JP4558633B2 - Wastewater treatment method containing fluoride ions - Google Patents

Wastewater treatment method containing fluoride ions Download PDF

Info

Publication number
JP4558633B2
JP4558633B2 JP2005337214A JP2005337214A JP4558633B2 JP 4558633 B2 JP4558633 B2 JP 4558633B2 JP 2005337214 A JP2005337214 A JP 2005337214A JP 2005337214 A JP2005337214 A JP 2005337214A JP 4558633 B2 JP4558633 B2 JP 4558633B2
Authority
JP
Japan
Prior art keywords
fluorine
magnesium oxide
ions
wastewater
fluorine ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337214A
Other languages
Japanese (ja)
Other versions
JP2007136424A (en
Inventor
隆文 鈴木
照彦 玖村
晋二郎 玉川
丈輝 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP2005337214A priority Critical patent/JP4558633B2/en
Priority to CNB2006101624385A priority patent/CN100556823C/en
Publication of JP2007136424A publication Critical patent/JP2007136424A/en
Application granted granted Critical
Publication of JP4558633B2 publication Critical patent/JP4558633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Description

本発明は、半導体製造工場より排出されるpH2.10以下の排水中に含まれるフッ素イオンの含有量を低減する方法に関する。更に詳しくは、該排水中に含有する有害フッ素イオン(以下単に“フッ素”と称することがある)の含有量を排水基準以下、更には、土壌環境基準以下に低減する方法に関する。 The present invention relates to a method for reducing the content of fluorine ions contained in wastewater having a pH of 2.10 or less discharged from a semiconductor manufacturing factory. More specifically, the present invention relates to a method for reducing the content of harmful fluorine ions (hereinafter sometimes referred to simply as “fluorine”) contained in the wastewater below the wastewater standard, and further below the soil environmental standard.

半導体製造工場では、シリコンウエハーのエッチング剤として多量のフッ酸が使用されている。このフッ酸は、水等で洗浄されるために排水のpHが4.0以下と低く且つ高濃度のフッ素が含まれている。
そして、環境庁発令の排水基準によれば検液中のフッ素濃度は8mg/L以下、また、土壌環境基準によれば同0.8mg/L以下に定められている。
フッ素含有排水中のフッ素を除去する方法としては、フッ素含有水にカルシウム塩を加えて難溶性のフッ化カルシウムを生成させる方法が提案されている(特許文献1参照)。
In semiconductor manufacturing factories, a large amount of hydrofluoric acid is used as an etchant for silicon wafers. Since this hydrofluoric acid is washed with water or the like, the pH of the wastewater is as low as 4.0 or less and contains a high concentration of fluorine.
According to the drainage standards issued by the Environment Agency, the fluorine concentration in the test solution is set to 8 mg / L or less, and according to the soil environmental standards, it is set to 0.8 mg / L or less.
As a method for removing fluorine in fluorine-containing wastewater, a method has been proposed in which a calcium salt is added to fluorine-containing water to form poorly soluble calcium fluoride (see Patent Document 1).

また、フッ素含有排水にマグネシア形成可能なマグネシウム化合物を焼成してい形成されたマグネシア系吸着剤(マグネシアを主成分として、カオリン、酸化第二鉄、酸化カルシウム、およびアルミナの中から選ばれる金属酸化物の少なくとも1種の混合物)を加えてフッ素を吸着除去する方法が提案されている(特許文献2参照)。
しかしながら、特許文献1に記載されたフッ素含有排水にカルシウム塩を加えてフッ化カルシウムを生成させる方法は、フッ化カルシウムの溶解度が0.0016g/100g(18℃)と大きく土壌環境基準をクリアすることができない。また、特許文献2に記載されたマグネシア系吸着剤はマグネシアと前記金属との混合物であるためにフッ素を除去する性能が不十分である。
特開平10−57969号公報 特開昭57−197082号公報
Also, a magnesia-based adsorbent formed by firing a magnesium compound capable of forming magnesia in fluorine-containing wastewater (a metal oxide selected from kaolin, ferric oxide, calcium oxide, and alumina with magnesia as the main component) And a method of adsorbing and removing fluorine by adding at least one mixture of the above (see Patent Document 2).
However, the method of generating calcium fluoride by adding calcium salt to fluorine-containing wastewater described in Patent Document 1 has a high solubility of calcium fluoride of 0.0016 g / 100 g (18 ° C.), which clears the soil environmental standards. I can't. Moreover, since the magnesia type adsorbent described in Patent Document 2 is a mixture of magnesia and the metal, the performance of removing fluorine is insufficient.
JP-A-10-57969 Japanese Patent Laid-Open No. 57-197082

本発明は、前記従来技術の問題点を解決し、半導体製造工場より排出されるフッ素イオンを含有する低pH排水中のフッ素イオンを効率的に除去する処理方法を提供することを目的とする。   An object of the present invention is to solve the problems of the prior art and to provide a treatment method for efficiently removing fluorine ions in low pH wastewater containing fluorine ions discharged from a semiconductor manufacturing factory.

本発明者らは、半導体製造工場より排出されるフッ素イオンを含有する低pH排水中のフッ素イオンを効率的に除去する方法を鋭意研究した。その結果、特定の酸化マグネシウムが大きいフッ素吸着能を有することを見出し本発明を完成した。   The present inventors have intensively studied a method for efficiently removing fluorine ions in low pH wastewater containing fluorine ions discharged from a semiconductor manufacturing factory. As a result, the present invention was completed by finding that specific magnesium oxide has a large fluorine adsorption ability.

また、かかる酸化マグネシウムを高濃度のフッ素イオンを含有する該排水に添加することにより、処理後液中のフッ素濃度を排水基準の8mg/L以下、さらには土壌環境基準の0.8mg/L以下とすることとが可能であることを見出した。またさらには、フッ素イオンを吸着した水酸化マグネシウムが、再溶出試験においてフッ素イオンを溶出しないことをも見出し本発明を完成した。   Further, by adding such magnesium oxide to the waste water containing high concentration of fluorine ions, the fluorine concentration in the treated liquid is 8 mg / L or less of the waste water standard, and further 0.8 mg / L or less of the soil environment standard. And found that it is possible. Furthermore, the present invention was completed by finding that magnesium hydroxide adsorbing fluorine ions does not elute fluorine ions in the re-elution test.

即ち、本発明によれば下記に説明する、半導体製造工場より排出されるフッ素イオンを含有するpH2.10以下の排水中のフッ素イオン濃度を低減する方法が提供される。
(1)フッ素イオンを含有するpH2.10以下の排水に、水酸化マグネシウムを700〜1,000℃で焼成して得られかつBET比表面積40〜200m/gを有する酸化マグネシウムを添加し、10〜25℃の温度で処理し、凝集剤を加えて固液分離することを特徴とする前記排水中のフッ素イオンを除去する方法。
(2)フッ素イオンを含有するpH2.10以下の排水が、半導体製造工場より排出される排水である前記(1)記載のフッ素イオンを除去する方法。
(3)フッ素イオンを含有するpH2.10以下の排水中のフッ素イオン濃度が、20〜300mg/Lである前記(1)記載のフッ素イオンを除去する方法。
(4)酸化マグネシウムが、水酸化マグネシウムを750〜850℃で焼成して得られかつBET比表面積50〜170m/gを有するものである前記(1)記載のフッ素イオンを除去する方法。
(5)該酸化マグネシウムは、水酸化マグネシウムを800〜900℃で焼成して得られかつBET比表面積100〜170m/gを有する前記(1)記載のフッ素イオンを除去する方法。
(6)該排水と該酸化マグネシウムとの接触時間は、5分〜3時間、好ましくは15分〜1時間である前記(1)記載のフッ素イオンを除去する方法。
(7)該排水と該酸化マグネシウムとの接触時液温が10〜25℃である前記(1)記載のフッ素イオンを除去する方法。
(8)形成した水酸化マグネシウム粒子を含有する処理された排水のpHが9.5〜11.0である前記(1)記載のフッ素イオンを除去する方法。
(9)該排水100重量部当り、該酸化マグネシウムを0.1〜10重量部、好ましくは0.2〜5重量部添加する前記(1)記載のフッ素イオンを除去する方法。
(10)該凝集剤を、該酸化マグネシウム1重量部当り0.01〜0.5重量部添加せしめる前記(1)記載のフッ素イオンを除去する方法。
That is, according to the present invention, there is provided a method for reducing the fluorine ion concentration in wastewater having a pH of 2.10 or less containing fluorine ions discharged from a semiconductor manufacturing factory, which will be described below.
(1) Magnesium oxide having a BET specific surface area of 40 to 200 m 2 / g obtained by baking magnesium hydroxide at 700 to 1,000 ° C. is added to wastewater having a pH of 2.10 or less containing fluorine ions. The method of removing the fluorine ion in the said waste_water | drain characterized by processing at the temperature of 10-25 degreeC, adding a flocculent, and carrying out solid-liquid separation.
(2) The method for removing fluorine ions according to (1) above, wherein the wastewater having a pH of 2.10 or less containing fluorine ions is wastewater discharged from a semiconductor manufacturing factory.
(3) The method for removing fluorine ions according to (1) above, wherein the fluorine ion concentration in the wastewater having a pH of 2.10 or less containing fluorine ions is 20 to 300 mg / L.
(4) The method for removing fluorine ions according to (1) above, wherein the magnesium oxide is obtained by baking magnesium hydroxide at 750 to 850 ° C. and has a BET specific surface area of 50 to 170 m 2 / g.
(5) The magnesium oxide is obtained by baking magnesium hydroxide at 800 to 900 ° C., and has a BET specific surface area of 100 to 170 m 2 / g.
(6) The method for removing fluorine ions according to the above (1), wherein the contact time between the waste water and the magnesium oxide is 5 minutes to 3 hours, preferably 15 minutes to 1 hour.
(7) The method for removing fluorine ions according to (1) above, wherein the liquid temperature at the time of contact between the waste water and the magnesium oxide is 10 to 25 ° C.
(8) The method for removing fluorine ions according to the above (1), wherein the pH of the treated waste water containing magnesium hydroxide particles formed is 9.5 to 11.0.
(9) The method for removing fluorine ions according to the above (1), wherein 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight of the magnesium oxide is added per 100 parts by weight of the waste water.
(10) a flocculating agent, a method of removing the (1), wherein the fluorine ions allowed to magnesium oxide 0.01 parts by weight added pressure per 1 part by weight.

本発明方法によるフッ素イオンの除去方法によれば、次の如き利点および特徴が得られる。
(a)分離されたフッ素イオン含有水酸化マグネシウム粒子は、環境庁告示46号溶出試験において、フッ素イオンを再溶出しない。
(b)分離されたフッ素イオンを含有水酸化マグネシウム粒子は、粉末X線回折法による測定に基づいて水酸化マグネシウムの結晶パターンが認められる。
(c)処理後排水中のフッ素イオン濃度が8mg/L以下である。
(d)処理後土壌環境基準において排水中のフッ素イオン濃度が0.8mg/L以下である。
(e)処理剤(酸化マグネシウム)は処理後排水中のフッ素イオン濃度を8mg/L以下とできる吸着容量が最大3ミリモル/gである。
(f)処理剤(酸化マグネシウム)は処理後排水中のフッ素イオン濃度を0.8mg/L以下とできる吸着容量が最大1.6ミリモル/gである。
According to the method for removing fluorine ions by the method of the present invention, the following advantages and characteristics can be obtained.
(A) The separated fluoride ion-containing magnesium hydroxide particles do not re-elute fluoride ions in the Environmental Agency Notification No. 46 dissolution test.
(B) The magnesium hydroxide particles containing the separated fluorine ions have a magnesium hydroxide crystal pattern based on measurement by powder X-ray diffraction.
(C) The fluorine ion concentration in the waste water after treatment is 8 mg / L or less.
(D) The fluorine ion concentration in the wastewater is 0.8 mg / L or less in the soil environment standard after treatment.
(E) The treating agent (magnesium oxide) has a maximum adsorption capacity of 3 mmol / g which can reduce the fluorine ion concentration in the waste water after treatment to 8 mg / L or less.
(F) The treatment agent (magnesium oxide) has a maximum adsorption capacity of 1.6 mmol / g, which can reduce the fluorine ion concentration in the waste water after treatment to 0.8 mg / L or less.

本発明方法によれば、半導体製造工場より排出されるフッ素イオンを含有するpH2.10以下の排水中に、特定の酸化マグネシウムを添加し、水酸化マグネシウム粒子を形成させることにより、処理後排水中のフッ素イオン濃度を排水基準、更には、土壌環境基準以下とすることが容易に可能である。 According to the method of the present invention, the pH 2.10 in the following wastewater containing fluorine ions discharged from a semiconductor manufacturing factory, by adding a particular magnesium oxide, by forming a magnesium hydroxide particle, the processed waste water It is possible to easily reduce the fluorine ion concentration in the wastewater standard, or even below the soil environmental standard.

本発明の、半導体製造工場より排出されるフッ素を含有するpH2.10以下の排水中のフッ素イオン濃度の低減方法の実施形態は、該排水に特定の酸化マグネシウムを添加し、攪拌放置によりフッ素含有水酸化マグネシウム粒子を形成させ、該水酸化マグネシウムを分離することを特徴とする。即ち、酸化マグネシウムを水中に投入すると以下に示す水和反応により水酸化マグネシウムが生成する。
酸化マグネシウムの水和反応:MgO+HO→Mg(OH)
この反応時に、吸着機構は不明であるがフッ素イオンを吸着除去できることを見出した。
The embodiment of the method for reducing the fluorine ion concentration in waste water having a pH of 2.10 or less containing fluorine discharged from a semiconductor manufacturing plant according to the present invention is the method of adding specific magnesium oxide to the waste water and leaving the mixture stirred to leave fluorine. The magnesium hydroxide particles are formed, and the magnesium hydroxide is separated. That is, when magnesium oxide is introduced into water, magnesium hydroxide is produced by the following hydration reaction.
Hydration reaction of magnesium oxide: MgO + H 2 O → Mg (OH) 2
During this reaction, the adsorption mechanism was unknown, but it was found that fluorine ions can be adsorbed and removed.

本発明においては、処理すべき排水中のフッ素イオン濃度が20〜300mg/Lである。半導体製造工場から排出される排水中のフッ素イオン濃度は、我々の知る範囲において最小20mg/L、最大300mg/Lであることによる。   In the present invention, the fluorine ion concentration in the waste water to be treated is 20 to 300 mg / L. This is because the fluorine ion concentration in the wastewater discharged from the semiconductor manufacturing factory is 20 mg / L at the minimum and 300 mg / L at the maximum in our knowledge.

本発明において、該酸化マグネシウムは水酸化マグネシウムを700〜1,000℃、好ましくは800〜900℃で焼成して得られかつBET比表面積40〜200m/g、好ましくは100〜170m/gのものである。水酸化マグネシウムの焼成は、一般的にロータリーキルンを用いるが700℃未満、或いは1,000℃を越える温度で焼成すると目標とするBET比表面積を有する酸化マグネシウムを得ることが困難となる。 In the present invention, magnesium oxide is 700~1,000 ° C. Magnesium hydroxide, preferably 800 to 900 obtained by firing at ° C. and a BET specific surface area of 40 to 200 m 2 / g, preferably 100~170m 2 / g belongs to. For the firing of magnesium hydroxide, a rotary kiln is generally used. However, when firing at a temperature of less than 700 ° C. or more than 1,000 ° C., it becomes difficult to obtain magnesium oxide having a target BET specific surface area.

一方、該酸化マグネシウムのBET比表面積が40m/g未満では活性が低いために、水中での水和(水酸化マグネシウムへの移行)に長時間を有すると共に、フッ素イオン吸着容量が小さいので不利である。上限については特に制限するものではないが、200m/gを越える比表面積を有する酸化マグネシウムを得ることは困難である。 On the other hand, since the activity is low when the BET specific surface area of the magnesium oxide is less than 40 m 2 / g, it has a long time for hydration in water (transition to magnesium hydroxide), and the fluorine ion adsorption capacity is small, which is disadvantageous. It is. The upper limit is not particularly limited, but it is difficult to obtain magnesium oxide having a specific surface area exceeding 200 m 2 / g.

本発明において、該排水と該酸化マグネシウムとの接触時間は、5分〜3時間、好ましくは15分〜1時間である。接触時間を5分未満とすると、酸化マグネシウムの水酸化マグネシウムへの移行量が少なく、フッ素吸着容量が小さいので不利である。上限については特に制限するものではないが、3時間を越えるとすると処理時間が長く不利である。   In the present invention, the contact time between the waste water and the magnesium oxide is 5 minutes to 3 hours, preferably 15 minutes to 1 hour. A contact time of less than 5 minutes is disadvantageous because the amount of magnesium oxide transferred to magnesium hydroxide is small and the fluorine adsorption capacity is small. The upper limit is not particularly limited, but if it exceeds 3 hours, the processing time is long and disadvantageous.

本発明において、該排水と該酸化マグネシウムとの接触時液温は10〜25℃である。液温が10℃未満のときは、酸化マグネシウムの水酸化マグネシウムへの移行に長時間を要するので不利である。上限については特に制限するものではないが、冬期においては液温が低いために25℃を越える温度とするのに熱エネルギーを要するので経済的に不利である。   In this invention, the liquid temperature at the time of contact with this waste_water | drain and this magnesium oxide is 10-25 degreeC. When the liquid temperature is less than 10 ° C., it takes a long time to transfer magnesium oxide to magnesium hydroxide, which is disadvantageous. The upper limit is not particularly limited. However, since the liquid temperature is low in winter, it is economically disadvantageous because heat energy is required to obtain a temperature exceeding 25 ° C.

本発明において、フッ素イオンを含有した水酸化マグネシウム粒子を分離した排水のpHは9.5〜11.0であるが、この排水に硫酸等の鉱酸を添加することにより容易に排水基準のpH5.6〜8.6とすることが可能である。   In the present invention, the pH of the waste water from which the magnesium hydroxide particles containing fluorine ions are separated is 9.5 to 11.0. By adding a mineral acid such as sulfuric acid to this waste water, the pH of the waste water standard is easily reduced to 5 .6 to 8.6 is possible.

本発明において、酸化マグネシウム添加量は該排水100重量部に対して、0.1〜10重量部、好ましくは0.2〜5重量部である。上限については特に制限するものではないが、前記範囲の添加で該排水中のフッ素濃度を土壌環境基準値以下とすることが可能であることによる。   In the present invention, the amount of magnesium oxide added is 0.1 to 10 parts by weight, preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the waste water. Although it does not restrict | limit in particular about an upper limit, it is because the fluorine density | concentration in this waste_water | drain can be made into a soil environmental standard value or less by addition of the said range.

本発明において、処理後のフッ素イオンを含有した水酸化マグネシウム粒子を排水中からの固液分離を容易にするために凝集剤を添加する。
該凝集剤としては、市販の無機系凝集剤および市販の高分子凝集剤共に有効であり、添加量は該酸化マグネシウム1重量部に対して0.01〜0.5重量部とするのが有利である。

In the present invention, a flocculant is added in order to facilitate solid-liquid separation of the treated magnesium hydroxide particles containing fluorine ions from the waste water.
As the flocculant, both commercially available inorganic flocculants and commercially available polymer flocculants are effective, and the amount added is preferably 0.01 to 0.5 parts by weight with respect to 1 part by weight of the magnesium oxide. It is.

本発明において、分離されたフッ素イオン含有水酸化マグネシウム粒子は、環境庁告示46号溶出試験のフッ素イオン溶出基準に適合する。この結果により、酸化マグネシウムの水和により生成する水酸化マグネシウムのフッ素イオン吸着機構がフッ化マグネシウムを形成することによるものではないと推測される(フッ化マグネシウムの溶解度は、フッ化カルシウムの溶解度よりはるかに高いことによる)。   In the present invention, the separated fluoride ion-containing magnesium hydroxide particles meet the fluoride ion elution standard of the Environment Agency Notification No. 46 dissolution test. From this result, it is speculated that the fluoride ion adsorption mechanism of magnesium hydroxide produced by hydration of magnesium oxide is not due to the formation of magnesium fluoride (the solubility of magnesium fluoride is greater than the solubility of calcium fluoride) By much higher).

本発明において、分離されたフッ素イオンを含有水酸化マグネシウム粒子は、粉末X線回折法による測定に基づいて水酸化マグネシウムの結晶パターンが認められる。   In the present invention, the magnesium fluoride particles containing the separated fluorine ions have a magnesium hydroxide crystal pattern based on measurement by powder X-ray diffraction.

本発明の好適な実施形態によれば、フッ素イオン含有排水中のフッ素イオン濃度を排水基準値の8ppm以下、更には、土壌環境基準値の0.8ppm以下とすることが可能である。また、これらを達成するときの該酸化マグネシウムのフッ素イオン吸着容量は、それぞれ、3ミリモル/g以上および1.6ミリモル/g以上である。   According to a preferred embodiment of the present invention, the fluorine ion concentration in the fluorine ion-containing waste water can be set to 8 ppm or less of the drainage standard value, and further to 0.8 ppm or less of the soil environment standard value. Moreover, the fluorine ion adsorption capacity of the magnesium oxide when achieving these is 3 mmol / g or more and 1.6 mmol / g or more, respectively.

以下に、実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
尚、該排水中の各種イオン濃度の測定は、フッ素イオンはJIS K 0102 34.1、塩素イオンおよび硝酸イオンはイオンクロマトグラフィー、その他(アルミニウムイオン、マグネシウムイオン、カルシウムイオン、ナトリウムイオン、硫酸イオン)はICPでそれぞれ分析した。
X線回折は理学電気(株)製RINP2200Vを用いてCu−Kαにて測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
In addition, the measurement of various ion concentrations in the waste water is JIS K 0102 34.1 for fluorine ions, ion chromatography for chlorine ions and nitrate ions, and others (aluminum ions, magnesium ions, calcium ions, sodium ions, sulfate ions). Were analyzed by ICP respectively.
X-ray diffraction was measured with Cu-Kα using RINP2200V manufactured by Rigaku Corporation.

実施例1
表1に示すイオンを含む半導体製造工場より排出された排水200mLに、協和化学工業(株)製酸化マグネシウム「キョーワマグ30:BET表面積=48m/g」を1g(0.5重量部)添加し、30分間マグネティックスタラーを用いて攪拌した(攪拌中の液温は23.3℃であった)。後、固液分離した上澄み液のフッ素イオン濃度は6.72mg/Lで排水基準に適合していた。また、液のpHは9.92であった。
Example 1
1 g (0.5 parts by weight) of magnesium oxide “Kyowa Mag 30: BET surface area = 48 m 2 / g” manufactured by Kyowa Chemical Industry Co., Ltd. is added to 200 mL of waste water discharged from a semiconductor manufacturing plant containing ions shown in Table 1. The mixture was stirred for 30 minutes using a magnetic stirrer (the liquid temperature during stirring was 23.3 ° C.). Thereafter, the fluoride ion concentration of the supernatant liquid separated into solid and liquid was 6.72 mg / L, which was in conformity with the drainage standard. The pH of the solution was 9.92.

尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は0.92ミリモル/gであった。   In addition, the fluoride ion adsorption capacity of the magnesium oxide under this condition was 0.92 mmol / g.

Figure 0004558633
Figure 0004558633

実施例2
表1に示すイオンを含む半導体製造工場より排出された排水200mLに、協和化学工業(株)製酸化マグネシウム「キョーワマグ30:BET表面積=48m/g」を0.65g(0.33重量部)添加し、10時間マグネティックスタラーを用いて攪拌した(攪拌中の液温は23.1℃であった)。後、固液分離した上澄み液のフッ素イオン濃度は0.4mg/Lで土壌環境基準に適合していた。また、液のpHは10.35であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は1.51ミリモル/gであった。
Example 2
Wastewater 200mL discharged from the semiconductor manufacturing factory comprising ions shown in Table 1, manufactured by Kyowa Chemical Industry Co., Ltd. Magnesium oxide "Kyowa Mag 30: BET surface area = 48m 2 / g" and 0.65 g (0.33 parts by weight) The mixture was added and stirred for 10 hours using a magnetic stirrer (the liquid temperature during stirring was 23.1 ° C.). After that, the fluoride ion concentration of the supernatant liquid obtained by solid-liquid separation was 0.4 mg / L, which conformed to the soil environmental standards. The pH of the solution was 10.35.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 1.51 mmol / g.

実施例3
表1に示すイオンを含む半導体製造工場より排出された排水200mLに、協和化学工業(株)製酸化マグネシウム「キョーワマグ100:BET表面積=85m/g」を0.5g(0.25重量部)添加し、30分間マグネティックスタラーを用いて攪拌した(攪拌中の液温は23.4℃であった)。後、固液分離した上澄み液のフッ素イオン濃度は1.95mg/Lで排水基準に適合していた。また、液のpHは10.32であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は1.94ミリモル/gであった。
Example 3
0.5 g (0.25 part by weight) of magnesium oxide “Kyowa Mag 100: BET surface area = 85 m 2 / g” manufactured by Kyowa Chemical Industry Co., Ltd. was added to 200 mL of waste water discharged from a semiconductor manufacturing factory containing ions shown in Table 1. The mixture was added and stirred for 30 minutes using a magnetic stirrer (the liquid temperature during stirring was 23.4 ° C.). After that, the fluorine ion concentration of the supernatant liquid separated into solid and liquid was 1.95 mg / L, which met the drainage standard. The pH of the solution was 10.32.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 1.94 mmol / g.

実施例4
実施例3において、該酸化マグネシウム添加量を0.7g(0.35重量部)とした以外は実施例3と同様とした。その結果、固液分離した上澄み液のフッ素イオン濃度は0.2mg/Lで土壌環境基準に適合していた。また、液のpHは10.30であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は1.41ミリモル/gであった。
Example 4
Example 3 was the same as Example 3 except that the amount of magnesium oxide added was 0.7 g (0.35 parts by weight). As a result, the fluorine ion concentration of the supernatant liquid obtained by solid-liquid separation was 0.2 mg / L, which conformed to the soil environmental standards. The pH of the solution was 10.30.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 1.41 mmol / g.

実施例5
表1に示すイオンを含む半導体製造工場より排出された排水200mLに、協和化学工業(株)製酸化マグネシウム「キョーワマグ150:BET表面積=146m/g」を0.3g(0.15重量部)添加し、30分間マグネティックスタラーを用いて攪拌した(攪拌中の液温は23.5℃であった)。後、固液分離した上澄み液のフッ素イオン濃度は3.1mg/Lで排水基準に適合していた。また、液のpHは10.49であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は3.2ミリモル/gであった。
Example 5
0.3 g (0.15 parts by weight) of magnesium oxide “Kyowa Mag 150: BET surface area = 146 m 2 / g” manufactured by Kyowa Chemical Industry Co., Ltd. was discharged into 200 mL of waste water discharged from a semiconductor manufacturing plant containing ions shown in Table 1. The mixture was added and stirred for 30 minutes using a magnetic stirrer (the liquid temperature during stirring was 23.5 ° C.). After that, the fluoride ion concentration of the supernatant liquid separated into solid and liquid was 3.1 mg / L, which was in conformity with the drainage standard. The pH of the solution was 10.49.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 3.2 mmol / g.

実施例6
実施例5において、該酸化マグネシウム添加量を0.6g(0.3重量部)とした以外は実施例5と同様とした。その結果、固液分離した上澄み液のフッ素イオン濃度は0.22mg/Lで土壌環境基準に適合していた。また、液のpHは10.45であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は1.64ミリモル/gであった。
Example 6
Example 5 was the same as Example 5 except that the amount of magnesium oxide added was 0.6 g (0.3 parts by weight). As a result, the fluorine ion concentration of the supernatant liquid obtained by solid-liquid separation was 0.22 mg / L, which conformed to the soil environmental standards. The pH of the solution was 10.45.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 1.64 mmol / g.

実施例7
表1に示すイオンを含む半導体製造工場より排出された排水200mLを液温10〜12℃に調整し、協和化学工業(株)製酸化マグネシウム「キョーワマグ150:BET表面積=146m/g」を1.0g(0.5重量部)添加し、30分間マグネティックスタラーを用いて攪拌した(この間終始液温を10〜12℃に調整した)。後、固液分離した上澄み液のフッ素イオン濃度は0.31mg/Lで土壌環境基準に適合していた。また、液のpHは10.40であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は0.99ミリモル/gであった。
Example 7
200 mL of waste water discharged from a semiconductor manufacturing plant containing ions shown in Table 1 was adjusted to a liquid temperature of 10 to 12 ° C., and magnesium oxide “Kyowa Mag 150: BET surface area = 146 m 2 / g” manufactured by Kyowa Chemical Industry Co., Ltd. 0.0 g (0.5 part by weight) was added, and the mixture was stirred for 30 minutes using a magnetic stirrer (during this time, the liquid temperature was adjusted to 10 to 12 ° C. throughout). After that, the fluoride ion concentration of the supernatant obtained by solid-liquid separation was 0.31 mg / L, which conformed to the soil environmental standards. The pH of the solution was 10.40.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 0.99 mmol / g.

実施例8
表1に示すイオンを含む半導体製造工場より排出された排水3000mLに、協和化学工業(株)製酸化マグネシウム「キョーワマグ150:BET表面積=146m/g」を9.0g(0.3重量部)添加し、ケミスタラーを用いて1時間攪拌した。後、ミクニエコシステム(株)製凝集剤スカイクリーンSを0.3g(該水酸化マグネシウム1重量部に対して3.3重量部)添加したところ沈降性の良いフロックが形成され20秒の攪拌で完全に固液分離できた。その後、攪拌を停止し、固液分離した上澄み液に硫酸を加えてpH7.5に調整した液中のフッ素イオン濃度は0.3mg/Lであり土壌環境基準に合格していた。尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は1.64ミリモル/gであった。
また、固液分離した固体を乾燥したところ収量は12.8gであり、酸化マグネシウム9gを水和して得られる理論水酸化マグネシウム量13.0gにほぼ一致視している。さらに、この乾燥物のX線回折図は図1に示すように水酸化マグネシウムの結晶パターンを示した。
Example 8
To 3000 mL of waste water discharged from a semiconductor manufacturing plant containing ions shown in Table 1, 9.0 g (0.3 parts by weight) of magnesium oxide “Kyowa Mag 150: BET surface area = 146 m 2 / g” manufactured by Kyowa Chemical Industry Co., Ltd. The mixture was added and stirred for 1 hour using a chemistor. Later, when 0.3 g of flocculant Skyclean S manufactured by Mikuni Ecosystem Co., Ltd. (3.3 parts by weight with respect to 1 part by weight of magnesium hydroxide) was added, a floc with good sedimentation was formed, and stirring was performed for 20 seconds. The solid-liquid separation was complete. Thereafter, stirring was stopped, and the fluoride ion concentration in the liquid adjusted to pH 7.5 by adding sulfuric acid to the supernatant liquid separated into solid and liquid was 0.3 mg / L, which passed the soil environmental standard. In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 1.64 mmol / g.
Further, when the solid separated into solid and liquid was dried, the yield was 12.8 g, which almost coincided with the theoretical magnesium hydroxide amount of 13.0 g obtained by hydrating 9 g of magnesium oxide. Further, the X-ray diffraction pattern of this dried product showed a crystal pattern of magnesium hydroxide as shown in FIG.

実施例9
実施例8で、固液分離により得られた固形物を用いて、フッ素イオン含有水酸化マグネシウム粒子(フッ素イオンを吸着した水酸化マグネシウム粒子)を環境庁告示46号溶出試験に準じて実施した結果、溶出フッ素イオン濃度は0.1mg/L未満であり、土壌環境基準に合格していた。
Example 9
In Example 8, using the solid material obtained by solid-liquid separation, the results of carrying out fluorine ion-containing magnesium hydroxide particles (magnesium hydroxide particles adsorbing fluorine ions) according to the Environmental Agency Notification No. 46 dissolution test The eluted fluorine ion concentration was less than 0.1 mg / L, which passed the soil environmental standards.

実施例10
表2に示すイオンを含む半導体製造工場より排出された排水200mLに、協和化学工業(株)製酸化マグネシウム「キョーワマグ150:BET表面積=146m/g」を2.5g(1.25重量部)添加し、30分間マグネティックスタラーを用いて攪拌した(攪拌中の液温は23.8℃であった)。その後、固液分離した上澄み液のフッ素イオン濃度は0.25mg/Lで排水基準に適合していた。また、液のpHは10.38であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は1.24ミリモル/gであった。
Example 10
To 200 mL of waste water discharged from a semiconductor manufacturing plant containing ions shown in Table 2, 2.5 g (1.25 parts by weight) of magnesium oxide “Kyowa Mag 150: BET surface area = 146 m 2 / g” manufactured by Kyowa Chemical Industry Co., Ltd. The mixture was added and stirred for 30 minutes using a magnetic stirrer (the liquid temperature during stirring was 23.8 ° C.). Thereafter, the fluoride ion concentration of the supernatant liquid obtained by solid-liquid separation was 0.25 mg / L, which met the drainage standard. The pH of the solution was 10.38.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under this condition was 1.24 mmol / g.

Figure 0004558633
Figure 0004558633

比較例1
フッ素イオン濃度98.2mg/Lに調整したpH8.20のモデル排水(フッ化ナトリウム水溶液)200mLに、協和化学工業(株)製酸化マグネシウム(キョーワマグ150:BET表面積=146m/g)を1g(0.5重量部)添加し、マグネティックスタラーを用いて30分間攪拌した(攪拌中の液温は22.2℃であった)。後、固液分離した上澄み液中のFイオン濃度は25.5mg/Lで排水基準に不適合であった。また、液のpHは11.85であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は0.77ミリモル/gであった。
Comparative Example 1
1 g of magnesium oxide (Kyowa Mag 150: BET surface area = 146 m 2 / g) manufactured by Kyowa Chemical Industry Co., Ltd. was added to 200 mL of pH 8.20 model wastewater (sodium fluoride aqueous solution) adjusted to a fluorine ion concentration of 98.2 mg / L. 0.5 parts by weight) was added and stirred for 30 minutes using a magnetic stirrer (the liquid temperature during stirring was 22.2 ° C.). Thereafter, the F ion concentration in the supernatant obtained by solid-liquid separation was 25.5 mg / L, which was incompatible with the drainage standard. The pH of the solution was 11.85.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 0.77 mmol / g.

比較例2
比較例1において、マグネティックスタラーでの攪拌時間を24時間とした以外は比較例1と同様に処理した。その結果、フッ素イオン濃度は11.3mg/Lで排水基準に不適合であった。
尚、本条件における該酸化マグネシウムのフッ素イオン吸着容量は0.92ミリモル/gであった。
Comparative Example 2
In Comparative Example 1, the same treatment as in Comparative Example 1 was performed except that the stirring time in the magnetic stirrer was changed to 24 hours. As a result, the fluorine ion concentration was 11.3 mg / L, which was incompatible with the wastewater standard.
In addition, the fluoride ion adsorption capacity of the magnesium oxide under these conditions was 0.92 mmol / g.

実施例1〜10より、半導体製造工場から排出されるフッ素イオン含有排水中に酸化マグネシウムを投入し、再水和により水酸化マグネシウム粒子を生成させることにより、フッ素イオンを含有した水酸化マグネシウム粒子が得られ、排水中のフッ素イオンを効率的に除去できることが分かる。更に、排水基準のフッ素濃度8mg/L以下とすることが可能な最大吸着容量は3ミリモル/g以上、土壌環境基準の0.8mg/L以下とすることが可能な最大吸着容量が1.6ミリモル/g以上であることも分かる。
この吸着容量より、該排水中のフッ素イオン濃度が如何なるものであっても添加する酸化マグネシウム量を計算でもとめることができる。
更に、フッ素イオン吸着した水酸化マグネシウムは、溶出試験においてフッ素イオンを溶出しないため廃棄物処理が容易で低コストで実施できることが分かる。
また、比較例1〜2により該酸化マグネシウムは、低pH排水でなければフッ素イオンを効率的に除去できないこともわかる。
From Examples 1 to 10, magnesium hydroxide particles containing fluorine ions are produced by introducing magnesium oxide into fluorine ion-containing wastewater discharged from a semiconductor manufacturing factory and generating magnesium hydroxide particles by rehydration. It can be seen that the fluorine ions in the waste water can be efficiently removed. Furthermore, the maximum adsorption capacity that can be reduced to a fluorine concentration of 8 mg / L or less based on wastewater is 3 mmol / g or more, and the maximum adsorption capacity that can be set to 0.8 mg / L or less based on soil environment is 1.6. It can also be seen that it is at least mmol / g.
From this adsorption capacity, the amount of magnesium oxide to be added can be determined by calculation regardless of the fluorine ion concentration in the waste water.
Furthermore, it can be seen that magnesium hydroxide adsorbed with fluoride ions does not elute fluoride ions in the dissolution test, and therefore can be easily disposed of at low cost.
Moreover, it turns out that this magnesium oxide cannot remove a fluorine ion efficiently unless it is low pH waste_water | drain by Comparative Examples 1-2.

本発明の実施例8で形成された水酸化マグネシウム粒子のX線回折図を示すものである。FIG. 9 shows an X-ray diffraction pattern of magnesium hydroxide particles formed in Example 8 of the present invention.

Claims (4)

フッ素イオンを含有するpH2.10以下の排水に、水酸化マグネシウムを700〜1,000℃で焼成して得られかつBET比表面積40〜200m/gを有する酸化マグネシウムを添加し、10〜25℃の温度で処理し、凝集剤を加えて固液分離することを特徴とする前記排水中のフッ素イオンを除去する方法。 Magnesium oxide obtained by baking magnesium hydroxide at 700 to 1,000 ° C. and having a BET specific surface area of 40 to 200 m 2 / g is added to wastewater having a pH of 2.10 or less containing fluorine ions, A method for removing fluorine ions in the waste water, characterized by treating at a temperature of 25 ° C. and adding a flocculant to perform solid-liquid separation. フッ素イオンを含有するpH2.10以下の排水が、半導体製造工場より排出される排水である請求項1記載のフッ素イオンを除去する方法。 The method for removing fluorine ions according to claim 1, wherein the wastewater having a pH of 2.10 or less containing fluorine ions is wastewater discharged from a semiconductor manufacturing factory. フッ素イオンを含有するpH2.10以下の排水中のフッ素イオン濃度が、20〜300mg/Lである請求項1記載のフッ素イオンを除去する方法。 The method for removing fluorine ions according to claim 1, wherein the fluorine ion concentration in the wastewater having a pH of 2.10 or less containing fluorine ions is 20 to 300 mg / L. 酸化マグネシウムが、水酸化マグネシウムを750〜850℃で焼成して得られかつBET比表面積50〜170m/gを有するものである請求項1記載のフッ素イオンを除去する方法。 The method for removing fluorine ions according to claim 1, wherein the magnesium oxide is obtained by baking magnesium hydroxide at 750 to 850 ° C and has a BET specific surface area of 50 to 170 m 2 / g.
JP2005337214A 2005-11-22 2005-11-22 Wastewater treatment method containing fluoride ions Expired - Fee Related JP4558633B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005337214A JP4558633B2 (en) 2005-11-22 2005-11-22 Wastewater treatment method containing fluoride ions
CNB2006101624385A CN100556823C (en) 2005-11-22 2006-11-22 The method of wastewater treatment that contains fluorion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337214A JP4558633B2 (en) 2005-11-22 2005-11-22 Wastewater treatment method containing fluoride ions

Publications (2)

Publication Number Publication Date
JP2007136424A JP2007136424A (en) 2007-06-07
JP4558633B2 true JP4558633B2 (en) 2010-10-06

Family

ID=38129678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337214A Expired - Fee Related JP4558633B2 (en) 2005-11-22 2005-11-22 Wastewater treatment method containing fluoride ions

Country Status (2)

Country Link
JP (1) JP4558633B2 (en)
CN (1) CN100556823C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944501B (en) * 2015-05-26 2017-05-31 北京科技大学 A kind of method that Coupling Adsorption processes Fluorine Containing Groundwater high
CN105948083A (en) * 2016-04-28 2016-09-21 中南大学 Environment-friendly separation and recovery method of fluorine in fluorine-containing waste liquid
JP2019155216A (en) * 2018-03-07 2019-09-19 オルガノ株式会社 Water treatment method and water treatment equipment
JP7116395B2 (en) * 2018-03-07 2022-08-10 オルガノ株式会社 Water treatment method and water treatment equipment
JP7312032B2 (en) * 2019-06-20 2023-07-20 オルガノ株式会社 Water treatment equipment and water treatment method
CN110726790A (en) * 2019-11-27 2020-01-24 九江天赐高新材料有限公司 Method for measuring chloride ions in fluorine-containing lithium salt
CN112250090A (en) * 2020-11-01 2021-01-22 湖南顺华锂业有限公司 Production method for deeply removing fluorine in lithium sulfate solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JP2001340872A (en) * 2000-06-05 2001-12-11 Japan Organo Co Ltd Method for treating wastewater containing boron and/or fluorine
JP2005001949A (en) * 2003-06-12 2005-01-06 Ube Material Industries Ltd Magnesium oxide powder and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141418A (en) * 1988-11-21 1990-05-30 Kyowa Chem Ind Co Ltd Highly dispersible magnesium oxide and its production
JP2001340872A (en) * 2000-06-05 2001-12-11 Japan Organo Co Ltd Method for treating wastewater containing boron and/or fluorine
JP2005001949A (en) * 2003-06-12 2005-01-06 Ube Material Industries Ltd Magnesium oxide powder and method of manufacturing the same

Also Published As

Publication number Publication date
CN100556823C (en) 2009-11-04
CN1978335A (en) 2007-06-13
JP2007136424A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4558633B2 (en) Wastewater treatment method containing fluoride ions
JP4809080B2 (en) Waste water treatment method and waste water treatment agent containing fluorine ions
CN112169748B (en) Adsorbent and preparation method and application thereof
JP5831914B2 (en) Water treatment method
JP2005001949A (en) Magnesium oxide powder and method of manufacturing the same
JP4845188B2 (en) Waste water treatment agent and method for reducing fluorine ions in waste water
WO2018168558A1 (en) Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
JP2011101830A (en) Water treatment agent and water treatment method
JP5240109B2 (en) Fluorine ion removal agent in waste water and method for removing fluorine ion using the same
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP4306422B2 (en) Cement kiln extraction dust processing method
WO2010137321A1 (en) Water purification material, water purification method, phosphate fertilizer precursor, and method for manufacturing a phosphate fertilizer precursor
JP4338705B2 (en) Method for treating waste liquid containing borofluoride ions
JP2001340872A (en) Method for treating wastewater containing boron and/or fluorine
JP4068532B2 (en) Method for treating sewage containing hazardous substances
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
JPS6245394A (en) Simultaneous removal of arsenic and silicon
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JPS6026595B2 (en) How to remove fluoride ions
JP5716892B2 (en) Cleaning method of sludge
JP2005238083A (en) Treatment method for solution containing selenium
JPS6225435B2 (en)
JP3355281B2 (en) Treatment agent and treatment method for metal-containing acidic wastewater
JP5032755B2 (en) Soil treatment material and soil purification method using the same
JPS59373A (en) Treatment of fluorine-contg. waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees