JP4256505B2 - How to treat dredged soil - Google Patents

How to treat dredged soil Download PDF

Info

Publication number
JP4256505B2
JP4256505B2 JP34091198A JP34091198A JP4256505B2 JP 4256505 B2 JP4256505 B2 JP 4256505B2 JP 34091198 A JP34091198 A JP 34091198A JP 34091198 A JP34091198 A JP 34091198A JP 4256505 B2 JP4256505 B2 JP 4256505B2
Authority
JP
Japan
Prior art keywords
sand
dredged
water
sump
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34091198A
Other languages
Japanese (ja)
Other versions
JP2000167432A (en
Inventor
洋 伊藤
健一 阿部
彰男 河村
豊 信太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP34091198A priority Critical patent/JP4256505B2/en
Publication of JP2000167432A publication Critical patent/JP2000167432A/en
Application granted granted Critical
Publication of JP4256505B2 publication Critical patent/JP4256505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Disintegrating Or Milling (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、湾岸や流出河川等に堆積した土砂を浚渫し、石,砂,微粒子等粒径の大きさに応じて分級して再利用可能とする浚渫土砂の処理方法に関するものである。
【0002】
【従来の技術】
従来、湾岸や流出河川等に堆積する土砂は、航路の阻害や河川流量の低下等の原因となるため、浚渫機を搭載した浚渫船(掃底船ともいう)で浚渫された後、予め設けられた沈殿池に投入したり、天日乾燥による処理あるいはセメント処理を行って減容化して一時野積みした後、処分場等に埋め立てていた。なお、上記沈殿池に直接投入した場合でも、水分を排水したりするなどの減容化が図られていた。
しかしながら、上記従来の処理方法では、浚渫土砂に塩分が残留していて植生に影響を与えるため、埋め立て土としての利用にも限界があった。また、湾岸や流出河川等での流出土砂の堆積は継続的に発生するものなので、浚渫作業もほぼ定期的に行う必要がある。したがって、浚渫土砂の処分量も膨大となり、沈殿池や処分場の確保も容易ではなかった。
【0003】
そこで、予め堆積しておいた浚渫土砂(以下、埋め立て土砂という)を細粒化した上で、振動ふるいを多用し、一部に液体サイクロンを用いて、砂利,砂,シルト等に分級する浚渫土砂の処理システムが提案されている(特開平8−164363号公報)。これは、上記埋め立て土砂中の団粒化された土塊や砂塊等の粒子を、個々の砂等の粒子を粉砕することなく、個々の粒子に細粒化する回転式破砕機を用いて浚渫土砂を細粒化した後、複数の振動ふるいにより、上記細粒化された浚渫土砂を分級し、最終段のふるいを通過した細かな粒子を液体サイクロンで更に分級するものである。
図3(a),(b)は、上記回転式破砕機10の構成を示す図で、(a)図は側面図、(b)図はそのA−A断面図である。この回転式破砕機10は、内周面に軸方向に沿って取付けられ、中心方向に突出する複数の外羽根11Wを有する円筒状の回転ドラム11と、外周面に軸方向に沿って取付けられ、中心方向に突出する複数の内羽根12Wを有し、上記回転ドラム11の内部に偏心して取付けられたロータ12とを備え、回転ドラム11の外周に設けられた環状歯車11aをモータ13により、ロータ12に取付けられた回転軸12aを駆動機構12bにより、それぞれ互いに逆方向に回転させ、回転式破砕機10に投入された浚渫土砂に、加水しつつ、圧縮及び擦り合わせの力を作用させ、上記浚渫土砂を粉砕することなく細粒化するものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の回転式破砕機10を用いた浚渫土砂の処理システムは、振動ふるいを多用しているため、処理速度も遅く、設備が複雑になってしまうだけでなく、本来が、埋め立て土砂を対象とした処理システムであるので、海洋から直接汲み上げた水分の多い浚渫土砂を処理することができないという問題点があった。これは、上記回転式破砕機10において、処理空隙内に投入された浚渫土砂に圧縮及び擦り合わせの力を作用させるためには、加水される処理水の量が制限されるためである。ちなみに、上記埋め立て土砂では、含有される水分は全体の約40%以下であるのに対し、汲み上げられた浚渫物は約90%が水分である。
このような背景から、浚渫土砂の塩分除去技術や再資源化による減容化技術の確立が望まれるところである。
【0005】
本発明は、従来の問題点に鑑みてなされたもので、湾岸や流出河川等から浚渫した土砂から塩分を取り除くとともに、浚渫土砂を効率的に砂利,砂,微粒分等に分級して再利用することのできる浚渫土砂の処理方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に記載の浚渫土砂の処理方法は、湾岸または流出河川か直接汲み上げた浚渫物をフィードサンプに送るとともに、予め堆積しておいた浚渫土砂を細粒化手段で加水しつつ細粒化したものをフィードサンプに送り、上記フィードサンプに貯蔵された浚渫物を液体サイクロンに投入して分級し、上記液体サイクロンの底部に沈殿した固形物を水洗浄して塩分の除去された固形物を取り出すとともに、上記液体サイクロンの上部の微粒分を含む処理水を上記フィードサンプに戻し、上記フィードサンプの上澄み液と上記固形物を洗浄した洗浄水とをシックナータンクに送って固液分離して塩分の除去された浚渫物中の微粒分を取り出すことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づき説明する。
図1は、本実施の形態に係わる浚渫土砂の連続処理システムを示す処理フローである。本実施の形態の連続処理システムは、湾岸や流出河川等に堆積する土砂を汲み上げ搬送する浚渫ロボット1と、この浚渫ロボット1からの浚渫物を貯蔵するフィードサンプ2と、処理水中に投入された投入物の内、粒径の小さな軽い粒子(以下、微粒分という)を浮遊させて分離する複数の液体サイクロン3と、上記各液体サイクロン3の下部に沈殿した砂利,砂等の固形分から成る沈殿物を一時貯蔵するスピゴットタンク4と、上記スピゴットタンク4の沈殿物を洗浄するとともに、上記沈殿物から砂利,砂等を分離する振動脱水スクリーン(アクアスクリーン)5と、上記各液体サイクロン3の上部の微粒分を含んだ処理水と上記分離されたシルトとから微粒分を分離するシックナータンク6と、上記シックナータンク6の沈殿物を一時貯蔵するスラリー槽7と、このスラリー槽7に貯蔵されたスラリーから脱水ケーキを作製するためのフィルタープレス8とを備えている。
【0012】
また、上記連続処理システムは、湾岸や流出河川等から浚渫した浚渫土砂と、堆積しておいた浚渫土砂(以下、埋め立て土砂と略す)とを同時に処理するため、上述した従来の回転式破砕機10を備え、受け入れホッパ14に投入された団粒状の浚渫土砂に加水しつつ、圧縮及び粒子相互間の擦り合わせの力を作用させ、上記浚渫土砂の砂利,砂等の粒子を破壊することなく、団粒状の浚渫土砂を細粒化して上記フィードサンプ2に送るようにしている。なお、上記回転式破砕機10に加水する処理水としては、浚渫作業場付近から汲み上げた海水を用いても良い。
【0013】
次に、上記連続処理システムによる浚渫土砂の処理方法について説明する。
浚渫ロボット1により、直接汲み上げられた浚渫物は、上述したように、基本的には水(海水)が圧倒的に多く、既にスラリー化しているので、これを直接フィードサンプ2に送る。
一方、既存の埋め立て土砂は、受け入れホッパ14から回転式破砕機10に送られ、加水されつつ、細粒化された後、フィードサンプ2に送られる。すなわち、回転式破砕機10の回転ドラム11とロータ12との間隙に投入された埋め立て土砂Sは、図2(a)に示すように、回転ドラム11の外羽根11Wによって上方に掻き上げられるとともに、ロータ12の内羽根12Wによって下方に引き下げられるので、埋め立て土砂Sには圧縮応力とせん断応力とが作用し、図2(b)に示すように、粒状体同士が固着されて団粒状態となっている埋め立て土砂Sの各粒子Pが分離されてほぼ独立した細かな粒子pに細粒化される。また、粒子p同士に擦り合わせ方向の力が作用するため、粒子p同士が相互研磨され、各粒子pの鋭角部が除去される。したがって、回転式破砕機10からは、表面が比較的滑らかな種々の大きさの砂利,砂及びシルトが、上記加水された処理水とともにフィードサンプ2に送られる。
なお、上記回転式破砕機10の投入口と上記フィードサンプ2の投入口とには、それぞれ、投入物に混在している比較的大きな夾雑物を排除するための図示しない予備選別手段を設け、後工程での処理を円滑にするようにしている。
【0014】
本実施の形態では、例えば、上記浚渫ロボット1から、土砂が約10%、水分が約90%である湾岸や流出河川等からの浚渫物を約1000m3/Hでフィードサンプ2に送り、土砂が約60%、水分が約40%の埋め立て土砂(浚渫土砂)を回転式破砕機10に投入して細粒化処理した後上記フィードサンプ2に送るようにしているので、フィードサンプ2には、土砂が約20%、水分が約80%の浚渫物が貯蔵される。この浚渫物は、ポンプ9により、複数の液体サイクロン3へ搬送される。
液体サイクロン3では、上記浚渫物中の約100μm未満の微粒分が処理水中に浮遊され、約100μm以上の砂利,砂等の粒子は固形分として底部に沈殿する。上記液体サイクロン3上部の約100μm未満の細粒を含んだ処理水は、フィードサンプ2に戻されフィードサンプ2の上澄み液として、シックナータンク6に送られる。このとき、上記浚渫物中の塩分の大部分は上記処理水中に溶解して上記砂利,砂等の固形分から除去される。
【0015】
しかしながら、上記砂利,砂には多少の塩分及びプランクトン等の微生物が付着している可能性があるので、液体サイクロン3の底部に沈殿した固形物は、一旦スピゴットタンク4に集積された後、アクアスクリーン5に送られ、洗浄水(シャワーあるいは通過湛水)による洗浄を行い搬出する。塩分は非吸着性の物質であり、土砂へは強く吸着していないので、上記洗浄によって容易に除去することができる。アクアスクリーン5では、上記洗浄と同時に、上記固形物に混入している約100μm未満の細粒を分離してシックナータンク6に送り、約100μm以上の砂利,砂等の粒子を取り出す。
アクアスクリーン5で分離された砂利,砂等の粒径の大きな粒子は、塩分等が除去されれば、もともと良質であるので、コンクリ−ト用の細骨材に利用することができる。また、埋め戻し材等にも十分利用可能である。
【0016】
シックナータンク6には、上記液体サイクロン3の上部の処理水を含んだフィードサンプ2の上澄み液と、上記アクアスクリーン5で分離された約100μm未満の微粒分を含んだシルトが集められ、上記約100μm未満の細粒等の固形物を含んだ液をタンク内でゆっくりと回転させ、上記微粒分を凝集沈殿させる固液分離を行う。
上記シックナータンク6の上澄み液は海洋へ放流し、沈殿物は一旦スラリー槽7において均質化した後、フィルタープレス8により脱水しケーキを作製する。この脱水ケーキは塩分等が低減されているので再利用が可能である。
【0017】
このように、本実施の形態においては、浚渫土砂の連続処理システムにより、浚渫ロボット1で浚渫した湾岸や流出河川等からの浚渫物と、埋め立て土砂を回転式破砕機10で細粒化した土砂とを液体サイクロン3に同時に投入し、液体サイクロン3の底部に沈殿した固形物を、アクアスクリーン5において、洗浄して塩分を除去ながら土砂や砂分を分離するとともに、液体サイクロン3上部の約100μm未満の微粒分を含んだ処理水をシックナータンク6により固液分離し、シックナータンク6の沈殿物から脱水ケーキを作製するようにしたので、湾岸や河川等から浚渫した浚渫土砂と、埋め立て土砂とを同時に処理することができるとともに、上記分級された土砂や作製された脱水ケーキは再利用することが可能なので、沈殿池や処分場へ埋め立てる浚渫土砂を大幅に低減することができる。また、振動ふるいを使用せず、液体サイクロン3を中心としたシンプルなシステムであるので、浚渫土砂の分級を連続的にかつ高速に行うことができ、浚渫土砂の分級効率を向上させることができる。更に、液体サイクロン3を用いることにより、塩分等の除去も効率良く行うことができる。
【0018】
なお、上記実施の形態において、回転式破砕機10で細粒化した浚渫土砂に水分が約80%程度に成るように加水し水と混合した後、上記混合物を液体サイクロン3に投入すれば、浚渫土砂が埋め立て土砂のみである場合でも、上記実施の形態と同様に処理することが可能である。
【0019】
また、上記例では、液体サイクロン3として、投入された浚渫物から約100μm以上の砂利,砂等の粒子を分離するものを用いたが、液体サイクロン3で分離する粒度はこれに限るものではなく、投入する浚渫物の種類や処理システムの目的,仕様等により適宜決定されるものである。更に、液体サイクロン3を複数段設けて浚渫物を分級すれば、精度が良く細かな分級が可能である。なお、液体サイクロン3の数は、上記連続処理システムの処理量等により決定されるもので、必ずしも複数である必要はない。
【0020】
以上説明したように、請求項1に記載の発明によれば、湾岸または流出河川か直接汲み上げた浚渫物をフィードサンプに送るとともに、予め堆積しておいた浚渫土砂を細粒化手段で加水しつつ細粒化したものをフィードサンプに送り、上記フィードサンプに貯蔵された浚渫物を液体サイクロンに投入して分級し、上記液体サイクロンの底部に沈殿した固形物を水洗浄して塩分の除去された固形物を取り出すとともに、上記液体サイクロンの上部の微粒分を含む処理水を上記フィードサンプに戻し、上記フィードサンプの上澄み液と上記固形物を洗浄した洗浄水とをシックナータンクに送って固液分離して塩分の除去された浚渫物中の微粒分を取り出すようにしたので、簡単な構成で浚渫土砂の分級を高速に行うことができ、分級効率を向上させることができるとともに、直接浚渫した浚渫物と予め堆積しておいた浚渫土砂とを同時に、かつ高速に処理することができる
【図面の簡単な説明】
【図1】 本発明の実施の形態に係わる浚渫土砂の処理方法を示す処理フローである。
【図2】 回転式破砕機の作用を説明するための図である。
【図3】 従来の回転式破砕機の構造を示す図である。
【符号の説明】
1 浚渫ロボット、2 フィードサンプ、3 液体サイクロン、4 スピゴットタンク、5 アクアスクリーン、6 シックナータンク、7 スラリー槽、8 フィルタープレス、9 ポンプ
10 回転式破砕機、11 回転ドラム、11W 外羽根、11a 環状歯車、12 ロータ、12W 内羽根、12a 回転軸、12b 駆動機構、13 モータ、14 受け入れホッパ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating dredged soil that can be reused by dredging sediment deposited on a bay coast, an outflow river, etc., and classifying it according to the particle size of stones, sand, fine particles and the like.
[0002]
[Prior art]
Conventionally, sediment deposited on bays and outflowing rivers may cause obstruction of the channel and decrease in river flow, so it is provided in advance after being dredged by dredgers equipped with dredgers (also called scavengers). It was put into a sedimentation basin, treated by sun drying or cement treatment to reduce the volume and temporarily piled up, and then landed in a disposal site. In addition, even when it was directly put into the settling basin, volume reduction such as draining water was attempted.
However, in the above conventional treatment method, salinity remains in dredged sand and affects vegetation, so that there is a limit to use as landfill. In addition, sedimentation of spilled sediments in the bays and rivers is a continuous occurrence, and dredging work must be performed almost regularly. Therefore, the disposal amount of dredged soil has become enormous, and it has been difficult to secure sedimentation basins and disposal sites.
[0003]
Therefore, after refining dredged sediments (hereinafter referred to as landfilled sediments), a lot of vibration sieves are used, and some are classified into gravel, sand, silt, etc. using liquid cyclones. A soil treatment system has been proposed (Japanese Patent Laid-Open No. 8-164363). This is done by using a rotary crusher that pulverizes particles such as aggregated lump or sand lump in the above-mentioned landfill sand into individual particles without crushing the individual particles such as sand. After the earth and sand are refined, the above-mentioned refined dredged sand is classified by a plurality of vibrating sieves, and the fine particles that have passed through the final stage sieve are further classified by a liquid cyclone.
3A and 3B are views showing the configuration of the rotary crusher 10, wherein FIG. 3A is a side view, and FIG. 3B is a cross-sectional view taken along line AA. The rotary crusher 10 is attached to the inner peripheral surface along the axial direction, and is attached to the outer peripheral surface along the axial direction with the cylindrical rotary drum 11 having a plurality of outer blades 11W protruding in the center direction. A rotor 12 having a plurality of inner blades 12W projecting in the center direction and eccentrically mounted inside the rotary drum 11, and an annular gear 11a provided on the outer periphery of the rotary drum 11 by a motor 13. The rotating shaft 12a attached to the rotor 12 is rotated in the opposite directions by the drive mechanism 12b, respectively, and the compression and rubbing force is applied to the dredged sand put in the rotary crusher 10 while adding water, The dredged material is pulverized without being crushed.
[0004]
[Problems to be solved by the invention]
However, since the dredged soil processing system using the conventional rotary crusher 10 uses a lot of vibration sieves, the processing speed is slow and the equipment becomes complicated. This is a treatment system for the sewage, so that there is a problem that dredged soil with a lot of water drawn directly from the ocean cannot be treated. This is because, in the rotary crusher 10, the amount of treated water to be added is limited in order to apply the compressing and rubbing force to the dredged sand put into the treatment gap. Incidentally, in the above-mentioned landfill earth and sand, the contained water is about 40% or less of the whole, whereas the pumped up porridge is about 90% moisture.
Against this background, establishment of dredging sand salinity removal technology and volume reduction technology by recycling is desired.
[0005]
The present invention has been made in view of the conventional problems, and removes salt from the dredged sediment from the gulf and outflow rivers, and efficiently classifies and recycles dredged soil into gravel, sand, fine particles, etc. An object of the present invention is to provide a method for treating dredged soil that can be used.
[0006]
[Means for Solving the Problems]
Processing method of dredged material according to claim 1 of the present invention, hydrolysis Gulf or outflow river directly from pumped dredged material and sends to the feed sump, the dredged material which has been previously deposited in grain refining means However, the finely divided material is sent to the feed sump, and the soot stored in the feed sump is put into a liquid cyclone for classification , and the solid matter precipitated at the bottom of the liquid cyclone is washed with water to remove the salt. In addition to taking out the solid matter, the treated water containing the fine particles at the top of the hydrocyclone is returned to the feed sump, and the supernatant of the feed sump and the wash water from which the solid matter has been washed are sent to a thickener tank to be solidified. It is characterized by taking out the fine particles in the cake from which the salt has been removed by liquid separation .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a processing flow showing a continuous processing system for dredged sand according to the present embodiment. The continuous treatment system according to the present embodiment includes a dredge robot 1 that pumps up and transports sediment deposited on the shores, outflow rivers, and the like, a feed sump 2 that stores dredged material from the dredge robot 1, and the treated water. A plurality of liquid cyclones 3 that float and separate light particles having a small particle diameter (hereinafter referred to as “fine particles”) out of the input material, and a precipitate composed of solids such as gravel and sand that have settled at the bottom of each liquid cyclone 3. A spigot tank 4 for temporarily storing things, a vibrating dewatering screen (aqua screen) 5 for cleaning the sediment in the spigot tank 4 and separating gravel, sand, etc. from the sediment, and an upper portion of each hydrocyclone 3 A thickener tank 6 for separating fine particles from the treated water containing the fine particles and the separated silt, and a deposit in the thickener tank 6 temporarily. A slurry tank 7 to built, and a filter press 8 for producing a dewatered cake from a slurry stored in the slurry tank 7.
[0012]
In addition, since the above-mentioned continuous processing system simultaneously processes dredged sand dredged from the gulf or outflow river and accumulated dredged sand (hereinafter referred to as landfilled sand), the conventional rotary crusher described above is used. 10 and without causing the particles such as gravel and sand of the above-mentioned clay sand to break down, while applying the force of compression and friction between the particles while adding water to the aggregated clay sand put in the receiving hopper 14 The granular granite sand is refined and sent to the feed sump 2. In addition, as the treated water to be added to the rotary crusher 10, seawater pumped from the vicinity of the dredging work site may be used.
[0013]
Next, a method for treating dredged soil by the continuous processing system will be described.
As described above, the dredge pumped up directly by the dredging robot 1 is basically overwhelmingly water (seawater) and already slurried, so this is directly sent to the feed sump 2.
On the other hand, the existing landfill earth and sand are sent from the receiving hopper 14 to the rotary crusher 10, and are finely granulated while being added with water, and then sent to the feed sump 2. That is, the reclaimed earth and sand S introduced into the gap between the rotary drum 11 and the rotor 12 of the rotary crusher 10 is scraped upward by the outer blades 11W of the rotary drum 11 as shown in FIG. Since it is pulled downward by the inner blades 12W of the rotor 12, compressive stress and shear stress act on the landfill earth and sand S, and as shown in FIG. Each particle P of the reclaimed earth and sand S is separated and finely divided into almost independent fine particles p. Further, since the force in the rubbing direction acts on the particles p, the particles p are mutually polished, and the acute angle portion of each particle p is removed. Therefore, various sizes of gravel, sand and silt having a relatively smooth surface are sent from the rotary crusher 10 to the feed sump 2 together with the treated water.
The rotary crusher 10 and the feed sump 2 are respectively provided with pre-sorting means (not shown) for removing relatively large contaminants mixed in the input, The processing in the subsequent process is made smooth.
[0014]
In the present embodiment, for example, the dredged robot 1 sends the dredged material from the gulf or the outflow river with about 10% sediment and about 90% moisture to the feed sump 2 at about 1000 m 3 / H. Is about 60% and the water content is about 40%. It is sent to the feed sump 2 after being put into the rotary crusher 10 and refined. Saddle with about 20% earth and sand and about 80% moisture is stored. This soot is conveyed to a plurality of hydrocyclones 3 by a pump 9.
In the hydrocyclone 3, fine particles of less than about 100 μm in the porcelain are suspended in the treated water, and particles such as gravel and sand of about 100 μm or more are precipitated at the bottom as solids. The treated water containing fine particles of less than about 100 μm above the liquid cyclone 3 is returned to the feed sump 2 and sent to the thickener tank 6 as the supernatant of the feed sump 2. At this time, most of the salinity in the sediment is dissolved in the treated water and removed from the solids such as gravel and sand.
[0015]
However, since there is a possibility that some salt and microorganisms such as plankton are attached to the gravel and sand, the solid matter precipitated at the bottom of the hydrocyclone 3 is once accumulated in the spigot tank 4 and then aqua. It is sent to the screen 5, washed with washing water (shower or passing flooded water) and carried out. Salinity is a non-adsorbing substance and is not strongly adsorbed to the earth and sand, so it can be easily removed by the above washing. In the aqua screen 5, simultaneously with the washing, fine particles of less than about 100 μm mixed in the solid matter are separated and sent to the thickener tank 6 to take out particles such as gravel and sand of about 100 μm or more.
Particles having a large particle size such as gravel and sand separated by the aqua screen 5 are originally of good quality if the salt content is removed, so that they can be used as fine aggregate for concrete. It can also be used as a backfill material.
[0016]
The thickener tank 6 collects the supernatant of the feed sump 2 containing treated water at the top of the hydrocyclone 3 and the silt containing fine particles of less than about 100 μm separated by the aqua screen 5. A liquid containing solids such as fine particles of less than 100 μm is slowly rotated in a tank, and solid-liquid separation is performed to agglomerate and precipitate the fine particles.
The supernatant liquid of the thickener tank 6 is discharged into the ocean, and the precipitate is once homogenized in the slurry tank 7 and then dehydrated by a filter press 8 to produce a cake. This dehydrated cake has a reduced salt content and can be reused.
[0017]
As described above, in the present embodiment, the dredged material from the gulf or the outflow river dredged by the dredging robot 1 and the reclaimed sand by the rotary crusher 10 by the dredged soil continuous processing system. Are simultaneously added to the hydrocyclone 3, and the solid matter precipitated at the bottom of the hydrocyclone 3 is washed on the aqua screen 5 to remove earth and sand while removing salt and about 100 μm above the hydrocyclone 3. The treated water containing less than fine particles was separated into solid and liquid by the thickener tank 6 and the dehydrated cake was made from the sediment in the thickener tank 6, so that dredged sand dredged from the bay and rivers, Can be processed at the same time, and the classified soil and the prepared dewatered cake can be reused. The dredging sediment fill up to can be greatly reduced. Moreover, since it is a simple system centering on the hydrocyclone 3 without using a vibrating screen, the classification of dredged sand can be performed continuously and at high speed, and the classification efficiency of dredged sand can be improved. . Furthermore, by using the liquid cyclone 3, salt and the like can be removed efficiently.
[0018]
In the above embodiment, after the water has been mixed with water was added water to a approximately 80% finely ground dredged material by rotating crusher 10, when introducing the mixture into the hydrocyclone 3 Even when dredged soil is only landfill, it can be treated in the same manner as in the above embodiment.
[0019]
In the above example, the liquid cyclone 3 used is one that separates particles such as gravel and sand having a size of about 100 μm or more from the charged material, but the particle size separated by the liquid cyclone 3 is not limited to this. It is determined as appropriate according to the type of the material to be input, the purpose and specification of the processing system. Furthermore, if the liquid cyclones 3 are provided in a plurality of stages and the soot is classified, it is possible to classify with high accuracy and fineness. Note that the number of hydrocyclone 3 is intended to be determined by the processing amount and the like of the continuous processing system, you need not name is always more.
[0020]
As described above, according to the invention described in claim 1, and sends the Gulf or out river directly from pumped dredged material to the feed sump, the dredged material which has been previously deposited in grain refining means Feeding the finely-divided product while adding water to the feed sump , putting the soot stored in the feed sump into a liquid cyclone and classifying it, washing the solid precipitated at the bottom of the liquid cyclone with water, The removed solid matter is taken out, the treated water containing the fine particles at the top of the liquid cyclone is returned to the feed sump, and the supernatant of the feed sump and the washing water that has washed the solid matter are sent to a thickener tank. since then solid-liquid separation so as to take out the fine fraction of the dredged material in which salt is removed, the classification of the dredged material can be performed at high speed with a simple configuration, improved classification efficiency It is possible to, can process the dredged material which has been previously deposited with the dredged material was dredged direct simultaneously and at high speed.
[Brief description of the drawings]
FIG. 1 is a processing flow showing a dredged material processing method according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining the operation of a rotary crusher.
FIG. 3 is a diagram showing the structure of a conventional rotary crusher.
[Explanation of symbols]
1 浚 渫 Robot, 2 Feed sump, 3 Liquid cyclone, 4 Spigot tank, 5 Aqua screen, 6 Thickener tank, 7 Slurry tank, 8 Filter press, 9 Pump 10 Rotating crusher, 11 Rotating crusher, 11W Outer blade, 11a Ring Gear, 12 rotor, 12W inner blade, 12a rotating shaft, 12b drive mechanism, 13 motor, 14 receiving hopper.

Claims (1)

湾岸または流出河川か直接汲み上げた浚渫物をフィードサンプに送るとともに、予め堆積しておいた浚渫土砂を細粒化手段で加水しつつ細粒化したものをフィードサンプに送り、上記フィードサンプに貯蔵された浚渫物を液体サイクロンに投入して分級し、上記液体サイクロンの底部に沈殿した固形物を水洗浄して塩分の除去された固形物を取り出すとともに、上記液体サイクロンの上部の微粒分を含む処理水を上記フィードサンプに戻し、上記フィードサンプの上澄み液と上記固形物を洗浄した洗浄水とをシックナータンクに送って固液分離して塩分の除去された浚渫物中の微粒分を取り出すことを特徴とする浚渫土砂の処理方法 And it sends the Gulf or out river directly from pumped dredged material to the feed sump sends also to was comminuted while hydrolyzing the dredged material which has been previously deposited in grain refining means to a feed sump, the feed The soot stored in the sump is put into a liquid cyclone and classified , and the solids precipitated at the bottom of the liquid cyclone are washed with water to take out the solids from which the salt has been removed, and the fine particles on the top of the liquid cyclone The treated water containing water is returned to the feed sump, and the supernatant of the feed sump and the washing water for washing the solid matter are sent to a thickener tank to separate the solids and liquids, and the fine fraction in the porridge from which salt has been removed. processing method of dredged material, characterized in that retrieving the.
JP34091198A 1998-12-01 1998-12-01 How to treat dredged soil Expired - Lifetime JP4256505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34091198A JP4256505B2 (en) 1998-12-01 1998-12-01 How to treat dredged soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34091198A JP4256505B2 (en) 1998-12-01 1998-12-01 How to treat dredged soil

Publications (2)

Publication Number Publication Date
JP2000167432A JP2000167432A (en) 2000-06-20
JP4256505B2 true JP4256505B2 (en) 2009-04-22

Family

ID=18341447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34091198A Expired - Lifetime JP4256505B2 (en) 1998-12-01 1998-12-01 How to treat dredged soil

Country Status (1)

Country Link
JP (1) JP4256505B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688332B2 (en) * 2001-04-02 2011-05-25 新日鉄エンジニアリング株式会社 Low concentration slurry dewatering equipment
KR100440197B1 (en) * 2001-06-19 2004-07-14 산양환경산업 주식회사 The System of for the using Recycled of Dredged Soils
KR20030005769A (en) * 2001-07-10 2003-01-23 삼성엔지니어링 주식회사 System for segregating the dredged sediments, and a method therefor
JP2003079246A (en) * 2001-09-10 2003-03-18 Ohbayashi Corp Soil structure for planting and method for structuring the same
KR20030064901A (en) * 2002-01-29 2003-08-06 주식회사 천보환경 Construction aggrigate production method and systems of river dredged soils
KR100449169B1 (en) * 2002-03-05 2004-09-16 서해건설주식회사 A Treatment System and Biological Treatment Method of Refractory Materials in Contaminated Sediment by Volume Reduction
JP4990489B2 (en) * 2004-11-10 2012-08-01 紅陽生コンクリート工業株式会社 Equipment for producing artificial sand for ready-mixed concrete from crushed stone powder
JP4758811B2 (en) * 2006-04-25 2011-08-31 株式会社トクヤマ Submarine dredging treatment method
JP2007291777A (en) * 2006-04-26 2007-11-08 Tokuyama Corp Method for treating sea-bottom dredged soil
JP4455631B2 (en) 2007-09-03 2010-04-21 株式会社東芝 Solid-liquid separator
KR100912058B1 (en) 2007-10-02 2009-08-12 주식회사 청우이엔이 System for disposing of sediment
KR100958067B1 (en) 2010-02-19 2010-05-13 주식회사 대일이앤씨 Apparatus for treating contamination sediment and method thereof
JP5378301B2 (en) * 2010-06-07 2013-12-25 太平産業株式会社 Construction sludge treatment method and reclaimed sand from construction sludge
KR101030581B1 (en) 2010-06-28 2011-04-21 남선개발 주식회사 Dredging soil treating system
KR101167479B1 (en) 2011-11-10 2012-07-27 현대건설주식회사 System and method for remediating contaminated soil of highly contaminant-concentrated fine soil using multiple micro hydrocyclone
KR101167478B1 (en) 2011-11-10 2012-07-27 현대건설주식회사 System and method for remediating contaminated soil by separation of contaminant-concentrated coarse soil
JP5766638B2 (en) * 2012-03-15 2015-08-19 株式会社東芝 Solid-liquid separation device and solid-liquid separation method
JP6238519B2 (en) * 2012-11-29 2017-11-29 日立造船株式会社 Paddy field repair method
JP6076056B2 (en) * 2012-11-29 2017-02-08 日立造船株式会社 Reuse processing method of sediment
CN109225543A (en) * 2018-09-15 2019-01-18 廖祥菊 A kind of environment friendly medical glass container garbage recovery device
CN109336346B (en) * 2018-12-11 2021-04-16 安丘市水利建筑安装公司 Hydraulic engineering desilt device
JP7257237B2 (en) * 2019-04-22 2023-04-13 三菱重工業株式会社 Strainer assembly for particle recovery pump, strainer for particle recovery pump, particle recovery system, and particle recovery method
CN113250264A (en) * 2021-06-09 2021-08-13 辽宁工程技术大学 Water sump cleaning device and use method thereof
CN113650053A (en) * 2021-08-25 2021-11-16 中建四局第三建设有限公司 Robot desilting, solidification and detect multi-functional system

Also Published As

Publication number Publication date
JP2000167432A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP4256505B2 (en) How to treat dredged soil
US5833863A (en) Concrete reclamation system
CN105672948A (en) Process and device for complete-collection anti-falling harmless treatment on well drilling waste
JP4364889B2 (en) Method and apparatus for treating dredged soil
CN109721191A (en) A kind of sandstone building stones production wastewater treatment system
CN213506500U (en) Pile foundation construction slurry treatment system
JP5378301B2 (en) Construction sludge treatment method and reclaimed sand from construction sludge
JP4697719B2 (en) Method for purifying contaminated soil and separation apparatus used therefor
JP4190669B2 (en) Method and apparatus for processing particulate matter with contaminants attached
JP7177677B2 (en) DREDGED SOIL TREATMENT METHOD AND DREDGED SOIL TREATMENT DEVICE
JP2620120B2 (en) Method and apparatus for collecting mud used for mud pressurized shield drilling
JP4132413B2 (en) Method for treating particulate matter with contaminants attached
KR100440197B1 (en) The System of for the using Recycled of Dredged Soils
JP4338825B2 (en) Fine grain processing method
JP2006015327A (en) Earth/sand regeneration system and earth/sand regeneration method
JP2005262076A (en) Method for cleaning soil contaminated with oil
WO2020191113A1 (en) System and method for recovering desired materials using a ball mill or rod mill
CN110937770A (en) Reduction treatment process for oily sludge
KR20030005769A (en) System for segregating the dredged sediments, and a method therefor
JP3711293B2 (en) 浚 渫 Sludge treatment method
JP2000210651A (en) Treatment of contaminant-adhered granular body
JP2000197878A (en) Apparatus for treating particulate material to which pollutant is adhered
CN218048365U (en) River silt multi-stage screening device
CN210730517U (en) Processing system for cleaning waste
CN215947073U (en) Surplus mud processing system of logical ditch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term