前段の細粒化手段よりもロータと上記回転ドラムとの間隙が狭く設定されて、処理空隙である上記ロータと上記回転ドラムとの間隙に投入された、上記分離手段で分離された大きさの小さな方の粒状体に、加水しながら、圧縮及び粒状体相互間の擦り合わせの力を作用させて、上記粒状体を更に独立した粒状体に分離するとともに、上記粒状体の表面に付着している汚染物質を分離する解砕・解膠処理を行うようにしたものである。
なお、上記細粒化手段で行う、汚染物質が付着した粒状体に圧縮応力を作用させ、多数の粒状体同士が固着している団粒状の汚染物質が付着した粒状体を、上記粒状体を破壊することなくほぼ独立した粒状体に分離して細粒化する処理を以下では解砕処理と呼ぶ。また、上記粒状体に加える応力を大きくして、粒状体相互間の擦り合わせの力を作用させて、粒状体同士の摩擦による相互研磨を行わせ、上記粒状体の表面に付着している汚染物質を分離する処理を以下では、解膠処理と呼ぶ。
【0010】
請求項2に記載の汚染物質が付着した粒状体の処理装置は、上記大きさの小さな方の粒状体の中から、重金属類またはダイオキシンのいずれか一方または両方から成る汚染物質を含む微粒片と、大きさが上記微粒片よりも大きい無害な微粒片とを分級する分級手段を設けたものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
実施の形態1.
図1は、本発明の実施の形態1に係わる汚染物質が付着した粒状体の処理装置の構成を示すブロック図である。同図において、1は投入された処理材料である汚染物質が付着した粒状体に加水し、上記粒状体の粗い解砕を行うための第1の細粒化手段である一次細粒化機11と、この一次細粒化機11で解砕処理された上記粒状体に加水し、上記粒状体の解砕・解膠処理を行うための第2の細粒化手段である二次細粒化機12とを備えた細粒化装置、13は汚染物質が付着した粒状体を投入する受け入れホッパ、14は一次細粒化機11の排出口11aから排出された粒状体の中から、大型の金属類や挟雑物等の固形物を捕獲するための約30mmの分級用の網、15は上記網14を通過した粒状体中から5mm径以上粒状体を選別して分離するとともに、5mm以下の粒状体を二次細粒化機12に送出する分離手段、16は液体サイクロンやシックナータンク等の分級手段を備え、上記二次細粒化機12から送出されたスラリー状の粒状体の中から種々の大きさの粒状体を分級するための分級手段である。また、17は上記細粒化装置1及び上記分級手段16に処理水を供給する給水部、18は上記分級手段16から排出される処理水を浄化する汚水処理部である。
【0012】
図2は、細粒化装置1の一構成例を示す図で、細粒化装置1は、上述した従来の破砕機10と同様の構成の一次細粒化機11と二次細粒化機12とを1つのシェル2内に組み込み、共通の動力機3により稼動するように構成されている。上記一次細粒化機11及び上記二次細粒化機12における解砕・解膠の条件は、粒状体同士が固着されて団粒状態となっている汚染物質が付着した粒状体を、上記各粒状体を破壊することなく分離し、かつ上記粒状体中の粒状体に付着している重金属類あるいはダイオキシン類を上記粒状体から剥離するような条件にそれぞれ設定してある。また、4は処理材料である汚染土壌や焼却灰などを投入する処理材料投入口、5は一次細粒化機11及び二次細粒化機12のそれぞれの処理空隙内で順次解砕・解膠された処理材料を排出する処理材料排出口である。なお、上記細粒化装置1に設けられる、分離手段15へ送出口及び分離手段15からの送入口については省略した。
汚染物質が付着した粒状体に対して粗い解砕処理を行う一次細粒化機11は、図3(a)に示すように、ロータ7の偏心量を小さくして回転ドラム6とロータ7との間隔D1を比較的広くするとともに、回転速度を低速としている。また、上記粒状体に対して解膠を主体とする処理を行う二次細粒化機12では、図3(b)に示すように、ロータ7の偏心量を大きくして回転ドラム6とロータ7との間隔D2を狭くするとともに、回転速度を高速にしている。
【0013】
一次細粒化機11または二次細粒化機12中では、図4に示すように、処理空隙である回転ドラム6とロータ7との間隙に投入された汚染物質が付着した粒状体Sは、回転ドラム6の外羽根6Wによって上方に掻き上げられるとともに、ロータ7の内羽根7Wによって下方に引き下げられるので、上記粒状体Sには圧縮応力とともにせん断応力が作用し上記粒状体Sは解砕・解膠処理される。
すなわち、図5(a)に示すように、粒状体同士が固着面rで固着されて団粒状態となっている汚染物質が付着した粒状体の各粒状体pあるいは粒状体同士が固着してはいないが大きさの大きい粒状体pに圧縮応力及びせん断応力が作用し、上記団粒状の各粒状体が上記固着面rのところから分かれてほぼ独立した細かな粒状体pに細粒化される(解砕)とともに、図5(b)に示すように、粒状体同士に擦り合わせ方向の力が作用し、粒状体p相互の摩擦により各粒状体の表面に付着された重金属類やダイオキシン類などの汚染物質qの粒状片が剥離され粒状体pから分離される(解膠)。なお、上記汚染物質qは、団粒状の粒状体の表面だけでなく、各粒状体pの表面である上記固着面rにも付着されている(図5(a)参照)。したがって、解砕時には、団粒状の粒状体の表面に付着されている汚染物質qの一部は剥離されることもあるが、ほとんどは上記解膠処理の際に粒状体pの表面から分離される。また、一部の大きさの大きい粒状体の中には破砕されて細粒化されるものもある。
このとき、上記一次細粒化機11及び二次細粒化機12には、給水部17からの処理水が図示しない給水口を通って供給される。細粒化装置1に投入された汚染物質が付着した粒状体は、この処理水が加水された状態で解砕・解膠されるので、上記剥離された汚染物質のうち、重金属類やダイオキシン類は、上記処理水中に溶解したりあるいは微粒片として浮遊する。
【0014】
次に、処理材料が焼却灰である場合を例にとって、上記処理装置による汚染物質が付着した粒状体の処理方法について説明する。
まず、受け入れホッパ13に投入された焼却灰は、細粒化装置1の処理材料投入口4から一次細粒化機11に投入される。一次細粒化機11では、処理水と混合された焼却灰に対して粗い解砕を行い、焼却灰の表面に弱く付着しているダイオキシン等の微粒片を剥離させて上記処理水中に浮遊させたり、容易に溶解する重金属類を上記処理水中に溶解させるとともに、粒状体同士が固着された焼却灰を、上記粒状体を破壊することなく分離しつつ、焼却灰を一次細粒化機11の下流側に移動させ、分離手段15に送出する。このとき、焼却灰にかかる応力は上述した破砕機10よりも十分低く設定してあるので、焼却灰に混入されている土砂や陶器片等の粒状体は破砕されずに排出される。
【0015】
焼却灰に付着しているダイオキシン類は、一般に焼却灰中の2mm以下の大きさの粒状体に付着しているといわれているので、焼却灰中の5mm以上の大きさの粒状体は無害であると考えられる。そこで、分離手段15として、焼却灰中の5mm以上の大きさの粒状体を分離する装置、例えば、5mm程度の選別振動スクリーンを用いて、上記焼却灰から5mm以上の粒状体を篩い分けして分離し、篩い分けされた5mm以下の焼却灰を二次細粒化機12に送出する。一方、5mm〜30mm程度の粒状体は、分離手段15より搬出され再利用または廃棄される。
【0016】
分離手段15を通過した焼却灰は、概ね5mm以下の粒状体となっているので、二次細粒化機12では回転ドラム6とロータ7との間隔が狭く、かつ高速回転とし、焼却灰を更に細かい粒状体に分離したり、大きさの大きい粒状体の一部を細粒化するとともに、焼却灰に強く付着している重金属類やダイオキシンの微粒片を粒状体相互の摩擦により離脱させつつ上記焼却灰を下流側に移動させる。二次細粒化機12で解砕・解膠された焼却灰は処理材料排出口5から分級手段16に送出され、種々の大きさの粒状体に分級される。上記粒状体から離脱した重金属類やダイオキシン類は、処理水とともに分級手段16に送られ処理されたり、分級手段16を経由して汚水処理部18に送られ処理される。
【0017】
分級手段16では、5mm以下の粒状体を含む泥状の焼却灰から、砂分や微粒砂や灰の成分である細かな粒状体等の種々の大きさの粒状体を分級する。なお、分級手段16で分級した約20μm以下の微粒片はダイオキシン類を多く含む微粒片と見做し、例えば溶融固化するなどの処理を行う。一方、溶出した重金属類を含んだ処理水は、汚水処理部18において薬品処理などを施し、上記重金属類を処理して浄化した後、循環水として再利用される。また、約20μm以上の粒状体を含んだ泥土は、重金属類やダイオキシン類が取り除かれて無害化されているので再利用される。
【0018】
汚染土壌の処理方法も、上記焼却灰の場合と同様であるが、土粒子は団粒化していることが少ないと思われるので、一次細粒化機11,二次細粒化機12ともに、上記図5(b)に示す解膠作用が主となる。なお、焼却灰を含んだ汚染土壌の場合には、一次細粒化機11では粗い解砕を行い、二次細粒化機12では解砕及び解膠を行う。
【0019】
実施の形態2.
図6は、本発明の実施の形態2に係わる焼却灰の連続処理システムの処理フローを示す図で、本実施の形態2では、上述した実施の形態1と同様の細粒化装置1を用いて投入された焼却灰を連続的に処理し、焼却灰を細粒化するとともに、効率良く焼却灰中の有害物を除去し、排出された無害な粒状体を再利用するようにしたものである。
まず、受け入れホッパ13に投入された焼却灰をベルトコンベアにより搬送し、一次細粒化機11に投入する。一次細粒化機11では、給水部17の後述する二次処理水槽53からの処理水を上記焼却灰に加水し、上記焼却灰に対して粗い解砕を行い、焼却灰を種々の大きさの粒状体に分離するとともに、焼却灰の表面に弱く付着しているダイオキシン類や重金属類を上記処理水中に浮遊あるいは溶解した状態で離脱させつつ、上記焼却灰を下流側に移動させ、一次細粒化機11の排出口11aから排出する。一次細粒化機11では、回転ドラム6とロータ7との間隔が広く、かつ低速回転であるので、大型の金属類や挟雑物等の固形物は解砕されずに排出される。この大型の固形物は、上記排出口11aに設けられた約30mmの分級用の網14により捕獲されて除去され、ベルトコンベアにより搬出される。一方、約30mm以下の粒状体となった焼却灰は、5mm〜10mm程度(例えば、10mm)の一次選別振動スクリーン20により篩い分けされる。篩い分けされた10mm以下の焼却灰は、磁気式金属除去機21において、焼却灰中の金属片を取り除いた後に、二次細粒化機12に送られる。一方、10mm〜30mm程度の粒状体はベルトコンベアにより搬出され再利用または廃棄される。なお、一次選別振動スクリーン20には給水部17から水が供給され、一次選別振動スクリーン20を通過した水は、後述する第1のフィードサンプ23に送られる。この一次選別振動スクリーン20が上記実施の形態1の分離手段15に相当する手段である。
【0020】
一次選別振動スクリーン20を通過した焼却灰は、概ね10mm以下の粒状体となっているので、二次細粒化機12では、給水部17からの処理水を上記焼却灰に加水するともに、回転ドラム6とロータ7との間隔を狭くしかつ回転速度を高速にし、焼却灰に対して主に粒状体同士の摩擦による相互研磨を行わせ、焼却灰に強く付着している重金属類やダイオキシン類を離脱させつつ上記焼却灰を下流側に移動させ、二次細粒化機12の排出口12aから、二次選別振動スクリーン22に送る。
二次選別振動スクリーン22は、上記焼却灰から5mm以下の粒状体を確実に篩い分けるもので、上記二次選別振動スクリーン22から排出される5mm以下の砂分や細粒化された灰粒子等の粒状体を含んだ泥状の焼却灰は、第1のフィードサンプ23に一時貯蔵され後、分級手段16により種々の大きさの粒状体に分級される。また、上記一次選別振動スクリーン20及び二次選別振動スクリーン22で篩い分けされた5mm〜30mm程度の砂礫や細かい陶器片を主とした粒状体は、搬出され再利用あるいは廃棄される。
【0021】
次に、分級手段16における分級処理について詳細に説明する。
第1のフィードサンプ23に貯蔵された5mm以下の粒状体を含んだ泥状の焼却灰は、第1の液体サイクロン30に送られ分級される。第1の液体サイクロン30では、約100μm以下の粒状体を処理水中に浮遊させて分離する。上記第1の液体サイクロン30の上部から排出された約100μm以下の粒状体を含んだ処理水は、第1のフィードサンプ23に一時貯蔵された後、第2のフィードサンプ33に送られる。一方、第1の液体サイクロン30の底部から排出された粒径が100μmを越える粒状体を含むスラリーは、第1のスピゴットタンク31に送られた後、第1の脱水振動スクリーン32で約100μm以上の砂分を主体とした粒状体が分離されて、第2のフィードサンプ33に送られる。
同様に、第2のフィードサンプ33に貯蔵された約100μm以下の粒状体となった焼却灰は、第2の液体サイクロン34と第2の脱水振動スクリーン36とにより、20〜100μmの微粒砂を主とした粒状体と20μm以下の微粒片とに分級される。すなわち、第2の液体サイクロン34の上部から排出された約20μm以下の微粒片を含んだ処理水は、第2のフィードサンプ33に一時貯蔵された後、ゴミ処理トロンメル37を介してシックナータンク40に送られる。また、一方、第1の液体サイクロン30の底部から排出された粒径が20μmを越える粒状体を含むスラリーは、第2のスピゴットタンク35に送られた後、第2の脱水振動スクリーン36により、約20μm以上の微粒砂を主体とした粒状体が分離されて、シックナータンク40に送られる。
【0022】
シックナータンク40では、上記約20μm以下の微粒片を含んだ処理水と泥状の焼却灰とをタンク内でゆっくりと回転させ、粒状体等の固形物を凝集沈殿させる固液分離を行う。上記シックナータンク40の上澄み液には、上述したように、焼却灰から分離された重金属類が溶解あるいは浮遊しているので、汚水処理部18の一次処理水槽50に送られ処理される。この一次処理水槽50では、キレート剤等の添加によって上記重金属類の不溶化塩を形成させ重金属類を不溶化することにより、上記重金属類を上記処理液から分離する。
一方、シックナータンク40の底部に沈殿したスラリー状の焼却灰は、第1のスラリータンク41に貯蔵された後、遠心分離器42において、ダイオキシン類等の微粒片を除去した後、第2のスラリータンク43に送られ貯蔵される。遠心分離器42で分離された、ダイオキシン類等の微粒片を多く含む有害な汚泥は、溶融固化等の処理を施すなどして廃棄される。一方、スラリータンク43に貯蔵されたスラリーは、重金属類やダイオキシン類が除去されて無害化されているので、脱水機44に送り、このスラリーから、図示しないフィルタプレスにより脱水ケーキを作製するなどして再利用することができる。
【0023】
なお、脱水機44で脱水された水は濾過水返却用タンク51に送られ一時貯蔵され、その後、一次処理水槽50で重金属類を不溶化した後、液体濾過装置52に送られる。液体濾過装置52では、上記処理水を活性炭等の吸着材で濾過して重金属類やダイオキシン類を除去して浄化する。この浄化された処理水は給水部である二次処理水槽53に送られる。また、シックナータンク40から一次処理水槽50に送られた処理水も、上記液体濾過装置52で浄化された後、二次処理水槽53に送られる。二次処理水槽53に戻された処理水は、補給用の清水と混合されて、再び、一次細粒化機11,二次細粒化機12及び一次選別振動スクリーン20等に供給される。
【0024】
なお、上記実施の形態2においては、焼却灰の処理システムについて説明したが、汚染土壌についても、上記処理システムと同様の処理システムにより、土粒子に付着した汚染物質を効率よく取り除くことができるとともに、汚染土壌中の石,砂,微粒分等を抽出して再利用することができる。
【0025】
以上説明したように、請求項1に記載の発明によれば、前段の細粒化手段と後段の細粒化手段と分離手段とを備えた粒状体の処理装置において、上記前段及び後段の細粒化手段は、それぞれ、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられた、上記回転ドラムと逆方向に回転するロータとを備え、上記前段の細粒化手段は、処理空隙である上記ロータと上記回転ドラムとの間隙に投入された汚染物質が付着した粒状体に、加水しながら、圧縮及び粒状体相互間の擦り合わせの力を作用させ、上記粒状体を独立した粒状体に分離する解砕処理を行い、上記分離手段は、上記前段の細粒化手段から排出された粒状体の中から、5mm〜10mm径の間の所定の径以上の大きさの粒状体と上記粒状体よりも大きさの小さな粒状体とを分離し、上記後段の細粒化手段は、上記前段の細粒化手段よりもロータと上記回転ドラムとの間隙が狭く設定されて、処理空隙である上記ロータと上記回転ドラムとの間隙に投入された、上記分離手段で分離された大きさの小さな方の粒状体に、加水しながら、圧縮及び粒状体相互間の擦り合わせの力を作用させて、上記粒状体を更に独立した粒状体に分離するとともに、上記粒状体の表面に付着している汚染物質を分離する解砕・解膠処理を行うようにしたので、後段の細粒化手段では最大粒径が規制された粒状体を処理できる。したがって、汚染物質が付着した粒状体の解砕・解膠を効率的に行うことができ、上記粒状体の分級を容易にすることができる。更に、上記分離された5mm径以上の大きさの粒状体は無害な粒状体なので、再利用可能である。
【0026】
請求項2に記載の発明によれば、上記大きさの小さな方の粒状体の中から、重金属類またはダイオキシンのいずれか一方または両方から成る汚染物質を含む微粒片と、大きさが上記微粒片よりも大きい無害な微粒片とを分級する分級手段を設けて、上記汚染物質を含む有害性の微粒片を取り除くようにしたので、無害化された大きい方の粒状体を脱水ケーキ等のリサイクル可能な資源に再使用することができるとともに、汚染物質が付着した粒状体の無害化及び減容化に対して著しい効果をもたらすことができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係わる汚染物質が付着した粒状体の処理装置の構成を示すブロック図である。
【図2】 本実施の形態1に係わる細粒化手段を示す側面図である。
【図3】 本実施の形態1の細粒化手段の設定条件を示す図である。
【図4】 本実施の形態1の解砕・解膠作用を説明するための図である。
【図5】 本実施の形態1の解砕・解膠作用を説明するための図である。
【図6】 本発明の実施の形態2に係わる焼却灰の連続処理システムの処理フローを示す図である。
【図7】 従来の破砕機の構造を示す図である。
【符号の説明】
1 細粒化装置、2 シェル、3 動力機、4 処理材料投入口、
5 処理材料排出口、6 回転ドラム、6W 外羽根、7 ロータ、
7W 内羽根、11 一次細粒化機、12 二次細粒化機、
13 受け入れホッパ、14 網、15 分離手段、16 分級手段、
17 給水部、18 汚水処理部、20 一次選別振動スクリーン、
21 磁気式金属除去機、22 二次選別振動スクリーン、
23 第1のフィードサンプ、30 第1の液体サイクロン、
31 第1のスピゴットタンク、32 第1の脱水振動スクリーン、
33 第2のフィードサンプ、34 第2の液体サイクロン、
35 第2のスピゴットタンク、36 脱水振動スクリーン、
37 ゴミ処理トロンメル、40 シックナータンク、
41 第1のスラリータンク、42 遠心分離器、
43 第2のスラリータンク、44 脱水機、50 一次処理水槽、
51 濾過水返却用タンク、52 液体濾過装置、53 二次処理水槽。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a processing apparatus for a granular material to which a contaminant is attached for realizing detoxification of the granular material to which a contaminant such as contaminated soil or incinerated ash is attached.
[0002]
[Prior art]
Conventionally, combustibles such as garbage that cannot be recycled are mainly incinerated in a stoker-type incinerator or a fluidized-bed incinerator, and are carried out as incineration ash to a waste disposal site where they are buried. The actual incineration ash contains metal scraps, glass or ceramic pieces and earth and sand that have been incinerated with the above combustible materials, so the components of incineration ash include various metals, silica, alumina, Lime etc. are mixed. Such incineration ash is a large amount of waste, and because hazardous substances such as heavy metals and dioxins generated in the incineration process are attached to the incineration ash, a method for reducing the volume and detoxification of the incineration ash or Establishment of reuse technology is desired.
Methods for detoxifying harmful heavy metals such as lead, zinc, copper and cadmium contained in incineration ash include (1) melt solidification, (2) cement solidification, (3) chemical treatment, (4) acid and other There are stabilization by a solvent, (5) carbonation treatment, (6) water washing and the like. Among these, the most reliable method is the melting and solidification of (1), in which the incinerated ash is melted at a high temperature of about 1500 ° C. or higher and then discarded in a waste disposal site or crushed and reused as fine particles. This processing method is currently in practical use. In this treatment method, since heavy metals are contained in the melt, it is said that the heavy metals do not elute even when the melt touches water. The cement solidification of (2) has a fatal disadvantage that the amount of waste increases because cement is put into the incineration ash. In addition, the incineration ash treated by mixing cement becomes strongly alkaline, and there is a high risk that lead and the like are eluted. In the chemical treatment of (3), pH adjustment is important, but since the substances contained in incineration ash are not constant and diverse, pH adjustment is difficult, and if it is inappropriate, there will be no effect of adding chemicals. Has been. Stabilization with acid or other solvent in (4) stabilizes in a state in which heavy metals remain, so it is difficult to prevent elution for a long period of time. The carbonation treatment (5) is not practical because it is difficult to maintain and is complicated. It is said that water washing in (6) can remove heavy metals relatively easily if it does not become an acidic environment due to acid rain, etc., but its effect has only been confirmed with powdered fly ash. As in the case of incinerated ash, a sufficient effect cannot be expected for heavy metals and dioxins attached to a granular material in an aggregated state.
In addition, since the above-mentioned melt-solidification has a high treatment temperature of incineration ash, it can be detoxified by thermally decomposing dioxins, so at present, it is said that the treatment by this melt-solidification is the most effective. This melting and solidification has become the mainstream of incineration ash treatment methods.
[0003]
However, over the long term, the possibility of elution of heavy metals contained in the melt embedded in the disposal site cannot be denied even in the case of melting and solidifying. In addition, in melting and solidification, in order to melt the incineration ash at a high temperature, a large facility such as a melting furnace is required, and a large amount of fuel is required, so that the construction cost and processing cost of the facility are high. There is a point. Therefore, the volume of waste can be reduced by removing recyclable stones, sand, fine particles, etc. after removing hazardous materials such as heavy metals and dioxins before disposing of incineration ash at the disposal site. The establishment of technology to achieve this is desired.
[0004]
On the other hand, in recent years, it has been regarded as a problem that soils in the vicinity of factories such as chemical factories and metal smelting factories are contaminated with heavy metals, organochlorine compounds or oily components. In addition, since the crude oil is attached to the soil on the beach contaminated with crude oil that has flowed into the sea due to a marine accident, etc., and the excavated soil that is transported when tunneling the ground where the crude oil is present, it becomes difficult to treat it. There are often. Furthermore, soil contaminated with problematic pollutants (contaminated soil) includes soil contaminated by the incineration ash described above.
For such contaminated soil, establishment of a technique for removing the contaminants and extracting stones, sand, fine particles and the like and reusing them is desired.
[0005]
In general, it is said that dioxins adhering to the incineration ash are relatively strongly adhering to the surface of the granular material having a size of 2 mm or less in the incineration ash. Therefore, if the particles having a size of 5 mm or more in the incinerated ash are classified and the dioxins that are relatively weakly adhered to the surface of the particles are removed, the particles are harmless and can be reused. Conceivable. However, from the method of separating the incinerated ash such that the granular materials are in an aggregated state without destroying the individual granular materials, or a granular material having a size of 2 mm or less with relatively strong adhesion of dioxins. The method for releasing dioxins has not been proposed by the inventors.
Furthermore, since the incineration ash is a soft tissue, it is difficult to remove dioxins attached to the incineration ash with a general crusher. For example, when the incineration ash is pulverized using a ball mill or the like, the incineration ash The granular material is also made finer, and the granular material to which the dioxins are attached cannot be separated, which makes it difficult to reduce the volume.
On the other hand, in the contaminated soil, although there are few parts in which the granular bodies are in an aggregated state, the contaminants such as heavy metals and oily substances adhering to the granular bodies have a very small particle size. Similarly, it is difficult not only to remove the contaminants with a general crusher, but also the particulate matter of the contaminated soil is made finer, making it difficult to separate the contaminants.
[0006]
By the way, JP-A-8-164363 discloses a crusher that removes sharp corners such as stones in dredged materials without crushing dredged soil, clay, etc., and crushes clots, sand clumps, etc. Has been. 7A and 7B are views showing the configuration of the crusher 10, wherein FIG. 7A is a side view and FIG. 7B is a cross-sectional view taken along line AA of FIG. The crusher 10 is attached to the inner peripheral surface along the axial direction and has a cylindrical rotary drum 6 having a plurality of outer blades 6W protruding in the center direction, and is attached to the outer peripheral surface along the axial direction along the radial direction. The rotor 7 has a plurality of inner blades 7 </ b> W protruding to the inside of the rotary drum 6 and is eccentrically attached to the inside of the rotary drum 6. An annular gear 6 a provided on the outer periphery of the rotary drum 6 is attached to the rotor 7 by the motor 8. The attached rotating shaft 7a is rotated in opposite directions by the driving mechanism 7b, and the input material such as clay put in the crusher 10 is subjected to compression and shear stress to crush the input material, The crushed material is polished by mutual friction between the crushed inputs. The crushing process by the crusher 10 is performed dry or wet when grinding crushed stone, and when the earth and sand such as dredged soil including gravel and clay is refined, it is added to the input material. While doing. Further, the magnitude of the stress acting on the input material is mainly adjusted by the interval between the rotating drum 6 and the rotor 7 (the eccentricity of the rotor 7) and the respective rotational speeds of the rotating drum 6 and the rotor 7.
[0007]
[Problems to be solved by the invention]
However, the crusher 10 discloses an example of crushing dredged soil containing gravel, stones, etc., but it is agglomerated like incinerated ash by burning organic matter sources such as garbage and combustibles. Suggesting how to separate the granular materials without destroying the above granular materials, and how to separate the heavy metals and dioxins adhering to the granular materials in the incinerated ash to render the incinerated ash harmless It has not been done.
Furthermore, in the crusher 10, when the treatment material is contaminated soil to which a pollutant having a large viscosity such as carbon or oil is adhered, or heavy metals as contaminants adhere strongly to individual granular materials. In such a case, it is difficult to effectively remove the contaminants adhering to the particles.
[0008]
The present invention has been made in view of the conventional problems, and while finely pulverizing the granular material adhered to pollutants such as contaminated soil and incinerated ash, the pollutants are efficiently separated and removed, Furthermore, it aims at providing the processing apparatus of the granular material to which the pollutant adhered which can recycle the harmless granular material from which the said pollutant was isolate | separated.
[0009]
[Means for Solving the Problems]
Book Wish The processing apparatus of the granular material to which the pollutant of Claim 1 adhered is, A granular material processing apparatus comprising a first-stage finer means, a second-stage finer means and a separation means, wherein the first-stage and second-stage finer means are each along the inner circumferential surface along the axial direction. A cylindrical rotary drum having a plurality of outer blades attached in the center direction and a plurality of inner blades attached to the outer peripheral surface along the axial direction and projecting in the radial direction. A rotor that is eccentrically attached to the rotating drum, and that rotates in the opposite direction to the rotating drum, Processing gap The gap between the rotor and the rotating drum The granulated material to which the pollutant charged in is attached is subjected to compression and rubbing force between the granular materials while adding water to separate the granular materials into independent granular materials. Crushing treatment, the separation means is Granules having a diameter greater than or equal to a predetermined diameter between 5 mm and 10 mm among the granules discharged from the finer means in the previous stage And above Separation of granular material smaller than granular material The latter finer means has a gap between the rotor and the rotary drum set narrower than the previous finer means, and is inserted into the gap between the rotor and the rotary drum, which is a processing gap. The the above Separated by separation means Smaller granular material In addition, while adding water, the force of compression and rubbing between the granular materials is applied to separate the granular materials into independent granular materials, and the contaminants adhering to the surface of the granular materials are separated. Crushing and peptizing It is what I did.
In addition, compressive stress is applied to the granular material to which the pollutant is adhered, and the granular material to which the aggregated pollutant to which a large number of granular materials are adhered is attached to the granular material, which is performed by the above-mentioned fine granulating means. In the following, the process of separating into fine particles that are almost independent of each other without being broken and then refining them is referred to as a crushing process. Further, the contamination applied to the surface of the granular material is increased by increasing the stress applied to the granular material, causing the frictional force between the granular materials to act, and causing mutual polishing by friction between the granular materials. Hereinafter, the process of separating the substance is referred to as a peptization process.
[0010]
The processing apparatus of the granular material to which the pollutant according to claim 2 is attached is selected from the smaller granular materials. Consists of one or both of heavy metals and dioxins Contains pollutants Mu Classification means for classifying the particle pieces and harmless fine particle pieces having a size larger than that of the fine particle pieces is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of a processing apparatus for granular materials to which contaminants are attached according to Embodiment 1 of the present invention. In the figure, reference numeral 1 designates a primary refining machine 11 which is a first refining means for hydrolyzing a granular material to which a pollutant, which is a processing material that has been charged, adheres, and coarsely crushing the granular material. And secondary granulation, which is a second granulation means for adding water to the granule that has been crushed by the primary granulator 11 and for pulverizing and peptizing the granule. A fine granulating apparatus having a machine 12, a receiving hopper for feeding granular material to which contaminants are attached, and 14 a large-sized granule discharged from the discharge port 11a of the primary fine granulating machine 11. A mesh for classification of about 30 mm for capturing solids such as metals and foreign substances, 15 separates and separates particles having a diameter of 5 mm or more from the particles that have passed through the mesh 14 and 5 mm or less Separating means for delivering the granular material to the secondary atomizer 12, 16 is a hydrocyclone or thickener Comprising a classification means such as a tank, a classification means for classifying the various sizes granular material from within the slurry granules delivered from the secondary comminution machine 12. Reference numeral 17 denotes a water supply unit that supplies treated water to the above-described fine granulating apparatus 1 and the classifying unit 16, and 18 denotes a sewage treatment unit that purifies the treated water discharged from the classifying unit 16.
[0012]
FIG. 2 is a diagram showing an example of the configuration of the fine granulator 1. The fine granulator 1 is composed of a primary fine granulator 11 and a secondary fine granulator similar in configuration to the conventional crusher 10 described above. 12 are built in one shell 2 and are operated by a common power machine 3. The conditions of pulverization and peptization in the primary fine granulator 11 and the secondary fine granulator 12 are as follows. Each granule is separated without breaking, and the conditions are set such that heavy metals or dioxins adhering to the granule in the granule are separated from the granule. Further, 4 is a processing material input port for introducing contaminated soil or incinerated ash, etc., which are processing materials, and 5 is a pulverizing / disassembling step by step in the respective processing gaps of the primary granulator 11 and the secondary granulator 12. This is a processing material discharge port for discharging the glued processing material. It should be noted that the outlet to the separating means 15 and the inlet from the separating means 15 provided in the atomization apparatus 1 are omitted.
As shown in FIG. 3 (a), the primary granulator 11 that performs coarse crushing processing on the particulate matter to which the contaminants are attached reduces the eccentric amount of the rotor 7, and the rotating drum 6 and the rotor 7 Interval D 1 Is relatively wide and the rotation speed is low. Further, in the secondary granulator 12 that performs the process mainly for peptization on the granular material, as shown in FIG. 3B, the eccentric amount of the rotor 7 is increased and the rotary drum 6 and the rotor are increased. Interval D with 7 2 And the rotation speed is increased.
[0013]
In the primary pulverizer 11 or the secondary pulverizer 12, as shown in FIG. 4, the granular material S to which contaminants put in the gap between the rotary drum 6 and the rotor 7, which is a processing gap, adheres. In addition to being scraped upward by the outer blade 6W of the rotary drum 6 and pulled down by the inner blade 7W of the rotor 7, a shear stress acts on the granule S together with a compressive stress, and the granule S is crushed. -Peptized.
That is, as shown in FIG. 5 (a), the granular materials p of the granular materials to which the granular materials are adhered to each other at the fixing surface r and adhered to the aggregated state are adhered to each other. However, compressive stress and shear stress act on the large-sized granular material p, but the aggregated granular materials are separated from the fixing surface r and are refined into almost independent fine granular materials p. As shown in FIG. 5 (b), heavy metal or dioxin adhered to the surface of each granular material due to friction between the granular materials p acting on the granular materials p. Particulates q of contaminants such as a kind are separated and separated from the granular material p (peptization). The contaminant q is attached not only to the surface of the granular particles, but also to the fixing surface r that is the surface of each granular material p (see FIG. 5A). Therefore, at the time of crushing, some of the contaminants q adhering to the surface of the granular particles may be peeled off, but most of them are separated from the surface of the granular material p during the peptization process. The Some of the large-sized granules are crushed and finely divided.
At this time, treated water from the water supply unit 17 is supplied to the primary finer 11 and the secondary finer 12 through a water supply port (not shown). Since the granular material to which the pollutant charged into the atomizing apparatus 1 adheres is crushed and peptized in a state in which this treated water is added, among the separated pollutants, heavy metals and dioxins Dissolves in the treated water or floats as fine particles.
[0014]
Next, taking a case where the processing material is incinerated ash as an example, a method for processing a granular material to which contaminants have adhered by the above processing apparatus will be described.
First, the incinerated ash charged into the receiving hopper 13 is charged into the primary atomizer 11 from the processing material inlet 4 of the atomizer 1. In the primary fine granulator 11, the incineration ash mixed with the treated water is coarsely crushed, and fine particles such as dioxins adhering weakly to the surface of the incinerated ash are peeled off and suspended in the treated water. In addition to dissolving heavy metals that dissolve easily in the treated water, the incinerated ash is separated from the incinerated ash of the primary refining machine 11 while separating the incinerated ash to which the granular bodies are fixed without destroying the granular bodies. It is moved downstream and sent to the separating means 15. At this time, since the stress applied to the incinerated ash is set to be sufficiently lower than that of the above-described crusher 10, granular materials such as earth and sand and ceramic pieces mixed in the incinerated ash are discharged without being crushed.
[0015]
Dioxins adhering to incineration ash are generally said to be adhering to particles having a size of 2 mm or less in the incineration ash, so particles having a size of 5 mm or more in the incineration ash are harmless. It is believed that there is. Therefore, as the separating means 15, a device that separates particles having a size of 5 mm or more in the incineration ash, for example, a sorting vibration screen of about 5 mm, is used to screen the particles having a size of 5 mm or more from the incineration ash. Separated and sieved incineration ash of 5 mm or less is sent to the secondary finer 12. On the other hand, the granular material of about 5 mm to 30 mm is carried out from the separating means 15 and reused or discarded.
[0016]
Since the incinerated ash that has passed through the separating means 15 is approximately 5 mm or less in granular form, the secondary atomizer 12 has a narrow interval between the rotary drum 6 and the rotor 7 and is rotated at a high speed, and the incinerated ash is removed. While separating into finer granular materials, or refining some of the larger granular materials, and separating fine particles of heavy metals and dioxins that adhere strongly to the incineration ash by friction between the granular materials The incineration ash is moved downstream. The incinerated ash that has been crushed and peptized by the secondary finer 12 is sent to the classifying means 16 from the treatment material discharge port 5 and classified into various sizes of granular material. The heavy metals and dioxins separated from the granular material are sent to the classification means 16 together with the treated water for processing, or sent to the sewage treatment section 18 via the classification means 16 for processing.
[0017]
The classifying means 16 classifies various sizes of granular materials such as fine granular materials, which are components of sand, fine sand, and ash, from mud incinerated ash containing granular materials of 5 mm or less. The fine particles of about 20 μm or less classified by the classification means 16 are regarded as fine particles containing a large amount of dioxins, and are subjected to a treatment such as melting and solidifying. On the other hand, the treated water containing the eluted heavy metals is subjected to chemical treatment and the like in the sewage treatment unit 18 to treat and purify the heavy metals and then reused as circulating water. In addition, mud containing particles having a particle size of about 20 μm or more is reused because heavy metals and dioxins are removed and detoxified.
[0018]
The treatment method of the contaminated soil is the same as in the case of the incinerated ash, but it seems that the soil particles are rarely agglomerated, so both the primary and secondary granulators 11 and 12 The peptizing action shown in FIG. In the case of contaminated soil containing incinerated ash, the primary pulverizer 11 performs coarse pulverization, and the secondary pulverizer 12 performs pulverization and peptization.
[0019]
Embodiment 2. FIG.
FIG. 6 is a diagram showing a processing flow of the incinerated ash continuous processing system according to the second embodiment of the present invention. In the second embodiment, the same granulating apparatus 1 as that of the first embodiment is used. The incineration ash that was put in and out was continuously processed to make the incineration ash finer, and harmful substances in the incineration ash were efficiently removed to recycle the innocuous particulates that were discharged. is there.
First, the incinerated ash charged into the receiving hopper 13 is conveyed by a belt conveyor and charged into the primary atomizer 11. In the primary atomizer 11, the treated water from the secondary treated water tank 53, which will be described later, of the water supply unit 17 is added to the incinerated ash, and the incinerated ash is roughly crushed, and the incinerated ash has various sizes. In addition, the dioxins and heavy metals that are weakly adhering to the surface of the incinerated ash are separated while floating or dissolved in the treated water, and the incinerated ash is moved downstream to remove the primary fine particles. It discharges from the discharge port 11a of the granulator 11. In the primary atomizer 11, the interval between the rotary drum 6 and the rotor 7 is wide and the rotation is at a low speed, so that solids such as large metals and foreign substances are discharged without being crushed. The large solid matter is captured and removed by a classification net 14 of about 30 mm provided at the discharge port 11a, and is carried out by a belt conveyor. On the other hand, the incinerated ash that has become a granular body of about 30 mm or less is sieved by the primary sorting vibration screen 20 of about 5 mm to 10 mm (for example, 10 mm). The screened incineration ash of 10 mm or less is sent to the secondary fine granulator 12 after removing metal pieces in the incineration ash in the magnetic metal removing machine 21. On the other hand, a granular material of about 10 mm to 30 mm is carried out by a belt conveyor and reused or discarded. Note that water is supplied from the water supply unit 17 to the primary sorting vibration screen 20, and the water that has passed through the primary sorting vibration screen 20 is sent to a first feed sump 23 described later. The primary sorting vibration screen 20 is a means corresponding to the separation means 15 of the first embodiment.
[0020]
Since the incinerated ash that has passed through the primary sorting vibration screen 20 has a granular body of approximately 10 mm or less, the secondary atomizer 12 adds the treated water from the water supply unit 17 to the incinerated ash and rotates it. Heavy metal and dioxins that adhere strongly to the incineration ash by narrowing the gap between the drum 6 and the rotor 7 and increasing the rotation speed, and causing the incineration ash to undergo mutual polishing mainly by friction between the granular materials. The incinerated ash is moved to the downstream side while being removed, and sent to the secondary sorting vibration screen 22 from the discharge port 12a of the secondary granulator 12.
The secondary sorting vibrating screen 22 reliably screens particles having a size of 5 mm or less from the incinerated ash, such as a sand content of 5 mm or less discharged from the secondary sorting vibrating screen 22, finely divided ash particles, or the like. The mud incineration ash containing the granular material is temporarily stored in the first feed sump 23 and then classified into various sizes of granular material by the classifying means 16. Further, the granular materials mainly composed of gravel of about 5 mm to 30 mm and fine ceramic pieces that are sieved by the primary sorting vibrating screen 20 and the secondary sorting vibrating screen 22 are carried out and reused or discarded.
[0021]
Next, the classification process in the classification means 16 will be described in detail.
The mud incineration ash containing granular material of 5 mm or less stored in the first feed sump 23 is sent to the first hydrocyclone 30 and classified. In the first hydrocyclone 30, particles having a size of about 100 μm or less are suspended in the treated water and separated. The treated water containing particulate matter of about 100 μm or less discharged from the upper part of the first hydrocyclone 30 is temporarily stored in the first feed sump 23 and then sent to the second feed sump 33. On the other hand, the slurry containing the granular material having a particle diameter exceeding 100 μm discharged from the bottom of the first hydrocyclone 30 is sent to the first spigot tank 31 and then about 100 μm or more by the first dehydration vibrating screen 32. The granular material mainly composed of sand is separated and sent to the second feed sump 33.
Similarly, the incinerated ash stored in the second feed sump 33 and having a granular size of about 100 μm or less is converted into 20 to 100 μm fine sand by the second hydrocyclone 34 and the second dewatering vibrating screen 36. They are classified into main granular materials and fine particles of 20 μm or less. That is, the treated water containing fine particles of about 20 μm or less discharged from the upper part of the second hydrocyclone 34 is temporarily stored in the second feed sump 33, and then passed through the waste treatment trommel 37 to the thickener tank 40. Sent to. On the other hand, the slurry containing particulate matter having a particle size exceeding 20 μm discharged from the bottom of the first hydrocyclone 30 is sent to the second spigot tank 35, and then the second dehydration vibrating screen 36, Granules mainly composed of fine sand of about 20 μm or more are separated and sent to the thickener tank 40.
[0022]
In the thickener tank 40, the treated water containing fine particles of about 20 μm or less and the muddy incineration ash are slowly rotated in the tank, and solid-liquid separation is performed to agglomerate and precipitate solids such as granules. Since the heavy metal separated from the incineration ash is dissolved or floating in the supernatant of the thickener tank 40 as described above, it is sent to the primary treatment tank 50 of the sewage treatment unit 18 for processing. In the primary treatment water tank 50, the heavy metals are separated from the treatment liquid by forming an insolubilized salt of the heavy metals by adding a chelating agent or the like to insolubilize the heavy metals.
On the other hand, the slurry-like incinerated ash that has settled at the bottom of the thickener tank 40 is stored in the first slurry tank 41, and then, after removing fine particles such as dioxins in the centrifuge 42, the second slurry It is sent to the tank 43 and stored. Hazardous sludge containing a large amount of fine particles such as dioxins separated by the centrifuge 42 is discarded after being subjected to treatment such as melting and solidification. On the other hand, since the slurry stored in the slurry tank 43 has been detoxified by removing heavy metals and dioxins, it is sent to the dehydrator 44, and a dehydrated cake is produced from this slurry by a filter press (not shown). Can be reused.
[0023]
The water dehydrated by the dehydrator 44 is sent to the filtered water return tank 51 and temporarily stored. After that, the heavy metals are insolubilized in the primary treatment water tank 50 and then sent to the liquid filtration device 52. In the liquid filtration device 52, the treated water is filtered with an adsorbent such as activated carbon to remove and purify heavy metals and dioxins. The purified treated water is sent to the secondary treated water tank 53 which is a water supply unit. The treated water sent from the thickener tank 40 to the primary treated water tank 50 is also purified by the liquid filtration device 52 and then sent to the secondary treated water tank 53. The treated water returned to the secondary treated water tank 53 is mixed with fresh water for replenishment and supplied again to the primary fine granulator 11, the secondary fine granulator 12, the primary sorting vibration screen 20, and the like.
[0024]
Although the incinerated ash treatment system has been described in the second embodiment, the contaminated soil can be efficiently removed of contaminants attached to the soil particles by the same treatment system as the above treatment system. It is possible to extract and reuse stones, sand, fine particles, etc. in contaminated soil.
[0025]
As described above, according to the invention described in claim 1, In the granular material processing apparatus provided with the finer means in the former stage, the finer means in the subsequent stage, and the separating means, the finer means in the former stage and the latter stage are respectively attached to the inner peripheral surface along the axial direction. A cylindrical rotating drum having a plurality of outer blades projecting in the center direction and a plurality of inner blades attached to the outer peripheral surface along the axial direction and projecting in the radial direction, and rotates inside the rotating drum. A rotor that is mounted eccentrically with respect to the drum, and that rotates in the opposite direction to the rotating drum, Processing gap The gap between the rotor and the rotating drum The granulated material to which the pollutant charged in is attached is subjected to compression and rubbing force between the granular materials while adding water to separate the granular materials into independent granular materials. Crushing treatment, the separation means is Granules having a diameter greater than or equal to a predetermined diameter between 5 mm and 10 mm among the granules discharged from the finer means in the previous stage And more than the above granular material Separates small particles The latter finer means has a gap between the rotor and the rotary drum set narrower than the previous finer means, and is inserted into the gap between the rotor and the rotary drum, which is a processing gap. Separated by the separation means Smaller granular material In addition, while adding water, the force of compression and rubbing between the granular materials is applied to separate the granular materials into independent granular materials, and the contaminants adhering to the surface of the granular materials are separated. Crushing and peptizing Since it did in this way, the granular material by which the largest particle size was controlled can be processed in the subsequent fine graining means. Therefore, it is possible to efficiently perform crushing and peptization of the granular material to which the contaminant is attached, and to facilitate classification of the granular material. Furthermore, the separated granule having a diameter of 5 mm or more is harmless and can be reused.
[0026]
According to the invention described in claim 2, from the smaller granular material, Consists of one or both of heavy metals and dioxins Contains pollutants Mu Since the particle means and the harmless fine particle pieces larger in size than the fine particle pieces are classified, the harmful fine particles containing the pollutants are removed, so the detoxified larger one Can be reused as a recyclable resource such as a dehydrated cake, and can have a significant effect on detoxification and volume reduction of the granular material to which contaminants adhere.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a processing apparatus for a granular material to which contaminants are attached according to Embodiment 1 of the present invention.
FIG. 2 is a side view showing the means for refining according to the first embodiment.
FIG. 3 is a diagram showing setting conditions of the finer means of the first embodiment.
FIG. 4 is a diagram for explaining the crushing and peptizing action of the first embodiment.
FIG. 5 is a diagram for explaining the crushing and peptizing action of the first embodiment.
FIG. 6 is a diagram showing a processing flow of a continuous processing system for incinerated ash according to Embodiment 2 of the present invention.
FIG. 7 is a diagram showing the structure of a conventional crusher.
[Explanation of symbols]
1 Atomizer, 2 shell, 3 power machine, 4 processing material inlet,
5 Processing material discharge port, 6 rotating drum, 6W outer blade, 7 rotor,
7W Inner blade, 11 Primary granulator, 12 Secondary granulator,
13 receiving hopper, 14 mesh, 15 separating means, 16 classifying means,
17 Water supply section, 18 Sewage treatment section, 20 Primary sorting vibration screen,
21 Magnetic metal removal machine, 22 Secondary sorting vibration screen,
23 first feed sump, 30 first hydrocyclone,
31 first spigot tank, 32 first dewatering vibrating screen,
33 second feed sump, 34 second hydrocyclone,
35 second spigot tank, 36 dewatering vibrating screen,
37 Garbage disposal trommel, 40 thickener tank,
41 first slurry tank, 42 centrifuge,
43 second slurry tank, 44 dehydrator, 50 primary treatment tank,
51 Filtration water return tank, 52 Liquid filtration device, 53 Secondary treatment water tank.

Claims (2)

前段の細粒化手段と後段の細粒化手段と分離手段とを備えた粒状体の処理装置であって、上記前段及び後段の細粒化手段は、それぞれ、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられた、上記回転ドラムと逆方向に回転するロータとを備え、上記前段の細粒化手段は、処理空隙である上記ロータと上記回転ドラムとの間隙に投入された汚染物質が付着した粒状体に、加水しながら、圧縮及び粒状体相互間の擦り合わせの力を作用させ、上記粒状体を独立した粒状体に分離する解砕処理を行い、上記分離手段は、上記前段の細粒化手段から排出された粒状体の中から、5mm〜10mm径の間の所定の径以上の大きさの粒状体と上記粒状体よりも大きさの小さな粒状体とを分離し、上記後段の細粒化手段は、上記前段の細粒化手段よりもロータと上記回転ドラムとの間隙が狭く設定されて、処理空隙である上記ロータと上記回転ドラムとの間隙に投入された、上記分離手段で分離された大きさの小さな方の粒状体に、加水しながら、圧縮及び粒状体相互間の擦り合わせの力を作用させて、上記粒状体を更に独立した粒状体に分離するとともに、上記粒状体の表面に付着している汚染物質を分離する解砕・解膠処理を行うことを特徴とする汚染物質が付着した粒状体の処理装置。 A granular material processing apparatus comprising a first-stage finer means, a second-stage finer means, and a separation means, wherein the first-stage and second-stage finer means are each along the inner circumferential surface along the axial direction. A cylindrical rotary drum having a plurality of outer blades attached in the center direction and a plurality of inner blades attached to the outer peripheral surface along the axial direction and projecting in the radial direction. A rotor that rotates eccentrically with respect to the rotary drum, and the finer means in the preceding stage is put into a gap between the rotor and the rotary drum as a processing gap. The smashing process of separating the granular material into independent granular materials is performed by applying a force of compression and rubbing between the granular materials while adding water to the granular material to which the contaminated substances are attached. , it is discharged from the preceding grain refining means From the granules, predetermined separating the small granules of size granules and the upper Symbol granules size than is larger than the diameter, the subsequent grain refining means between 5mm~10mm diameter, The gap between the rotor and the rotary drum is set to be narrower than the finer means in the previous stage, and the size separated by the separation means is inserted into the gap between the rotor and the rotary drum as a processing gap. While applying water to the smaller granular material , the force of compression and rubbing between the granular materials is applied to separate the granular materials into independent granular materials and adhere to the surface of the granular materials. An apparatus for processing granular materials with attached pollutants, characterized by performing crushing and peptizing treatment to separate the pollutants. 上記大きさの小さな方の粒状体の中から、重金属類またはダイオキシンのいずれか一方または両方から成る汚染物質を含む微粒片と、大きさが上記微粒片よりも大きい無害な微粒片とを分級する分級手段を設けたことを特徴とする請求項1記載の汚染物質が付着した粒状体の処理装置。From the smaller granules of the size, and heavy metals or including fine grain pieces any contaminants consisting of one or both of dioxins, magnitude and greater harmless fine pieces than the fine pieces 2. The apparatus for processing a granular material to which contaminants adhere according to claim 1, further comprising a classifying means for classifying.
JP22376699A 1998-10-30 1999-08-06 Processing equipment for particulate matter with contaminants Expired - Fee Related JP4286990B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP22376699A JP4286990B2 (en) 1998-10-30 1999-08-06 Processing equipment for particulate matter with contaminants
SG1999005288A SG73677A1 (en) 1998-10-30 1999-10-20 Method and system for carrying out treatment of granular substances with pollutants adhered
US09/422,782 US6402064B1 (en) 1998-10-30 1999-10-21 Method and system for carrying out treatment of granular substances with pollutants adhered
CN99123287A CN1256977A (en) 1998-10-30 1999-10-29 Method and equipment for processing particle with pollutant
IDP991005D ID25768A (en) 1998-10-30 1999-10-29 METHODS AND SYSTEMS FOR IMPLEMENTING TREATMENT OF GRANTS SUBSTANCED BY POLLUTANTS
CA002287958A CA2287958A1 (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
KR1019990047392A KR20000052354A (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
EP99120904A EP0997202A3 (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
US09/950,936 US20020079392A1 (en) 1998-10-30 2001-09-12 Method and system for carrying out treatment of granular substances with pollutants adhered

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-310448 1998-10-30
JP31044898 1998-10-30
JP22376699A JP4286990B2 (en) 1998-10-30 1999-08-06 Processing equipment for particulate matter with contaminants

Publications (2)

Publication Number Publication Date
JP2000197879A JP2000197879A (en) 2000-07-18
JP4286990B2 true JP4286990B2 (en) 2009-07-01

Family

ID=26525671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22376699A Expired - Fee Related JP4286990B2 (en) 1998-10-30 1999-08-06 Processing equipment for particulate matter with contaminants

Country Status (1)

Country Link
JP (1) JP4286990B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101194925B1 (en) * 2012-03-22 2012-10-25 현대건설주식회사 Particle size selective remediation system and method for heavy metals-contaminated soils by dry-disintegration and separation
JP5683633B2 (en) * 2013-04-15 2015-03-11 公立大学法人県立広島大学 Method and apparatus for treating radioactive material contaminants
JP6778763B2 (en) * 2017-01-20 2020-11-04 環テックス株式会社 Sieving equipment
CN113083469B (en) * 2021-04-13 2023-09-22 河北晨风面业有限公司 Grinding device is smashed with raw materials to flour processing

Also Published As

Publication number Publication date
JP2000197879A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
KR20000052354A (en) Method and system for carrying out treatment of granular substances with pollutants adhered
JP4190669B2 (en) Method and apparatus for processing particulate matter with contaminants attached
JP6411909B2 (en) Detoxification system for arsenic contaminated soil
JP4338825B2 (en) Fine grain processing method
JP4286990B2 (en) Processing equipment for particulate matter with contaminants
JP4335369B2 (en) Method for treating particulate matter with contaminants attached
JP4350987B2 (en) Treatment method for heavy metal contaminated soil
JP4132413B2 (en) Method for treating particulate matter with contaminants attached
JP2000197878A (en) Apparatus for treating particulate material to which pollutant is adhered
JP2006043532A (en) Method and system for cleaning contaminated soil
JP4137291B2 (en) Method for treating particulate matter with contaminants attached
JP4236758B2 (en) Fine graining equipment
JP2002011434A (en) Process and equipment for treating incineration ash
JP4216943B2 (en) Granulation method
JP2001129506A (en) Method for landfill disposal of waste and cover material used for landfill disposal of waste
JP4421088B2 (en) Incineration ash disposal method and waste final disposal site
JP2002011435A (en) Process and equipment for treating incineration ash
JP2002018410A (en) Incinerator ash treatment method and apparatus therefor
JP2002018390A (en) Treating method for incineration ash and equipment the same
JP2002018391A (en) Method for treating granular material
TW450839B (en) Method and system for carrying out treatment of granular substances with pollutants adhered
JP2003080106A (en) Treatment method of incineration ash
JP2002018392A (en) Treating method for incineration ash and aging facility
JP2003073153A (en) Method of disposing incinerated ash
JP2002011449A (en) Method for treating incineration ash and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees