JP4236758B2 - Fine graining equipment - Google Patents

Fine graining equipment Download PDF

Info

Publication number
JP4236758B2
JP4236758B2 JP08326199A JP8326199A JP4236758B2 JP 4236758 B2 JP4236758 B2 JP 4236758B2 JP 08326199 A JP08326199 A JP 08326199A JP 8326199 A JP8326199 A JP 8326199A JP 4236758 B2 JP4236758 B2 JP 4236758B2
Authority
JP
Japan
Prior art keywords
rotor
rotating drum
axial direction
peripheral surface
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08326199A
Other languages
Japanese (ja)
Other versions
JP2000271506A (en
Inventor
堯雄 反後
洋 伊藤
豊 信太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP08326199A priority Critical patent/JP4236758B2/en
Priority to SG1999005288A priority patent/SG73677A1/en
Priority to US09/422,782 priority patent/US6402064B1/en
Priority to AU57154/99A priority patent/AU5715499A/en
Priority to CA002287958A priority patent/CA2287958A1/en
Priority to IDP991005D priority patent/ID25768A/en
Priority to CN99123287A priority patent/CN1256977A/en
Priority to EP99120904A priority patent/EP0997202A3/en
Priority to BR9904989A priority patent/BR9904989A/en
Priority to KR1019990047392A priority patent/KR20000052354A/en
Priority to TW88118889A priority patent/TW450839B/en
Publication of JP2000271506A publication Critical patent/JP2000271506A/en
Priority to US09/950,936 priority patent/US20020079392A1/en
Application granted granted Critical
Publication of JP4236758B2 publication Critical patent/JP4236758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Glanulating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土壌や焼却灰等の汚染物質が付着された粒子が団粒化された粒状体を個々の粒子に細粒化するとともに、上記粒子の表面に付着している重金属類や油性分等の汚染物質を離脱させるための細粒化装置に関するものである。
【0002】
【従来の技術】
近年、化学工場や金属精錬工場等の工場近辺の土壌は、重金属類や有機塩素化合物あるいは油性分等で汚染されていることが問題視されている。また、海難事故等により海に流出した原油で汚染された海浜の土壌や、原油存在地盤のトンネル掘削に伴い搬出される掘削土には原油が付着しているため、その処理が困難となることがしばしばある。更には、産業廃棄物やリサイクルができない生ゴミ等の可燃物は、焼却灰として廃棄物処分場に搬出されて埋設されるが、このような焼却灰には、重金属類や焼却過程で生じたダイオキシン等の汚染物質が付着している。そこで、上記汚染土壌から上記汚染物質を除去した後、石,砂,微粒分等を抽出して再利用する技術や、焼却灰から汚染物質を除去した後有効利用できる固体粒子を抽出するとともに、処分場に廃棄する焼却灰の減容化を図る技術の確立が望まれている。
【0003】
一般に、このような汚染土壌や焼却灰は、粒径の小さな粒子同士が団粒状態となった粒状体であり、重金属類や油性分等の汚染物質は上記粒状体の表面だけでなく、個々の粒子の表面に付着していると考えられている。
しかしながら、一般の破砕機では、上記汚染土壌や焼却灰中の固体粒子に付着している汚染物質を容易に離脱して分離させることが困難である。例えば、汚染土壌の塊や焼却灰をボールミル等に投入して粉砕すると、上記汚染土壌の塊や焼却灰は細粒化されるが、各粒子の表面に付着した汚染物質を十分に離脱させることができないだけでなく、投入された処理材料が均一に細粒化され再度団粒化するため、かえって、離脱された汚染物質と細粒化された汚染土壌の砂礫,砂,微粒分や焼却灰中の固体粒子とを分離することが難しくなってしまう。
【0004】
ところで、特開平8−164363号公報には、砂礫や粘土等を含む浚渫土を粉砕することなく、浚渫土中の石等の鋭角部を取り除くとともに土塊や砂塊等を破砕する破砕機が開示されている。図12は、この破砕機10の構成を示す図で、(a)図は側面図、(b)図は(a)図のA−A断面図である。破砕機10は、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根1Wを有する円筒状の回転ドラム1と、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根2Wを有し、上記回転ドラム1の内部に回転ドラム1に対し偏心して取付けられたロータ2とを備え、回転ドラム1の外周に設けられた環状歯車3をモータ4により、ロータ2の回転軸5を駆動機構6により、それぞれ互いに逆方向に回転させ、材料投入口7から投入された浚渫土等の処理材料S(図12(b)の斜線部)に圧縮及びせん断応力を作用させて上記処理材料Sを破砕したり、破砕された処理材料間の相互摩擦により破砕物を研磨するものである。また、上記破砕機10による破砕処理は、砕石を研磨する場合には乾式あるいは湿式で行い、砂礫や粘土等を含む浚渫土等の土砂を細粒化する場合には、上記処理材料に加水しつつ行う。なお、上記処理材料に作用する応力の大きさは、主に、回転ドラム1とロータ2との間隔(ロータ2の偏心度)と、回転ドラム1及びロータ2のそれぞれの回転速度とにより調整する。
【0005】
【発明が解決しようとする課題】
しかしながら、上記破砕機10は、回転ドラム1及びロータ2の外羽根1W,内羽根2Wの取り付け構造が処理材料の上流側から下流側において同一であるので、汚染土壌や焼却灰のような多数の粒子同士が固着している団粒状の粒状体を、個々の粒子を破壊することなくほぼ独立した粒子に分離して細粒化する処理(以下、解砕処理という)と、上記細粒化された個々の粒子に対して、主に各粒子相互間の擦り合わせの力を作用させて、粒子同士の摩擦による相互研磨を行わせ、上記個々の粒子の表面に付着している異物を分離する処理(以下、解膠処理という)とを有効に行うことが困難であった。
【0006】
本発明は、従来の問題点に鑑みてなされたもので、汚染土壌や焼却灰のような団粒化された粒状体を種々の大きさの粒子に細粒化するとともに、上記各粒子の表面に付着している有害物質を効率的に離脱し分離することのできる細粒化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の請求項1に記載の細粒化装置は、回転ドラムの内部に取付けられたロータの内羽根の軸方向に所定の間隔をおいて複数の溝を設けるとともに、上記内羽根の下流側の溝幅を上流側の溝幅よりも狭くし、上流側においては主に解砕処理を行い、下流側においては主に解膠処理を行うように構成したものである。
【0008】
また、請求項2に記載の細粒化装置は、内羽根の下流側の溝深さを上流側の溝深さよりも深くしたものである。
【0009】
請求項3に記載の細粒化装置は、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に偏心して取付けられたロータとを備え、上記回転ドラムと上記ロータとを互いに逆方向に回転させて、回転ドラムとロータとの間の処理空間に投入された焼却灰,土壌等の粒状体から成る処理材料をを細粒化する細粒化手段を複数段に渡って設け、上記処理材料が各細粒化手段を順次通過するようにするとともに、上記各細粒化手段の内羽根の軸方向に所定の間隔をおいて複数の溝を設けるとともに、下流段の細粒化手段の内羽根に設けられた溝の幅を上流段の細粒化手段の内羽根に設けられた溝の幅よりも狭くし、上流段の細粒化手段で主に解砕処理を行い、下流段の細粒化手段で主に解膠処理を行うようにしたものである。
【0010】
請求項4に記載の細粒化装置は、下流段の細粒化手段の内羽根に設けられた溝の深さを上流段の細粒化手段の内羽根に設けられた溝の深さよりも深くしたものである。
【0011】
請求項5に記載の細粒化装置は、下流段の細粒化手段のロータ径を上流段の細粒化手段のロータ径よりも大きくしたものである。
【0012】
請求項6に記載の細粒化装置は、請求項1ないし請求項5の細粒化手段において、処理材料の排出側にライナースリットを設けたものである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
図1は、本発明の実施の形態に係わる細粒化装置の構成を示す図で、同図において、20は受け入れホッパ11から投入された汚染土壌や焼却灰等の処理材料に加水し、上記処理材料に対して粗い解砕処理を行うための第1の細粒化手段である一次細粒化機、30は上記一次細粒化機20から排出された泥状の材料から10mm以上の粒子を選別し分離する振動スクリーン、40は一次細粒化機20により細粒化され上記振動スクリーン30を通過した10mm未満の粒子から成る処理材料に加水し、上記処理材料の解砕・解膠処理を行うための第2の細粒化手段である二次細粒化機である。
図2は、一次細粒化機20の構成を示す図で、21は内周面に軸方向に沿って取付けられ中心方向に突出する複数の外羽根21Wを有する円筒状の回転ドラム、22は外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根22Wを有し、上記回転ドラム21の内部に回転ドラム21に対し偏心して取付けられたロータ、23は処理材料投入室、24はロータ22の回転軸、25は回転軸24の駆動機構、26は処理材料排出室、27は回転ドラム21とロータ22とにより構成された処理室20Sと上記処理材料排出室との隔壁28に設置された、環状の平板にスリット幅が5〜20mm前後の複数のスリットが形成されたライナースリットである。なお、回転ドラム21の外周に設けられた環状歯車と、上記環状歯車を駆動するモータについては省略した。また、図3は、二次細粒化機40の主要部の構成を示す図で、その基本構成は上記一次細粒化機20と同様である。同図において、41は複数の外羽根41Wを有する円筒状の回転ドラム、42は複数の内羽根42W1,42W2を有し上記回転ドラム41の内部に回転ドラム41に対し偏心して取付けられたロータ、44はロータ42の回転軸である。なお、内羽根42W1は上流側の内羽根、内羽根42W2は下流側の内羽根を指す。
【0014】
図4は上記一次細粒化機20の内羽根22Wの詳細を示す図で、図5,図6は上記二次細粒化機40の上流側の内羽根42W1と下流側の内羽根42W1の詳細を示す図であり、各図において、(a)図は平面図、(b)図は正面図、(c)図は側面図である。図4〜図6に示すように、一次細粒化機20の内羽根22W及び二次細粒化機40の内羽根42W1,42W2にはそれぞれ、その軸方向に所定の間隔をおいて、断面がほぼU字状の複数の溝22K及び溝42K1,42K2が設けられている。二次細粒化機40の内羽根42W1,42W2の軸方向に設けられた溝42K1,42K2の幅w21,w22は、一次細粒化機20の内羽根22Wの軸方向に設けられた溝22Kの幅w1よりも狭く形成されている。また、二次細粒化機40においては、下流側の内羽根42W2の高さH22は上流側の内羽根42W1の高さH21よりも高く、かつ下流側の溝42K2の深さh22は上流側の溝42K1の深さh21よりも深く形成されている。なお、一次細粒化機20の内羽根22Wの高さH1は、二次細粒化機40の上流側の内羽根42W1の高さH21とほぼ等しく、二次細粒化機40の上流側の内羽根42W1の溝42K1の幅w21と下流側の内羽根42W2の溝42K2の幅w22とはほぼ等しく設計されている。
更に、図7(a),(b)に示すように、二次細粒化機40のロータ42の外径R2は一次細粒化機20のロータ22の外径R1よりも大きく設定されており、二次細粒化機40の処理空隙は一次細粒化機20の処理空隙よりも狭くなっている。なお、二次細粒化機40では、下流側の内羽根42W2の強度を確保するため、下流側の内羽根42W2を備えた部分のロータ42の外径を、上流側の内羽根42W1を備えたロータ42の外径R2よりも若干大きくし、内羽根42W2の高さH22を制限するように設計されている。
また、二次細粒化機40の回転速度(回転ドラム41とロータ42との相対速度)を、一次細粒化機20の回転速度よりも高速にし、二次細粒化機40の処理空隙中の処理材料Sに作用する圧力P2を一次細粒化機20中の処理材料Sに作用する圧力P1よりも大きくなるようにし、処理材料の各粒状体同士の衝突速度が大きくなるようにしている。
【0015】
一次細粒化機20中では、図8に示すように、処理空隙である回転ドラム21とロータ22との間隙に投入された汚染土壌や焼却灰等の処理材料Sは、回転ドラム21の外羽根21Wによって下方に引き下げられるとともに、ロータ22の内羽根23Wによって上方に掻き上げられるので、上記処理材料Sには圧縮応力とともにせん断応力が作用し上記処理材料は解砕・解膠処理される。
一次細粒化機20は処理空間も広く、処理材料Sに作用する圧力が比較的小さいので、図9(a)に示すように、粒子p同士が固着面rで固着されて団粒状態となっている処理材料Sの各粒子pあるいは粒状体同士が固着してはいないが大きさの大きい粒子pに圧縮応力及びせん断応力を作用させ、上記団粒状の各粒子を上記固着面rのところから分かれてほぼ独立した個々の細かな粒子pに細粒化する解砕処理が主に行われる。
一方、二次細粒化機40中でも、一次細粒化機20と同様に、処理材料Sには圧縮応力とともにせん断応力が作用し上記処理材料Sは解砕・解膠処理されるが、処理材料Sが一次細粒化機20で解砕され振動スクリーン30を通過した細粒化された粒子pであり、また、二次細粒化機40ではロータ径が一次細粒化機20よりも大きいので処理空間も狭くかつ回転速度も速いので、粒子にかかる圧力や粒子の移動速度が大きい。更に、ロータ径が大きいため処理材料Sとロータ42との接触面積が大きく、多くの粒状体に対して擦り合わせの作用を及ぼすことができる。すなわち、二次細粒化機40では、図9(b)に示すように、処理材料Sの粒状体同士に擦り合わせ方向の力を作用させ、粒状体p相互の摩擦により各粒状体の表面に付着された重金属類等の汚染物質qを粒状体pから分離する解膠処理が主に行われることになる。
なお、上記一次細粒化機20でも、例えば、陶器片のように単一の粒子から成り、かつある程度の硬度を有する粒径の大きな塊に対しては、粒子にかかる圧力が小さいため、破砕処理は行われず、逆に解膠処理が行われる。
【0016】
また、一次細粒化機20,二次細粒化機40では、図10に示すように、外羽根21W,41Wは回転ドラム21,41の回転軸に対して若干(θ〜約3度)下方に傾け、これにより、上記回転ドラム21,41とロータ22,42との処理空間に投入された処理材料を下流方向に移動させるようにしている。なお、通常、ロータ22,42の回転速度は回転ドラム21,41の回転速度よりも速く設定されるので、処理空間に投入された処理材料は、上記処理空間を内羽根22W1,42W1,42W2の溝22K,42K1,42K2と上記下方に傾いて取付けられた外羽根21W,41Wの溝部に沿って、処理材料はロータ22,42の回転方向に沿って上昇あるいは下降しながら下流側に送られる。したがって、内羽根42W1,42W2の溝42K1,42K2の幅w21,w22が狭い二次細粒化機40では、一次細粒化機20よりも処理材料の下流方向への移動に対する抵抗が大きいため、一次細粒化機20よりも解膠の処理効率がよい。
また、二次細粒化機40では、外羽根41Wの内、処理空間の狭い最終段の外羽根の取付角度を他の外羽根41Wとは逆に、回転ドラム21の回転軸に対して若干(θ〜約2度)上方に傾けて処理材料を逆流させ、解膠の処理効率を更に向上させるようにしている。
【0017】
次に、上記構成の細粒化装置の動作について説明する。
まず、受け入れホッパ11から汚染土壌や焼却灰等の処理材料Sを一次細粒化機20に投入するとともに、図示しない処理水導入口から処理水を一次細粒化機20内に送る。一次細粒化機20は、回転ドラム21とロータ22との間隙が比較的広く粒子に作用する圧力も低いいだけでなく、内羽根22Wの溝22Kの幅w1も広く設定されかつ回転速度が低速なので、粒径の大きな塊を解砕したり、粒径の大きな単一の粒子を解膠する。したがって、一次細粒化機20に投入された上記団粒化された粒状体から成る処理材料は、個々の粒子に分離されながら下流方向へと送られる。また、粒径の大きな単一の粒子の表面に付着された汚染物質は剥離され、上記粒子から分離される。一次細粒化機20の下流側に送られた粒子の内、約10mm未満の細粒化された粒子は、隔壁28に設けられたライナースリット27の各スリットから水分とともに処理材料排出室26を経由して機外に排出される。また、10mm以上の比較的粒径の大きな粒子の一部は上記ライナースリット27の中央部から処理材料排出室26へ排出されるが、粒径の大きな粒子の大部分は一次細粒化機20の処理室20S内にに戻される。このライナースリット27により、上記比較的大きな粒子に対する抵抗を大きくでき、一次細粒化機20内での解砕効果を向上させることができる。
一次細粒化機20から送出された泥状の処理材料は、振動スクリーン30により、10mm以上の粒子が選別し分離され、残りの10mm未満の粒子を含む泥状の処理材料が二次細粒化機40に送られる。
【0018】
二次細粒化機40では、内羽根42W1,42W2の溝42K1,42K2の幅w21,w22を一次細粒化機20の内羽根22Wの溝22Kの幅w1よりも狭く形成するとともに、ロータ径を大きくして回転ドラム41とロータ42との間隙を狭くし、処理材料の解膠処理を十分に行うようにするとともに、更に、下流側の内羽根42W2の溝42K2の深さh22を上流側の溝42K1の深さh21よりも深く形成し、下流側での処理空間が更に狭くして処理材料の解膠処理を主に行うようにようにしている。更に、下流側で、外羽根41Zの取付角度を上向きに変えることにより、処理材料を逆流させ、解膠処理が十分行われるようにしている。加えて、上流側の内羽根42W1と下流側の内羽根42W2との境界では、処理空間がステップ上に変化しているため、処理材料はスムーズには下流側に流れず一部の処理材料は再度内羽根42W1側に戻され滞留するので、処理材料の解膠処理が更に進行する。
このように、二次細粒化機40では、処理材料の細粒化が更に進行するとともに、解膠処理により、粒子相互の摩擦により各粒子の表面に付着された重金属類等の汚染物質を上記粒子から効率良く分離することができる。
なお、上記分離された重金属類等の汚染物質は粒径が極めて小さいため処理水中に溶解したり浮遊するので、例えば液体サイクロン等の適当な分級手段を用いることにより、上記汚染物質と上記汚染物質を取り除かれた粒子とを容易に分離することが可能である。
【0019】
なお、上記例では細粒化手段を二段にしたが、処理段数はこれに限るものではない。例えば、二次細粒化機40の下流に、更に、上記二次細粒化機40よりもロータと回転ドラムとの間隔を小さく設定した三次細粒化機を設けて、処理材料の解膠を更に進めるようにすれば、処理材料の各粒子の表面に付着された重金属類等の汚染物質を確実に離脱させることができる。
【0020】
また、上記二次細粒化機40のように、処理材料を処理する処理空隙を下流方向において急激に狭くなるように設定した細粒化装置であれば、ロータ径や内羽根の溝間隔等を適宜設定することにより、上流側で滞留時間を長くして解砕を主とする処理を十分に行った後、下流側で上記処理材料に加える応力を大きくして解膠を主とした処理を行うことにより、1台であっても、処理材料に対して解砕・解膠処理を効率良く行うができる。但し、処理材料中に粒径の大きな粒子が多く混在したり、粒径があまり揃っていないような場合には、本実施の形態のように、2台の細粒化装置を用いた方が処理効率がよい。
【0021】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、回転ドラムの内部に取付けられたロータの内羽根の軸方向に所定の間隔をおいて複数の溝を設けるとともに、上記溝の幅を下流方向において狭く設定し、上流側においては主に解砕処理を行い、下流側においては主に解膠処理を行うようにしたので、汚染土壌や焼却灰のような団粒化された粒状体を種々の大きさの粒子に細粒化するとともに、上記各粒子の表面に付着している重金属類等の汚染物質を効率的に離脱し分離することができる。
【0022】
請求項2に記載の発明によれば、上記溝の深さを下流方向において深くなるように設定したので、処理材料の移動に対する抵抗が大きくなり、解膠の処理効率を向上させることができる。
【0023】
請求項3に記載の発明によれば、細粒化手段を複数段に渡って設け、上記処理材料が各細粒化手段を順次通過するようにするとともに、上記細粒化手段の内羽根の軸方向に設けられた溝の幅を下流段において狭く設定したので、汚染土壌や焼却灰等の細粒化と上記各粒子の表面に付着している重金属類等の汚染物質の分離処理の効率を著しく向上させることができる。
【0024】
請求項4に記載の発明によれば、上記溝の深さを下流段において深く設定したので、解膠の処理効率を向上させることができる。
【0025】
また、請求項5に記載の発明によれば、細粒化手段を複数段に渡って設け、上記処理材料が各細粒化手段を順次通過するようにするとともに、細粒化手段のロータ径を下流方向において段階的に大きく設定したので、処理空隙中の処理材料に作用する圧力を後段において高く設定することができ、解膠の処理効率を更に向上させることができる。
【0026】
また、請求項6に記載の発明によれば、細粒化手段の排出側にライナースリットを設けたので、比較的大きな粒子に対する抵抗を大きくでき、解砕効果を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係わる細粒化装置の構成を示す図である。
【図2】 本実施の形態に係わる一次細粒化機の構成を示す図である。
【図3】 本実施の形態に係わる二次細粒化機の構成を示す図である。
【図4】 一次細粒化機の内羽根の構造を示す図である。
【図5】 二次細粒化機の上流側に設けた内羽根の構造を示す図である。
【図6】 二次細粒化機の下流側に設けた内羽根の構造を示す図である。
【図7】 一次細粒化機と二次細粒化機とのロータを示す図である。
【図8】 本実施の形態に係わる解砕・解膠作用を説明する図である。
【図9】 本実施の形態に係わる解砕・解膠作用を説明する図である。
【図10】 本実施の形態に係わる外羽根の取付状態を示す図である。
【図11】 二次細粒化機の解膠作用を説明するための図である。
【図12】 従来の破砕機の構成を示す図である。
【符号の説明】
11 受け入れホッパ、20 一次細粒化機、20S 処理室、30 振動スクリーン、40 二次細粒化機、21,41 回転ドラム、
21W,41W,41Z 外羽根、22,42 ロータ、
22W,42W1,42W2 内羽根、22K,42K1,42K2 内羽根の溝、
23 処理材料投入室、24,44 ロータの回転軸、25 回転軸の駆動機構、26 処理材料排出室、27 ライナースリット、28 隔壁。
[0001]
BACKGROUND OF THE INVENTION
The present invention finely divides a granular material in which particles to which contaminants such as contaminated soil and incinerated ash are attached is agglomerated into individual particles, as well as heavy metals and oils adhering to the surface of the particles The present invention relates to a granulation apparatus for removing pollutants such as water.
[0002]
[Prior art]
In recent years, there has been a problem that soil in the vicinity of factories such as chemical factories and metal smelting factories is contaminated with heavy metals, organochlorine compounds or oily components. In addition, since the crude oil is attached to the soil on the beach contaminated with crude oil that has flowed into the sea due to a marine accident, etc., and the excavated soil that is transported when tunneling the ground where the crude oil is present, it becomes difficult to treat it. There are often. In addition, combustible materials such as industrial waste and garbage that cannot be recycled are transported as incineration ash to a waste disposal site where they are buried in heavy metals and incineration processes. Dioxins and other contaminants are attached. Therefore, after removing the contaminants from the contaminated soil, extract the stones, sand, fine particles, etc. and reuse them, and extract solid particles that can be used effectively after removing the contaminants from the incineration ash, Establishment of technology to reduce the volume of incinerated ash to be discarded at the disposal site is desired.
[0003]
In general, such contaminated soil and incineration ash are granular bodies in which particles having a small particle diameter are aggregated, and contaminants such as heavy metals and oily components are not only the surface of the granular body, but also individual particles. It is thought that it adheres to the surface of the particles.
However, in a general crusher, it is difficult to easily separate and separate the contaminants adhering to the solid particles in the contaminated soil and incinerated ash. For example, if contaminated soil lump or incinerated ash is put into a ball mill or the like and pulverized, the contaminated soil lump or incinerated ash is finely divided, but the contaminants adhering to the surface of each particle must be sufficiently removed. In addition, the processing materials that are input can be uniformly finely pulverized and re-aggregated, so that the polluted substances removed and the crushed gravel, sand, fine particles and incinerated ash It becomes difficult to separate the solid particles inside.
[0004]
By the way, Japanese Patent Application Laid-Open No. 8-164363 discloses a crusher that removes sharp corners such as stones in the clay and crushes the earth lump and sand lump etc. without crushing the clay containing gravel and clay. Has been. 12A and 12B are diagrams showing the configuration of the crusher 10, wherein FIG. 12A is a side view, and FIG. 12B is a cross-sectional view taken along line AA of FIG. The crusher 10 is attached to the inner peripheral surface along the axial direction and has a cylindrical rotary drum 1 having a plurality of outer blades 1W protruding in the center direction, and is attached to the outer peripheral surface along the axial direction along the radial direction. A rotor 2 having a plurality of projecting inner blades 2W and mounted eccentrically with respect to the rotary drum 1 inside the rotary drum 1, and an annular gear 3 provided on the outer periphery of the rotary drum 1 by a motor 4; The rotating shaft 5 of the rotor 2 is rotated in the opposite directions by the driving mechanism 6 and compressed and sheared into the processing material S such as clay (hatched portion in FIG. 12B) charged from the material charging port 7. The treatment material S is crushed by applying a stress, or the crushed material is polished by mutual friction between the crushed treatment materials. Further, the crushing treatment by the crusher 10 is carried out dry or wet when grinding crushed stone, and when the earth and sand such as dredged soil containing gravel or clay is refined, it is added to the treatment material. While doing. The magnitude of the stress acting on the processing material is mainly adjusted by the distance between the rotating drum 1 and the rotor 2 (the eccentricity of the rotor 2) and the respective rotational speeds of the rotating drum 1 and the rotor 2. .
[0005]
[Problems to be solved by the invention]
However, the crusher 10 has the same mounting structure for the outer blade 1W and the inner blade 2W of the rotary drum 1 and the rotor 2 from the upstream side to the downstream side of the processing material. A process (hereinafter referred to as a pulverization process) for separating and pulverizing the aggregated granular material in which the particles are fixed without breaking the individual particles into almost independent particles, and the above-mentioned pulverization For each individual particle, a rubbing force between each particle is mainly applied to cause mutual polishing by friction between the particles, thereby separating foreign substances adhering to the surface of each individual particle. It has been difficult to effectively perform processing (hereinafter referred to as peptization processing).
[0006]
The present invention has been made in view of conventional problems, and agglomerated granular materials such as contaminated soil and incinerated ash are refined into particles of various sizes, and the surface of each of the above particles An object of the present invention is to provide a pulverization apparatus capable of efficiently separating and separating harmful substances adhering to the surface.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a granulating apparatus, wherein a plurality of grooves are provided at predetermined intervals in the axial direction of an inner blade of a rotor mounted inside a rotary drum, and the downstream side of the inner blade. The groove width is made narrower than the groove width on the upstream side, and the crushing process is mainly performed on the upstream side, and the peptization process is mainly performed on the downstream side.
[0008]
Further, in the granulating apparatus according to claim 2, the groove depth on the downstream side of the inner blade is made deeper than the groove depth on the upstream side.
[0009]
The atomization device according to claim 3 is attached to the inner peripheral surface along the axial direction and has a cylindrical rotary drum having a plurality of outer blades protruding in the central direction, and the outer peripheral surface along the axial direction. A rotor that has a plurality of inner blades that are attached and project in the radial direction, and that are eccentrically attached to the inside of the rotating drum, and the rotating drum and the rotor are rotated in opposite directions to each other, There are provided a plurality of stages of granulating means for refining the processing material composed of granular materials such as incinerated ash and soil put into the processing space between the rotor, and the processing material is provided for each of the refining means. And a plurality of grooves are provided at predetermined intervals in the axial direction of the inner blades of each of the finer means, and grooves provided in the inner blades of the downstream finer means. The width of the groove is the width of the groove provided in the inner blade of the finer means in the upstream stage. Also narrowed, primarily performs a disintegration with grain refining means upstream stage, in which to perform mainly peptizing treatment with grain refining means downstream stage.
[0010]
According to a fourth aspect of the present invention, the depth of the groove provided in the inner blade of the downstream finer means is greater than the depth of the groove provided in the inner blade of the upstream finer means. It is deep.
[0011]
According to a fifth aspect of the present invention, the diameter of the rotor of the downstream finer means is larger than that of the upstream finer means.
[0012]
According to a sixth aspect of the present invention, there is provided the atomizing apparatus according to any one of the first to fifth aspects, wherein a liner slit is provided on the processing material discharge side.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a granulating apparatus according to an embodiment of the present invention, in which 20 is added to a treatment material such as contaminated soil or incinerated ash charged from a receiving hopper 11, A primary granulator, which is a first granulating means for performing a coarse crushing process on the treated material, 30 is a particle of 10 mm or more from the mud-like material discharged from the primary granulator 20. A vibrating screen 40 for sorting and separating the water is added to a treatment material composed of particles of less than 10 mm that have been finely divided by the primary finer 20 and passed through the vibration screen 30, and the treatment material is crushed and peptized. It is a secondary fine graining machine which is the 2nd fine graining means for performing.
FIG. 2 is a diagram showing the configuration of the primary atomizer 20, wherein 21 is a cylindrical rotating drum having a plurality of outer blades 21W attached to the inner peripheral surface along the axial direction and protruding in the center direction, A rotor having a plurality of inner blades 22W attached to the outer peripheral surface along the axial direction and projecting in the radial direction, and attached eccentrically to the rotary drum 21 inside the rotary drum 21, 23 is a processing material charging chamber, Reference numeral 24 denotes a rotating shaft of the rotor 22, 25 denotes a drive mechanism of the rotating shaft 24, 26 denotes a processing material discharge chamber, 27 denotes a partition wall 28 between the processing chamber 20S constituted by the rotating drum 21 and the rotor 22 and the processing material discharge chamber. Is a liner slit in which a plurality of slits having a slit width of about 5 to 20 mm are formed on an annular flat plate. The annular gear provided on the outer periphery of the rotating drum 21 and the motor that drives the annular gear are omitted. FIG. 3 is a diagram showing the configuration of the main part of the secondary atomizer 40, and the basic configuration is the same as that of the primary atomizer 20. In the figure, reference numeral 41 denotes a cylindrical rotary drum having a plurality of outer blades 41W, and 42 denotes a plurality of inner blades 42W 1 and 42W 2 which are eccentrically attached to the rotary drum 41 inside the rotary drum 41. A rotor 44 is a rotating shaft of the rotor 42. The inner blade 42W 1 refers to the upstream inner blade, and the inner blade 42W 2 refers to the downstream inner blade.
[0014]
Figure 4 is a diagram showing details of the inner blades 22W of the primary grain refining machine 20, Figure 5, Figure 6 is an inner blade of the inner blade 42W 1 and the downstream side of the upstream side of the secondary comminution machine 40 42W It is a figure which shows the detail of 1 , in which (a) figure is a top view, (b) figure is a front view, (c) figure is a side view. As shown in FIGS. 4 to 6, the inner blade 22W of the primary granulator 20 and the inner blades 42W 1 and 42W 2 of the secondary granulator 40 are each provided with a predetermined interval in the axial direction thereof. A plurality of grooves 22K and grooves 42K 1 and 42K 2 having a substantially U-shaped cross section are provided. The widths w 21 and w 22 of the grooves 42K 1 and 42K 2 provided in the axial direction of the inner blades 42W 1 and 42W 2 of the secondary granulator 40 are the axial directions of the inner blades 22W of the primary granulator 20 It is formed narrower than the width w 1 of the groove 22K provided in the. In the secondary granulator 40, the height H 22 of the downstream inner blade 42W 2 is higher than the height H 21 of the upstream inner blade 42W 1 and the depth of the downstream groove 42K 2 . The length h 22 is formed deeper than the depth h 21 of the upstream groove 42K 1 . In addition, the height H 1 of the inner blade 22W of the primary granulator 20 is substantially equal to the height H 21 of the inner blade 42W 1 on the upstream side of the secondary granulator 40, and the secondary granulator 40 is substantially equal to the design and the upstream side of the inner blade 42W 1 groove 42K 1 width w 21 and width w 22 of the groove 42K 2 of the downstream side of the inner blades 42W 2 of.
Further, as shown in FIGS. 7A and 7B, the outer diameter R 2 of the rotor 42 of the secondary granulator 40 is set larger than the outer diameter R 1 of the rotor 22 of the primary granulator 20. Thus, the processing gap of the secondary atomizer 40 is narrower than the processing gap of the primary atomizer 20. In secondary comminution machine 40, in order to ensure the strength of the inner blades 42W 2 downstream, the outer diameter of the rotor 42 of the portion having a inner blades 42W 2 on the downstream side, the inner blades on the upstream side 42W It is designed to be slightly larger than the outer diameter R 2 of the rotor 42 having 1 and to limit the height H 22 of the inner blade 42W 2 .
Further, the rotational speed of the secondary granulator 40 (relative speed between the rotary drum 41 and the rotor 42) is made higher than the rotational speed of the primary granulator 20, and the processing gap of the secondary granulator 40 is increased. The pressure P 2 acting on the processing material S in the inside is made larger than the pressure P 1 acting on the processing material S in the primary fine granulator 20 so that the collision speed between the granules of the processing material increases. I have to.
[0015]
In the primary atomizer 20, as shown in FIG. 8, the processing material S such as contaminated soil and incinerated ash put into the gap between the rotary drum 21 and the rotor 22, which is a processing gap, is outside the rotary drum 21. Since it is pulled down by the blades 21W and scraped upward by the inner blades 23W of the rotor 22, the processing material S is subjected to shear stress along with compressive stress, and the processing material is crushed and peptized.
Since the primary atomizer 20 has a large processing space and the pressure acting on the processing material S is relatively small, as shown in FIG. The particles p or the granules of the treatment material S are not fixed to each other, but compressive stress and shear stress are applied to the large-sized particles p, and the aggregated particles are placed on the fixing surface r. The crushing process is mainly performed in which the fine particles p are separated into almost independent individual particles p.
On the other hand, in the secondary granulator 40, as with the primary granulator 20, the processing material S is subjected to shear stress along with compressive stress, and the processing material S is crushed and peptized. The material S is the fine particles p that have been crushed by the primary finer 20 and passed through the vibrating screen 30, and the rotor diameter of the secondary finer 40 is larger than that of the primary finer 20. Since it is large, the processing space is narrow and the rotation speed is fast, so the pressure applied to the particles and the moving speed of the particles are large. Furthermore, since the rotor diameter is large, the contact area between the processing material S and the rotor 42 is large, and a rubbing action can be exerted on many granular materials. That is, in the secondary atomizer 40, as shown in FIG. 9 (b), a force in the rubbing direction is applied to the particles of the processing material S, and the surface of each particle by friction between the particles p. The peptization process for separating the contaminants q such as heavy metals adhering to the particles from the granular material p is mainly performed.
In the primary refining machine 20 as well, for example, a large lump having a certain particle size and having a certain degree of hardness, such as a piece of earthenware, has a small pressure applied to the particles. No processing is performed, and conversely, peptization processing is performed.
[0016]
Further, in the primary finer 20 and the secondary finer 40, as shown in FIG. 10, the outer blades 21W and 41W are slightly (θ to about 3 degrees) with respect to the rotation shaft of the rotary drums 21 and 41. By tilting downward, the processing material put into the processing space between the rotary drums 21 and 41 and the rotors 22 and 42 is moved in the downstream direction. Normally, the rotational speed of the rotors 22 and 42 is set to be higher than the rotational speed of the rotary drums 21 and 41. Therefore, the processing material introduced into the processing space is divided into the inner blades 22W 1 , 42W 1 , 42W 2 grooves 22K, 42K 1 , 42K 2 and the grooves of outer blades 21W, 41W attached to be inclined downwardly, the processing material rises or descends along the rotation direction of rotors 22 and 42 while downstream. Sent to the side. Thus, moving the inner blades 42W 1, 42W grooves 42K 1 2, the width w 21 of the 42K 2, w 22 are narrow secondary comminution machine 40, the downstream direction of the process material than the primary grain refining machine 20 Therefore, the peptization processing efficiency is better than that of the primary fine granulator 20.
Further, in the secondary atomizer 40, the mounting angle of the outer blade in the final stage having a narrow processing space among the outer blades 41W is slightly different from the rotation shaft of the rotary drum 21 in contrast to the other outer blades 41W. By tilting upward (θ˜about 2 degrees), the processing material is made to flow backward to further improve the processing efficiency of peptization.
[0017]
Next, the operation of the atomization apparatus having the above configuration will be described.
First, the processing material S such as contaminated soil and incinerated ash is supplied from the receiving hopper 11 to the primary fine granulator 20 and the treated water is sent into the primary fine granulator 20 from a treated water inlet (not shown). The primary atomizer 20 has not only a relatively wide gap between the rotary drum 21 and the rotor 22 but also a low pressure acting on the particles, but also a wide width w 1 of the groove 22K of the inner blade 22W and a rotational speed. Is slow, it breaks up large lumps or flocculates single large particles. Therefore, the processing material composed of the aggregated granule charged into the primary granulator 20 is sent in the downstream direction while being separated into individual particles. In addition, the contaminant attached to the surface of a single particle having a large particle size is peeled off and separated from the particle. Of the particles sent to the downstream side of the primary atomizer 20, the particles having a particle diameter of less than about 10 mm pass through the treatment material discharge chamber 26 together with moisture from each slit of the liner slit 27 provided in the partition wall 28. It is discharged out of the plane via. Further, some of the particles having a relatively large particle diameter of 10 mm or more are discharged from the central portion of the liner slit 27 to the treatment material discharge chamber 26, but most of the particles having a large particle diameter are primary finer 20. Is returned to the processing chamber 20S. The liner slit 27 can increase the resistance to the relatively large particles and improve the crushing effect in the primary atomizer 20.
The mud-like treatment material delivered from the primary fine granulator 20 is separated and separated by particles of 10 mm or more by the vibrating screen 30, and the mud-like treatment material containing the remaining particles of less than 10 mm is the secondary fine-grain. Sent to the control machine 40.
[0018]
In the secondary comminution device 40, than the inner blade 42W 1, grooves of 42W 2 42K 1, 42K width w 21, the width of the groove 22K of the inner blades 22W of w 22 primary comminution machine 20 w 1 of 2 In addition to the narrow formation, the rotor diameter is increased to narrow the gap between the rotary drum 41 and the rotor 42, so that the processing material is sufficiently peptized, and further, the groove of the inner blade 42W 2 on the downstream side 42K two depths h 22 deeply formed than the upstream side of the groove 42K 1 depth h 21, the processing space on the downstream side so as to mainly perform peptizing process of further narrowing the processing material ing. Furthermore, by changing the mounting angle of the outer blade 41Z upward on the downstream side, the processing material is made to flow backward so that the peptization process is sufficiently performed. In addition, at the boundary between the upstream inner blade 42W 1 and the downstream inner blade 42W 2 , the processing space changes stepwise, so that the processing material does not flow smoothly downstream and is partially processed. Since the material is returned again to the inner blade 42W 1 side and stays there, the peptization processing of the processing material further proceeds.
As described above, in the secondary atomizer 40, the processing material is further refined and contaminants such as heavy metals adhering to the surface of each particle due to friction between the particles are removed by peptization. It can be efficiently separated from the particles.
Since the separated contaminants such as heavy metals have a very small particle size, they dissolve or float in the treated water. For example, by using an appropriate classification means such as a liquid cyclone, the contaminants and the contaminants are used. It is possible to easily separate the particles from which particles have been removed.
[0019]
In the above example, the finer means is two stages, but the number of processing stages is not limited to this. For example, a tertiary pulverizer having a smaller interval between the rotor and the rotating drum than the secondary pulverizer 40 is provided downstream of the secondary pulverizer 40 to disintegrate the processing material. If the process is further advanced, contaminants such as heavy metals adhering to the surface of each particle of the treatment material can be reliably removed.
[0020]
In addition, as in the above-described secondary atomizer 40, if the atomizing device is set so that the processing gap for processing the processing material is sharply narrowed in the downstream direction, the rotor diameter, the groove spacing of the inner blades, etc. Is set as appropriate, and after the treatment that mainly pulverizes by sufficiently increasing the residence time on the upstream side, the stress applied to the above treatment material is increased on the downstream side to mainly treat the peptization. By performing the above, even if there is only one unit, the processing material can be efficiently crushed and peptized. However, in the case where many particles having a large particle diameter are mixed in the processing material or the particle diameters are not so uniform, it is better to use two atomization apparatuses as in this embodiment. Processing efficiency is good.
[0021]
【The invention's effect】
As described above, according to the first aspect of the present invention, a plurality of grooves are provided at predetermined intervals in the axial direction of the inner blades of the rotor attached to the inside of the rotating drum, and the width of the grooves Is narrowly set in the downstream direction, mainly the crushing process is performed on the upstream side, and the peptization process is mainly performed on the downstream side, so that the aggregated particles such as contaminated soil and incinerated ash The body can be refined into particles of various sizes, and contaminants such as heavy metals adhering to the surface of each particle can be efficiently separated and separated.
[0022]
According to the second aspect of the present invention, since the depth of the groove is set to be deeper in the downstream direction, the resistance to the movement of the processing material is increased and the processing efficiency of peptization can be improved.
[0023]
According to the invention described in claim 3, the finer means are provided in a plurality of stages so that the processing material sequentially passes through the finer means, and the inner blades of the finer means are provided. Since the width of the groove provided in the axial direction is set narrower in the downstream stage, the efficiency of refining contaminated soil, incinerated ash, etc., and separation of contaminants such as heavy metals adhering to the surface of each particle Can be significantly improved.
[0024]
According to the fourth aspect of the present invention, since the depth of the groove is set deep in the downstream stage, the processing efficiency of peptization can be improved.
[0025]
Further, according to the invention described in claim 5, the finely pulverizing means is provided in a plurality of stages so that the processing material sequentially passes through the finely pulverizing means and the rotor diameter of the finely pulverizing means. Is set to be larger stepwise in the downstream direction, the pressure acting on the processing material in the processing gap can be set higher in the subsequent stage, and the processing efficiency of peptization can be further improved.
[0026]
Further, according to the invention described in claim 6, since the liner slit is provided on the discharge side of the atomizing means, the resistance to relatively large particles can be increased, and the crushing effect can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a granulation apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a primary atomizer according to the present embodiment.
FIG. 3 is a diagram showing a configuration of a secondary atomizer according to the present embodiment.
FIG. 4 is a view showing a structure of an inner blade of a primary atomizer.
FIG. 5 is a view showing a structure of an inner blade provided on the upstream side of the secondary atomizer.
FIG. 6 is a view showing the structure of an inner blade provided on the downstream side of the secondary atomizer.
FIG. 7 is a view showing a rotor of a primary finer and a secondary finer.
FIG. 8 is a diagram for explaining the crushing and peptizing action according to the present embodiment.
FIG. 9 is a diagram for explaining the crushing and peptizing action according to the present embodiment.
FIG. 10 is a view showing a mounting state of the outer blade according to the present embodiment.
FIG. 11 is a diagram for explaining the peptizing action of the secondary atomizer.
FIG. 12 is a diagram showing a configuration of a conventional crusher.
[Explanation of symbols]
11 receiving hopper, 20 primary granulator, 20S processing chamber, 30 vibrating screen, 40 secondary granulator, 21, 41 rotating drum,
21W, 41W, 41Z outer blade, 22, 42 rotor,
22W, 42W 1, 42W 2 flighting, 22K, 42K 1, 42K 2 the groove of the blade,
23 processing material input chamber, 24, 44 rotor rotating shaft, 25 rotating shaft drive mechanism, 26 processing material discharge chamber, 27 liner slit, 28 partition.

Claims (6)

内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられたロータとを備え、上記回転ドラムと上記ロータとを互いに逆方向に回転させ、回転ドラムとロータとの間の処理空間に投入された焼却灰,土壌等の粒状体から成る処理材料を細粒化する細粒化装置において、上記内羽根の軸方向に所定の間隔をおいて複数の溝を設けるとともに、上記内羽根の下流側の溝幅を上流側の溝幅よりも狭くしたことを特徴とする細粒化装置。A cylindrical rotary drum having a plurality of outer blades attached to the inner peripheral surface along the axial direction and protruding in the center direction, and a plurality of inner blades attached to the outer peripheral surface along the axial direction and protruding in the radial direction. And a rotor mounted eccentrically with respect to the rotating drum inside the rotating drum, and the rotating drum and the rotor are rotated in opposite directions to be put into a processing space between the rotating drum and the rotor. In the atomization apparatus for atomizing the treated material composed of granular materials such as incinerated ash and soil, a plurality of grooves are provided at predetermined intervals in the axial direction of the inner blade, and downstream of the inner blade A granulation apparatus characterized in that the groove width on the side is narrower than the groove width on the upstream side. 内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられたロータとを備え、上記回転ドラムと上記ロータとを互いに逆方向に回転させ、回転ドラムとロータとの間の処理空間に投入された焼却灰,土壌等の粒状体から成る処理材料を細粒化する細粒化装置において、上記内羽根の軸方向に所定の間隔をおいて複数の溝を設けるとともに、上記内羽根の下流側の溝深さを上流側の溝深さよりも深くしたことを特徴とする細粒化装置。A cylindrical rotary drum having a plurality of outer blades attached to the inner peripheral surface along the axial direction and protruding in the center direction, and a plurality of inner blades attached to the outer peripheral surface along the axial direction and protruding in the radial direction. And a rotor mounted eccentrically with respect to the rotating drum inside the rotating drum, and the rotating drum and the rotor are rotated in opposite directions to be put into a processing space between the rotating drum and the rotor. In the atomization apparatus for atomizing the processing material composed of granular materials such as incinerated ash and soil, a plurality of grooves are provided at predetermined intervals in the axial direction of the inner blade, and the downstream of the inner blade A granulation apparatus characterized in that the groove depth on the side is made deeper than the groove depth on the upstream side. 内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられたロータとを備え、上記回転ドラムと上記ロータとを互いに逆方向に回転させ、回転ドラムとロータとの間の処理空間に投入された焼却灰,土壌等の粒状体から成る処理材料を細粒化する細粒化手段を複数段に渡って設け、上記処理材料が各細粒化手段を順次通過するようにした細粒化装置において、上記各細粒化手段の内羽根の軸方向に所定の間隔をおいて複数の溝を設けるとともに、下流段の細粒化手段の内羽根に設けられた溝の幅を上流段の細粒化手段の内羽根に設けられた溝の幅よりも狭くしたことを特徴とする細粒化装置。A cylindrical rotary drum having a plurality of outer blades attached to the inner peripheral surface along the axial direction and protruding in the center direction, and a plurality of inner blades attached to the outer peripheral surface along the axial direction and protruding in the radial direction. And a rotor mounted eccentrically with respect to the rotating drum inside the rotating drum, and the rotating drum and the rotor are rotated in opposite directions to be put into a processing space between the rotating drum and the rotor. The finely pulverized means for finely pulverizing the treatment material composed of granular materials such as incinerated ash and soil is provided in multiple stages so that the treatment material sequentially passes through each pulverization means. In the apparatus, a plurality of grooves are provided at predetermined intervals in the axial direction of the inner blades of the above-mentioned finer means, and the width of the grooves provided in the inner blades of the lower-stage finer means is set at the upstream stage. Narrower than the width of the groove provided in the inner blade of the means for atomizing Grain refining apparatus characterized by a. 内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられたロータとを備え、上記回転ドラムと上記ロータとを互いに逆方向に回転させ、回転ドラムとロータとの間の処理空間に投入された焼却灰,土壌等の粒状体から成る処理材料を細粒化する細粒化手段を複数段に渡って設け、上記処理材料が各細粒化手段を順次通過するようにした細粒化装置において、上記各細粒化手段の内羽根の軸方向に所定の間隔をおいて複数の溝を設けるとともに、下流段の細粒化手段の内羽根に設けられた溝の深さを上流段の細粒化手段の内羽根に設けられた溝の深さよりも深くしたことを特徴とする細粒化装置。A cylindrical rotary drum having a plurality of outer blades attached to the inner peripheral surface along the axial direction and protruding in the center direction, and a plurality of inner blades attached to the outer peripheral surface along the axial direction and protruding in the radial direction. And a rotor mounted eccentrically with respect to the rotating drum inside the rotating drum, and the rotating drum and the rotor are rotated in opposite directions to be put into a processing space between the rotating drum and the rotor. The finely pulverized means for finely pulverizing the treatment material composed of granular materials such as incinerated ash and soil is provided in multiple stages so that the treatment material sequentially passes through each pulverization means. In the apparatus, a plurality of grooves are provided at predetermined intervals in the axial direction of the inner blades of the above-mentioned finer means, and the depth of the grooves provided in the inner blades of the downstream finer means is set to the upstream stage. Than the depth of the groove provided in the inner blade of Grain refining and wherein the was comb. 内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根を有する円筒状の回転ドラムと、外周面に軸方向に沿って取付けられ径方向に突出する複数の内羽根を有し、上記回転ドラムの内部に回転ドラムに対し偏心して取付けられたロータとを備え、上記回転ドラムと上記ロータとを互いに逆方向に回転させ、回転ドラムとロータとの間の処理空間に投入された焼却灰,土壌等の粒状体から成る処理材料を細粒化する細粒化手段を複数段に渡って設け、上記処理材料が各細粒化手段を順次通過するようにした細粒化装置において、下流段の細粒化手段のロータ径を上流段の細粒化手段のロータ径よりも大きくしたことを特徴とする細粒化装置。A cylindrical rotary drum having a plurality of outer blades attached to the inner peripheral surface along the axial direction and protruding in the center direction, and a plurality of inner blades attached to the outer peripheral surface along the axial direction and protruding in the radial direction. And a rotor mounted eccentrically with respect to the rotating drum inside the rotating drum, and the rotating drum and the rotor are rotated in opposite directions to be put into a processing space between the rotating drum and the rotor. The finely pulverized means for finely pulverizing the treatment material composed of granular materials such as incinerated ash and soil is provided in multiple stages so that the treatment material sequentially passes through each pulverization means. In the apparatus, the diameter of the rotor of the finer means in the downstream stage is made larger than the diameter of the rotor of the finer means in the upstream stage. 請求項1ないし請求項5の細粒化手段において、処理材料の排出側にライナースリットを設けたことを特徴とする細粒化装置。6. The atomizing device according to claim 1, wherein a liner slit is provided on the processing material discharge side.
JP08326199A 1998-10-30 1999-03-26 Fine graining equipment Expired - Fee Related JP4236758B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP08326199A JP4236758B2 (en) 1999-03-26 1999-03-26 Fine graining equipment
SG1999005288A SG73677A1 (en) 1998-10-30 1999-10-20 Method and system for carrying out treatment of granular substances with pollutants adhered
US09/422,782 US6402064B1 (en) 1998-10-30 1999-10-21 Method and system for carrying out treatment of granular substances with pollutants adhered
CN99123287A CN1256977A (en) 1998-10-30 1999-10-29 Method and equipment for processing particle with pollutant
CA002287958A CA2287958A1 (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
IDP991005D ID25768A (en) 1998-10-30 1999-10-29 METHODS AND SYSTEMS FOR IMPLEMENTING TREATMENT OF GRANTS SUBSTANCED BY POLLUTANTS
AU57154/99A AU5715499A (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
EP99120904A EP0997202A3 (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
BR9904989A BR9904989A (en) 1998-10-30 1999-10-29 Process for treating granular substances with adherent pollutants and medium and system for treating granular substances with adherent pollutants.
KR1019990047392A KR20000052354A (en) 1998-10-30 1999-10-29 Method and system for carrying out treatment of granular substances with pollutants adhered
TW88118889A TW450839B (en) 1998-10-30 2000-01-12 Method and system for carrying out treatment of granular substances with pollutants adhered
US09/950,936 US20020079392A1 (en) 1998-10-30 2001-09-12 Method and system for carrying out treatment of granular substances with pollutants adhered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08326199A JP4236758B2 (en) 1999-03-26 1999-03-26 Fine graining equipment

Publications (2)

Publication Number Publication Date
JP2000271506A JP2000271506A (en) 2000-10-03
JP4236758B2 true JP4236758B2 (en) 2009-03-11

Family

ID=13797418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08326199A Expired - Fee Related JP4236758B2 (en) 1998-10-30 1999-03-26 Fine graining equipment

Country Status (1)

Country Link
JP (1) JP4236758B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361065A (en) * 2001-06-05 2002-12-17 Taiheiyo Kiko Kk Apparatus for treating powder and granular material or the like
KR101194925B1 (en) * 2012-03-22 2012-10-25 현대건설주식회사 Particle size selective remediation system and method for heavy metals-contaminated soils by dry-disintegration and separation
JP6047814B2 (en) * 2012-03-30 2016-12-21 富士電機株式会社 Radioactive material contaminated soil treatment method and radioactive material contaminated soil treatment system
JP5683633B2 (en) * 2013-04-15 2015-03-11 公立大学法人県立広島大学 Method and apparatus for treating radioactive material contaminants
CN107185426B (en) * 2017-07-09 2023-06-20 贵州大学 Raw material mixing device for beer production
CN112619872B (en) * 2020-12-01 2022-11-22 江西都昌金鼎钨钼矿业有限公司 Pre-grading scheme before ore grinding

Also Published As

Publication number Publication date
JP2000271506A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US6402064B1 (en) Method and system for carrying out treatment of granular substances with pollutants adhered
JP4904212B2 (en) Concrete waste material recycling apparatus and recycling method
JP4970756B2 (en) Crushing and polishing apparatus and method for treating contaminated soil using this apparatus
JP5847206B2 (en) Method for producing recycled aggregate and recycled aggregate obtained by this method
JP4236758B2 (en) Fine graining equipment
JP4190669B2 (en) Method and apparatus for processing particulate matter with contaminants attached
JP3583374B2 (en) Waste plastic recycling equipment
JP4338825B2 (en) Fine grain processing method
JP4132413B2 (en) Method for treating particulate matter with contaminants attached
JP4046866B2 (en) Separation and processing method for excavated soil and sludge
JP4933746B2 (en) Reclaimed sand recycling method and apparatus
KR101582447B1 (en) Equipment for producing recycling aggrete using waste concrete
JP4335369B2 (en) Method for treating particulate matter with contaminants attached
JP4286990B2 (en) Processing equipment for particulate matter with contaminants
JP4216943B2 (en) Granulation method
KR100519502B1 (en) Auto-scrubbing Mill system for recycled aggregates manufacture from the construction waste
KR100491097B1 (en) A classify aparatus for a sand and an atom
JP2000084424A (en) Apparatus for pulverizing waste gypsum board
JP4137291B2 (en) Method for treating particulate matter with contaminants attached
JP2001334162A (en) Fine granulating device for dehydrated cake
KR200370529Y1 (en) Recycled aggregate sorting device
JP2000197878A (en) Apparatus for treating particulate material to which pollutant is adhered
JP2006130443A (en) Continuous granulation system of dehydrated cake
RU2716408C1 (en) Crushing machine
JP2006151770A (en) Method for manufacturing regenerated aggregate and apparatus for manufacturing regenerated aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Ref document number: 4236758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees