JP4845188B2 - Waste water treatment agent and method for reducing fluorine ions in waste water - Google Patents

Waste water treatment agent and method for reducing fluorine ions in waste water Download PDF

Info

Publication number
JP4845188B2
JP4845188B2 JP2006069273A JP2006069273A JP4845188B2 JP 4845188 B2 JP4845188 B2 JP 4845188B2 JP 2006069273 A JP2006069273 A JP 2006069273A JP 2006069273 A JP2006069273 A JP 2006069273A JP 4845188 B2 JP4845188 B2 JP 4845188B2
Authority
JP
Japan
Prior art keywords
metal compound
composite metal
waste water
fluorine
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006069273A
Other languages
Japanese (ja)
Other versions
JP2007244954A (en
Inventor
隆文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP2006069273A priority Critical patent/JP4845188B2/en
Priority to CN2007100857490A priority patent/CN101041529B/en
Publication of JP2007244954A publication Critical patent/JP2007244954A/en
Application granted granted Critical
Publication of JP4845188B2 publication Critical patent/JP4845188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フッ素イオンを含有する排水の処理剤に関する。また本発明は、排水中のフッ素イオンを低減させる方法に関する。   The present invention relates to a wastewater treatment agent containing fluorine ions. The present invention also relates to a method for reducing fluorine ions in waste water.

工場排水中にはフッ素イオン(フッ素と称することがある)が含有されていることが多々あり、特に半導体製造時にシリコンウエハーのエッチング剤として多量のフッ酸が使用されている。このフッ酸は、水等で洗浄されるが排水中に高濃度のフッ素が含まれている。そして、環境庁発令の排水基準によれば検液中に8mg/L以下、また、土壌基準によれば検液中に0.8mg/L以下のフッ素濃度が定められている。
フッ素含有排水中のフッ素を除去する方法としては、フッ素含有排水にカルシウム塩を加えて難溶性のフッ化カルシウムを生成させる方法が提案されている(特許文献1参照)。
Industrial wastewater often contains fluorine ions (sometimes referred to as fluorine), and a large amount of hydrofluoric acid is used as an etchant for silicon wafers, particularly during semiconductor manufacturing. This hydrofluoric acid is washed with water or the like, but contains a high concentration of fluorine in the waste water. And according to the drainage standard issued by the Environment Agency, the fluorine concentration is set to 8 mg / L or less in the test solution, and according to the soil standard, the fluorine concentration is set to 0.8 mg / L or less in the test solution.
As a method for removing fluorine from fluorine-containing wastewater, a method has been proposed in which calcium salt is added to fluorine-containing wastewater to form poorly soluble calcium fluoride (see Patent Document 1).

また、フッ素含有排水に、化学組成式M1‐x 2+ 3+(OH2+x‐y(An‐y/n
[式中、M2+は、Mg2+、Ni2+、Zn2+、Fe2+、Ca2+およびCu2+からなる群から選ばれる少なくとも1種の金属イオンを示し、M3+は、Al3+およびFe3+からなる群から選ばれる少なくとも1種の金属イオンを示し、Anはn価のアニオンを示す。また、0.1≦x≦0.5であり、0.1≦y≦0.5であり、nは1または2である。]で表される複合金属水酸化物を加える方法、および
化学組成式M1‐x 2+ 3+2‐x/2 2‐[式中、M2+は、Mg2+、Ni2+、Zn2+、Fe2+、Ca2+およびCu2+からなる群から選ばれる少なくとも1種の金属イオンを示し、M3+はAl3+およびFe3+からなる群から選ばれる少なくとも1種の金属イオンを示す。また、0.1≦x≦0.5である。]で表される複合金属酸化物を加える方法が提案されている(特許文献2参照)。
しかしながら、フッ素含有排水にカルシウム塩を加えてフッ化カルシウムを生成させる方法は、フッ化カルシウムの溶解度が0.0016g/100g(18℃)と大きく土壌基準をクリアすることができない。また、特許文献2の複合金属水酸化物および複合金属酸化物をフッ素含有排水に添加する方法も土壌基準のフッ素濃度0.8mg/L以下をクリアすることが出来ていない。
特開平10−57969号公報 特開2004−41899号公報
Further, the fluorine-containing waste water, chemical composition formula M 1-x 2+ M x 3+ (OH -) 2 + x-y (A n-) y / n
[ Wherein M 2+ represents at least one metal ion selected from the group consisting of Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca 2+, and Cu 2+ , and M 3+ represents from Al 3+ and Fe 3+. comprising represents at least one metal ion selected from the group, an - is an anion of n valence. Further, 0.1 ≦ x ≦ 0.5, 0.1 ≦ y ≦ 0.5, and n is 1 or 2. And a chemical composition formula M 1-x 2+ M x 3+ O 2-x / 2 2− [wherein M 2+ is Mg 2+ , Ni 2+ , Zn 2+. , Fe 2+ , Ca 2+ and Cu 2+ represent at least one metal ion selected from the group consisting of Al 3+ and Fe 3+ . M 3+ represents at least one metal ion selected from the group consisting of Al 3+ and Fe 3+ . Further, 0.1 ≦ x ≦ 0.5. ] Has been proposed (see Patent Document 2).
However, the method of generating calcium fluoride by adding calcium salt to fluorine-containing wastewater has a high solubility of calcium fluoride of 0.0016 g / 100 g (18 ° C.) and cannot clear the soil standard. Further, the method of adding the composite metal hydroxide and composite metal oxide of Patent Document 2 to the fluorine-containing wastewater cannot clear the soil-based fluorine concentration of 0.8 mg / L or less.
JP-A-10-57969 JP 2004-41899 A

本発明は、フッ素イオンの吸着能に優れた排水処理剤を提供することを目的とする。また本発明は、排水中のフッ素イオンを除去する方法を提供することを目的とする。   An object of this invention is to provide the waste water treatment agent excellent in the adsorption capacity of a fluorine ion. Another object of the present invention is to provide a method for removing fluorine ions in waste water.

本発明者らは、フッ素イオン吸着能に優れた物質を鋭意検討した。その結果、特定の複合金属化合物が優れたフッ素吸着能を有することを見出し本発明を完成した。また、かかる複合金属化合物を高濃度のフッ素を含有する排水に添加することにより、処理後液中のフッ素濃度を排水基準の8mg/L以下、さらには土壌基準の0.8mg/L以下とすることが可能であることを見出し本発明を完成した。   The present inventors diligently studied a substance excellent in fluorine ion adsorption ability. As a result, the inventors have found that a specific composite metal compound has an excellent fluorine adsorbing ability and completed the present invention. Further, by adding such a composite metal compound to waste water containing high concentration of fluorine, the fluorine concentration in the treated liquid is set to 8 mg / L or less of the drainage standard, and further to 0.8 mg / L or less of the soil standard. The present invention has been completed.

即ち、本発明は、下記式(I)
[Mg(OH)・Al(OH)6−2y−z・(CO・(Cl)・nHO (I)
(式中、x、y、zおよびnは、1≦x≦12、0≦y≦1、0≦z≦1、0.1≦n≦10、0.1≦(y+z)≦1.5を満足する)
で表され、
(1)水酸化マグネシウムスラリー中に、(2)アルミニウム塩水溶液および(3)炭酸アルカリ水溶液または苛性アルカリ水溶液を、
各成分のモル比を、Mg/Alが0.5〜15、炭酸アルカリ/Alが0.5〜1.2、苛性アルカリ/Alが1〜2.4になるようにして投入し、
反応終了時点でpH6.0〜9.0となるように反応pHを調整し、温度10〜50℃で反応させることにより得られ、
粉末X線回折法による測定に基づいて、水酸化マグネシウム結晶のパターンが認められる複合金属化合物からなる、フッ素イオンを含有する排水の処理剤である。
また本発明は、フッ素イオンを含有する排水に、下記式(I)、
[Mg(OH)・Al(OH)6−2y−z・(CO・(Cl)・nHO (I)
(式中、x、y、zおよびnは、1≦x≦12、0≦y≦1、0≦z≦1、0.1≦n≦10、0.1≦(y+z)≦1.5を満足する)
で表され、
(1)水酸化マグネシウムスラリー中に、(2)アルミニウム塩水溶液および(3)炭酸アルカリ水溶液または苛性アルカリ水溶液を、
各成分のモル比を、Mg/Alが0.5〜15、炭酸アルカリ/Alが0.5〜1.2、苛性アルカリ/Alが1〜2.4になるようにして投入し、
反応終了時点でpH6.0〜9.0となるように反応pHを調整し、温度10〜50℃で反応させることにより得られ、
粉末X線回折法による測定に基づいて、水酸化マグネシウム結晶のパターンが認められる複合金属化合物を接触せしめることを特徴とする、排水中のフッ素イオンを低減させる方法である。

That is, the present invention relates to the following formula (I)
[Mg (OH) 2] x · Al 2 (OH) 6-2y-z · (CO 3) y · (Cl) z · nH 2 O (I)
(Wherein x, y, z and n are 1 ≦ x ≦ 12, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0.1 ≦ n ≦ 10, 0.1 ≦ (y + z) ≦ 1.5. Satisfy)
Represented by
(1) In a magnesium hydroxide slurry , (2) an aqueous solution of aluminum salt and (3) an aqueous alkali carbonate solution or an aqueous caustic solution ,
The molar ratio of each component was set so that Mg / Al was 0.5 to 15, alkali carbonate / Al was 0.5 to 1.2, and caustic alkali / Al was 1 to 2.4.
It is obtained by adjusting the reaction pH so that the pH is 6.0 to 9.0 at the end of the reaction, and reacting at a temperature of 10 to 50 ° C.
It is a wastewater treatment agent containing fluorine ions, which is composed of a composite metal compound in which a magnesium hydroxide crystal pattern is observed based on measurement by a powder X-ray diffraction method.
Moreover, the present invention provides the following formula (I),
[Mg (OH) 2] x · Al 2 (OH) 6-2y-z · (CO 3) y · (Cl) z · nH 2 O (I)
(Wherein x, y, z and n are 1 ≦ x ≦ 12, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0.1 ≦ n ≦ 10, 0.1 ≦ (y + z) ≦ 1.5. Satisfy)
Represented by
(1) In a magnesium hydroxide slurry , (2) an aqueous solution of aluminum salt and (3) an aqueous alkali carbonate solution or an aqueous caustic solution ,
The molar ratio of each component was set so that Mg / Al was 0.5 to 15, alkali carbonate / Al was 0.5 to 1.2, and caustic alkali / Al was 1 to 2.4.
It is obtained by adjusting the reaction pH so that the pH is 6.0 to 9.0 at the end of the reaction, and reacting at a temperature of 10 to 50 ° C.
This is a method for reducing fluorine ions in waste water, characterized in that a composite metal compound in which a magnesium hydroxide crystal pattern is observed is brought into contact based on measurement by a powder X-ray diffraction method.

本発明の処理剤は、優れたフッ素イオン吸着能を有する。本発明方法によれば、排水中のフッ素イオンを低減させることができる。また本発明方法によれば、排水中のフッ素イオン濃度を排水基準以下、さらには土壌基準以下にすることができる。また本発明方法によれば、pH4程度の高濃度フッ素イオン含有排水のpHを中和し排水基準内とすることができる。さらに本発明方法によれば、排水中に多量の各種陰イオン(SO 2‐、Cl、NO 等)が存在していても選択的にフッ素イオンを吸着することができる。 The treatment agent of the present invention has an excellent fluorine ion adsorption ability. According to the method of the present invention, fluorine ions in waste water can be reduced. Moreover, according to the method of the present invention, the fluorine ion concentration in the wastewater can be reduced below the wastewater standard, and further below the soil standard. Further, according to the method of the present invention, the pH of the high concentration fluorine ion-containing wastewater having a pH of about 4 can be neutralized to be within the wastewater standard. Furthermore, according to the method of the present invention, fluorine ions can be selectively adsorbed even if a large amount of various anions (SO 4 2− , Cl , NO 3 etc.) are present in the waste water.

<排水の処理剤>
本発明は、下記式(I)、
[Mg(OH)・Al(OH)6−2y−z・(CO・(Cl)・nHO (I)
(式中、x、y、zおよびnは、1≦x≦12、0≦y≦1、0≦z≦1、0.1≦n≦10、0.1≦(y+z)≦1.5を満足する)
で表される複合金属化合物からなる、フッ素イオンを含有する排水の処理剤である。
式(I)中、xは、1≦x≦12、好ましくは2≦x≦7を満足する。yは、0≦y≦1、好ましくは0.1≦y≦0.8を満足する。zは、0≦z≦1、好ましくは0.1≦0.5を満足する。nは、0.1≦n≦10、好ましくは0.5≦n≦5を満足する。
y+zは、0.1≦(y+z)≦1.5、好ましくは0.15≦(y+z)≦1.2を満足する。
<Wastewater treatment agent>
The present invention relates to the following formula (I),
[Mg (OH) 2] x · Al 2 (OH) 6-2y-z · (CO 3) y · (Cl) z · nH 2 O (I)
(Wherein x, y, z and n are 1 ≦ x ≦ 12, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0.1 ≦ n ≦ 10, 0.1 ≦ (y + z) ≦ 1.5. Satisfy)
It is the processing agent of the waste_water | drain containing the fluorine ion which consists of a composite metal compound represented by these.
In the formula (I), x satisfies 1 ≦ x ≦ 12, preferably 2 ≦ x ≦ 7. y satisfies 0 ≦ y ≦ 1, preferably 0.1 ≦ y ≦ 0.8. z satisfies 0 ≦ z ≦ 1, preferably 0.1 ≦ 0.5. n satisfies 0.1 ≦ n ≦ 10, preferably 0.5 ≦ n ≦ 5.
y + z satisfies 0.1 ≦ (y + z) ≦ 1.5, preferably 0.15 ≦ (y + z) ≦ 1.2.

xが1未満となると、理由は不明であるがフッ素イオン吸着容量が極端に低くなる。また、xが12を超えると式(I)中の水酸化アルミニウム様物質生成量が極端に少なくなるので、これまたフッ素イオン吸着容量が極端に低くなる。y+zが0.1未満になると、フッ素イオン吸着サイトが極端に少なくなるので、フッ素イオン吸着容量が極端に低くなる。また、y+zは、高いほどフッ素イオン吸着容量は高くなるが、1.5を超える物質は合成することができない。nを0.1未満にするためには乾燥時に多大の熱エネルギーを必要とするために経済的に不利である。また、nが10を超えると化合物中の固形分含有量が極端に少なくなり、フッ素イオン吸着容量が低くなる。   When x is less than 1, the reason is unknown, but the fluorine ion adsorption capacity becomes extremely low. In addition, if x exceeds 12, the amount of aluminum hydroxide-like substance in formula (I) is extremely reduced, so that the fluorine ion adsorption capacity is also extremely low. When y + z is less than 0.1, the number of fluorine ion adsorption sites becomes extremely small, and the fluorine ion adsorption capacity becomes extremely low. Moreover, the higher the y + z, the higher the fluorine ion adsorption capacity, but a substance exceeding 1.5 cannot be synthesized. In order to make n less than 0.1, a great deal of heat energy is required during drying, which is economically disadvantageous. On the other hand, when n exceeds 10, the solid content in the compound is extremely reduced, and the fluorine ion adsorption capacity is lowered.

複合金属化合物として、下記式(I−1)
[Mg(OH)・Al(OH)6‐2y・(CO・nHO (I-1)
(式(I-1)中、x、y、nは、1≦x≦12、0≦y≦1、0.5≦n≦3.0を満足する)
で表される化合物が好ましい。
また下記式(I−2)
[Mg(OH)・Al(OH)6‐2y‐z・(CO・(Cl)・nHO (I−2)
(式(I−2)中、x、y、z、nは、1≦x≦12、0≦y≦1、0≦z≦1、0.1≦n≦10、0.1≦(y+z)≦1.5を満足する)
で表される化合物が好ましい。この化合物(I−2)は、上記式(I−1)で表される化合物のCOを、塩酸を用いてClにイオン交換することにより製造することができる。
As the composite metal compound, the following formula (I-1)
[Mg (OH) 2 ] x · Al 2 (OH) 6-2 y · (CO 3 ) y · nH 2 O (I-1)
(In the formula (I-1), x, y, and n satisfy 1 ≦ x ≦ 12, 0 ≦ y ≦ 1, and 0.5 ≦ n ≦ 3.0)
The compound represented by these is preferable.
Moreover, following formula (I-2)
[Mg (OH) 2 ] x · Al 2 (OH) 6-2 y -z · (CO 3 ) y · (Cl) z · nH 2 O (I-2)
(In the formula (I-2), x, y, z, and n are 1 ≦ x ≦ 12, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0.1 ≦ n ≦ 10, 0.1 ≦ (y + z ) ≦ 1.5
The compound represented by these is preferable. This compound (I-2) can be produced by ion exchange of CO 3 of the compound represented by the above formula (I-1) with Cl using hydrochloric acid.

複合金属化合物は、粉末X線回折法による測定に基づいて、水酸化マグネシウム結晶のパターンが認められる化合物であり、複合金属化合物と同様な化学組成を有する物質としてハイドロタルサイトが良く知られているが、複合金属化合物は粉末X線回折法による構造解析からハイドロタルサイトとは全く異なる物質であることが分かる。
すなわち、本発明の式(I)で表される複合金属化合物は、粉末X線回折法による測定に基づいて、ハイドロタルサイトの結晶パターンは認められない。また同様の回折法による測定に基づいて水酸化アルミニウム、炭酸マグネシウム、塩化アルミニウムおよび塩化マグネシウムの結晶のパターンも実質的に認められない。
排水処理剤としての複合金属化合物は、排水中において拡散されやすい微粒子であることが好ましく、レーザー光回折散乱法による平均粒径が、好ましくは0.1〜50μm、より好ましくは0.5〜20μmである。
A composite metal compound is a compound in which a magnesium hydroxide crystal pattern is recognized based on measurement by a powder X-ray diffraction method, and hydrotalcite is well known as a substance having the same chemical composition as the composite metal compound. However, it can be seen that the composite metal compound is a substance completely different from hydrotalcite from the structural analysis by the powder X-ray diffraction method.
That is, the composite metal compound represented by the formula (I) of the present invention does not have a hydrotalcite crystal pattern based on the measurement by the powder X-ray diffraction method. Also, substantially no crystal pattern of aluminum hydroxide, magnesium carbonate, aluminum chloride and magnesium chloride is observed based on the measurement by the same diffraction method.
The composite metal compound as the waste water treatment agent is preferably fine particles that are easily diffused in the waste water, and the average particle diameter by the laser light diffraction scattering method is preferably 0.1 to 50 μm, more preferably 0.5 to 20 μm. It is.

複合金属化合物は、(1)水酸化マグネシウムスラリーと、(2)アルミニウム塩水溶液および(3)炭酸アルカリ水溶液または苛性アルカリ水溶液とを、反応させることにより製造することが出来る。
(2)アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等が挙げられる。また(3)炭酸アルカリとしては、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム等が上げられる。(3)苛性アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム等が挙げられる。(1)水酸化マグネシウムスラリーは、Mg(OH)スラリーであれば何の制限もない。
The composite metal compound can be produced by reacting (1) magnesium hydroxide slurry with (2) an aqueous aluminum salt solution and (3) an aqueous alkali carbonate solution or an aqueous caustic solution.
(2) Aluminum salts include aluminum sulfate, aluminum chloride, aluminum nitrate and the like. (3) Examples of the alkali carbonate include sodium carbonate, potassium carbonate, ammonium carbonate and the like. (3) Examples of the caustic alkali include sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like. (1) The magnesium hydroxide slurry is not limited as long as it is a Mg (OH) 2 slurry.

各成分のモル比は、Mg/Alが好ましくは0.5〜15、より好ましくは1.0〜4.0になるようにする。炭酸アルカリ/Alが好ましくは0〜1.4、より好ましくは0.5〜1.2になるようにする。苛性アルカリ/Alが好ましくは0〜2.8、より好ましくは1〜2.4になるようにする。
この反応方法の特徴は、(2)アルミニウム塩水溶液の使用量に対する(3)炭酸アルカリまたは苛性アルカリの使用量を理論等量以下とすることである。そして、不足のアルカリ源を水酸化マグネシウムから得ることである。このようにすることにより、単純な水酸化マグネシウムと単純な水酸化アルミニウムの混合物ではなく、非晶質ではあるがアルミニウムとマグネシウムの相互作用を持った水酸化物と、水酸化マグネシウムの混合物の形態となっていると推測される。
この製法では、アルミニウム塩水溶液、炭酸アルカリ水溶液の必要量を同時に、必要量の水酸化マグネシウムスラリー中に投入することにより、式(I)で表される複合金属化合物を得ることができる。反応pHは、反応終了時点でpH6.0〜9.0となるように調整し、反応温度は10〜50℃に調整することが好ましい。Clの導入は、得られた複合金属化合物を塩酸で洗浄すれば得られる。
The molar ratio of each component is such that Mg / Al is preferably 0.5 to 15, more preferably 1.0 to 4.0. Alkali carbonate / Al is preferably 0 to 1.4, more preferably 0.5 to 1.2. Caustic / Al is preferably 0 to 2.8, more preferably 1 to 2.4.
The feature of this reaction method is that (2) the amount of alkali carbonate or caustic alkali used is less than the theoretical equivalent with respect to the amount of aluminum salt aqueous solution used. And to obtain a deficient alkali source from magnesium hydroxide. By doing so, it is not a simple mixture of magnesium hydroxide and simple aluminum hydroxide, but a form of a mixture of an amorphous hydroxide that has an interaction between aluminum and magnesium, and magnesium hydroxide. It is estimated that
In this production method, the composite metal compound represented by the formula (I) can be obtained by simultaneously adding the required amounts of the aluminum salt aqueous solution and the alkali carbonate aqueous solution into the required amount of magnesium hydroxide slurry. The reaction pH is preferably adjusted to pH 6.0 to 9.0 at the end of the reaction, and the reaction temperature is preferably adjusted to 10 to 50 ° C. The introduction of Cl can be obtained by washing the obtained composite metal compound with hydrochloric acid.

<排水中のフッ素イオン濃度を低減させる方法>
本発明は、フッ素イオンを含有する排水に、上記複合金属化合物を接触せしめることを特徴とする、排水中のフッ素イオン濃度を低減させる方法である。半導体製造工場から排出される排水中のフッ素イオンの濃度は通常0.85〜300mg/Lであるが、複合金属化合物の添加量を調整することにより高濃度の排水にも対応することができる。
排水と複合金属化合物との接触は、排水を液全体が混ざる程度に攪拌しながら、複合金属化合物を投入することにより行うことができる。かかる接触によりフッ素イオンを処理剤に吸着させることが出来る。接触の時間は5分以内で十分である。
複合金属化合物の使用量は、排水中のフッ素イオン含有量および処理後の排水中のフッ素イオン濃度を幾らに設定するかによって異なるが、一般に、排水100重量部当り、複合金属化合物が、好ましくは0.1〜10重量部、より好ましくは1〜5重量部である。10重量部以上になると、処理後の廃棄物の廃棄費用が高くなり現実的でなくなる。
<Method to reduce fluorine ion concentration in waste water>
The present invention is a method for reducing the concentration of fluorine ions in waste water, wherein the composite metal compound is brought into contact with waste water containing fluorine ions. The concentration of fluorine ions in the wastewater discharged from the semiconductor manufacturing factory is usually 0.85 to 300 mg / L, but it can also be applied to high concentration wastewater by adjusting the amount of the composite metal compound added.
The contact between the waste water and the composite metal compound can be performed by introducing the composite metal compound while stirring the waste water to such an extent that the whole liquid is mixed. By such contact, fluorine ions can be adsorbed to the treatment agent. A contact time of 5 minutes or less is sufficient.
The amount of the composite metal compound used varies depending on how much the fluorine ion content in the wastewater and the fluorine ion concentration in the wastewater after treatment are set. Generally, the composite metal compound is preferably used per 100 parts by weight of the wastewater. 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight. If it is 10 parts by weight or more, the disposal cost of the waste after the treatment becomes high and it is not realistic.

排水に複合金属化合物を投入し、フッ素イオンを除去した上澄み液を速やかに廃棄するために、凝集剤を投入し速やかに複合金属化合物を沈降させることが工業的に有利である。この目的で凝集剤を使用する。凝集剤の種類としては、アニオン系凝集剤のポリアクリルアミド系の化合物が有効である。凝集剤の使用量は、複合金属化合物1重量部当り、好ましくは0.01〜0.5重量部、より好ましくは0.05〜0.3重量部である。その際、凝集剤の添加は、複合金属化合物を添加した後でも良く、これらを同時に添加しても良い。即ち、フッ素イオンを含有する排水に、複合金属化合物を接触させると同時に、あるいは接触後に、凝集剤を添加することが好ましい。
排水に、複合金属化合物および凝集剤を接触させる際の温度は、好ましくは4〜60℃、より好ましくは10〜25℃である。例えば冬季を想定した液温4℃と、夏季を想定した40℃とで、フッ素除去効率は同程度である。
本発明の処理剤を用いると、排水中のフッ素イオン濃度を8mg/L以下とすることが可能である。本発明の処理剤を用いると、排水中のフッ素イオン濃度を0.8mg/L以下とすることもできる。また、本発明の処理剤を用いると、pH3以下の排水をpH5.6〜8.6にすることができる。
In order to throw away the composite metal compound into the wastewater and quickly discard the supernatant liquid from which the fluorine ions have been removed, it is industrially advantageous to throw in the composite metal compound quickly by adding a flocculant. A flocculant is used for this purpose. As the type of the flocculant, an anionic flocculant polyacrylamide compound is effective. The amount of the flocculant used is preferably 0.01 to 0.5 parts by weight, more preferably 0.05 to 0.3 parts by weight per part by weight of the composite metal compound. At this time, the flocculant may be added after the composite metal compound is added, or these may be added simultaneously. That is, it is preferable to add the flocculant at the same time or after the contact of the composite metal compound with the waste water containing fluorine ions.
The temperature at which the composite metal compound and the flocculant are brought into contact with the waste water is preferably 4 to 60 ° C, more preferably 10 to 25 ° C. For example, the fluorine removal efficiency is about the same at a liquid temperature of 4 ° C. assuming winter and 40 ° C. assuming summer.
When the treatment agent of the present invention is used, the fluorine ion concentration in the waste water can be 8 mg / L or less. When the treatment agent of the present invention is used, the fluorine ion concentration in the waste water can be 0.8 mg / L or less. Moreover, when the processing agent of this invention is used, pH3 or less wastewater can be pH 5.6-8.6.

以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。尚、複合金属化合物中のアルミニウム、マグネシウムはキレート法、炭酸イオンはJIS K9101で、ClイオンはVOLHARD法、X線回折は理学電気(株)製のRINP2200Vを用いてCu−kαにて測定した。
Target:Cu, Filter:Ni,Voltage:40KV,Current:20mA,Scanning Speed:2°/min.,Slit→DS 1°RS 0.3mm SS 1°
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by a following example. In the composite metal compound, aluminum and magnesium were measured by a chelate method, carbonate ions were measured by JIS K9101, Cl ions were measured by a VOLHARD method, and X-ray diffraction was measured by Cu-kα using a RINP2200V manufactured by Rigaku Corporation.
Target: Cu, Filter: Ni, Voltage: 40 KV, Current: 20 mA, Scanning Speed: 2 ° / min. , Slit → DS 1 ° RS 0.3mm SS 1 °

<実施例1>複合金属化合物Aの合成
3L用ビーカーに、水道水600mLおよび協和化学工業株式会社製の水酸化マグネシウム(キスマF)100gを投入し水酸化マグネシウムスラリーとし(2.86モル/L)、攪拌下に、0.52モル/L硫酸アルミニウム水溶液850mLおよび0.75モル/L炭酸ナトリウム水溶液1400mLを、それぞれの定量ポンプを用いて同時に30分間で投入した。反応温度は20℃で実施し、また、反応終了後のpHは7.8であった。
反応液はろ過水洗し、60℃で20時間オーブンにて乾燥し、ラボスケールハンマーミルで粉砕し、複合金属化合物Aを得た。反応条件の詳細および得られた複合金属化合物Aの組成を表1に示す。また、得られた複合金属化合物AのX線回折図を図1に示す。図1から明らかなように、複合金属化合物AのX線回折パターンは水酸化マグネシウム結晶のパターンのみである。
<Example 1> Synthesis of composite metal compound A In a 3L beaker, 600 mL of tap water and 100 g of magnesium hydroxide (Kisuma F) manufactured by Kyowa Chemical Industry Co., Ltd. were added to form a magnesium hydroxide slurry (2.86 mol / L). ) While stirring, 850 mL of a 0.52 mol / L aluminum sulfate aqueous solution and 1400 mL of a 0.75 mol / L sodium carbonate aqueous solution were added simultaneously for 30 minutes using respective metering pumps. The reaction temperature was 20 ° C., and the pH after completion of the reaction was 7.8.
The reaction solution was washed with filtered water, dried in an oven at 60 ° C. for 20 hours, and pulverized with a lab scale hammer mill to obtain a composite metal compound A. The details of the reaction conditions and the composition of the obtained composite metal compound A are shown in Table 1. Further, an X-ray diffraction diagram of the obtained composite metal compound A is shown in FIG. As is apparent from FIG. 1, the X-ray diffraction pattern of the composite metal compound A is only a magnesium hydroxide crystal pattern.

<実施例2>複合金属化合物Bの合成
3.5L容ビーカーに、実施例1と同じ水酸化マグネシウムを用いて2.0モル/L水酸化マグネシウムスラリーを1L調製し、攪拌下に、1モル/L塩化アルミニウム水溶液770mLおよび0.75モル/L炭酸ナトリウム水溶液1250mLを、それぞれの定量ポンプを用いて同時に30分間で投入した。反応温度は30℃で実施し、また、反応終了後のpHは8.3であった。
反応液はろ過水洗し、60℃で20時間オーブンにて乾燥し、ラボスケールハンマーミルで粉砕し、複合金属化合物Bを得た。反応条件の詳細および得られた複合金属化合物Bの組成を表1に示す。
<Example 2> Synthesis of composite metal compound B In a 3.5 L beaker, 1 L of a 2.0 mol / L magnesium hydroxide slurry was prepared using the same magnesium hydroxide as in Example 1, and 1 mol was stirred. 770 mL of a / L aluminum chloride aqueous solution and 1250 mL of a 0.75 mol / L sodium carbonate aqueous solution were added simultaneously for 30 minutes using each metering pump. The reaction temperature was 30 ° C., and the pH after completion of the reaction was 8.3.
The reaction solution was washed with filtered water, dried in an oven at 60 ° C. for 20 hours, and pulverized with a lab scale hammer mill to obtain a composite metal compound B. The details of the reaction conditions and the composition of the obtained composite metal compound B are shown in Table 1.

<実施例3>複合金属化合物Cの合成
3.5L容ビーカーに、実施例1と同じ水酸化マグネシウムを用いて2.5モル/L水酸化マグネシウムスラリーを1L調製し、攪拌下に、1モル/L硝酸アルミニウム水溶液770mLおよび0.75モル/L炭酸ナトリウム水溶液1200mLを、それぞれの定量ポンプを用いて同時に30分間で投入した。反応温度は40℃で実施し、また、反応終了後のpHは8.7であった。反応液はろ過水洗し、60℃で20時間オーブンにて乾燥し、ラボスケールハンマーミルで粉砕し、複合金属化合物Cを得た。反応条件の詳細および得られた複合金属化合物Cの組成を表1に示す。
<Example 3> Synthesis of composite metal compound C In a 3.5 L beaker, 1 L of 2.5 mol / L magnesium hydroxide slurry was prepared using the same magnesium hydroxide as in Example 1, and 1 mol was stirred. 770 mL of a / L aluminum nitrate aqueous solution and 1200 mL of a 0.75 mol / L sodium carbonate aqueous solution were added simultaneously for 30 minutes using each metering pump. The reaction temperature was 40 ° C., and the pH after completion of the reaction was 8.7. The reaction solution was washed with filtered water, dried in an oven at 60 ° C. for 20 hours, and pulverized with a lab scale hammer mill to obtain a composite metal compound C. The details of the reaction conditions and the composition of the obtained composite metal compound C are shown in Table 1.

<実施例4>複合金属化合物Dの合成
100gの複合金属化合物Aを1Lの純水に懸濁後、ろ過した。続いて、0.5モル/L塩酸860mLを通液した後、1.5Lの水道水を通水し、60℃で20時間オーブンにて乾燥した。その後、ラボスケール粉砕機で粉砕することにより塩素を含有する化合物Dを得た。得られた複合金属化合物Dの組成を表1に示す。また、得られた複合金属化合物DのX線回折図を図2に示す。
<Example 4> Synthesis of composite metal compound D 100 g of composite metal compound A was suspended in 1 L of pure water and filtered. Subsequently, after passing through 860 mL of 0.5 mol / L hydrochloric acid, 1.5 L of tap water was passed through and dried in an oven at 60 ° C. for 20 hours. Then, the compound D containing chlorine was obtained by grind | pulverizing with a laboratory scale grinder. The composition of the obtained composite metal compound D is shown in Table 1. Moreover, the X-ray diffraction pattern of the obtained composite metal compound D is shown in FIG.

Figure 0004845188
Figure 0004845188

Figure 0004845188
Figure 0004845188

<実施例5>
1gの複合金属化合物Aを表2に示すイオンを含む半導体製造工場より排出された排水100mLに添加し、5分間マグネティックスタラーを用いて攪拌した。その後、固液分離し、上澄み液中のpHをpHメータで、フッ素(F)イオン濃度をJIS K0102 34.1に準じて測定した。測定結果を表3に示す。
<Example 5>
1 g of the composite metal compound A was added to 100 mL of waste water discharged from the semiconductor manufacturing factory containing the ions shown in Table 2, and stirred for 5 minutes using a magnetic stirrer. Thereafter, solid-liquid separation was performed, and the pH in the supernatant was measured with a pH meter, and the fluorine (F) ion concentration was measured according to JIS K0102 34.1. Table 3 shows the measurement results.

<実施例6>
複合金属化合物Aの使用量を3.5gとした以外は、実施例5と同じ操作を実施した。測定結果を表3に示す。
<Example 6>
The same operation as in Example 5 was performed except that the amount of the composite metal compound A used was 3.5 g. Table 3 shows the measurement results.

<実施例7>
複合金属化合物Aの代わりに複合金属化合物Bを用いた以外は実施例6と同じ操作を実施した。測定結果を表3に示す。
<Example 7>
The same operation as in Example 6 was performed except that the composite metal compound B was used instead of the composite metal compound A. Table 3 shows the measurement results.

<実施例8>
複合金属化合物Bの代わりに複合金属化合物Cを用いた以外は、実施例6と同じ操作を実施した。測定結果を表3に示す。
<Example 8>
The same operation as in Example 6 was performed except that the composite metal compound C was used instead of the composite metal compound B. Table 3 shows the measurement results.

<実施例9>
複合金属化合物Bの代わりに複合金属化合物Dを用いた以外は、実施例6と同じ操作を実施した。測定結果を表3に示す。
<Example 9>
The same operation as in Example 6 was performed except that the composite metal compound D was used instead of the composite metal compound B. Table 3 shows the measurement results.

<実施例10>
実施例6の方法でFイオン吸着処理後、住友アルケム(株)製アニオン性高分子凝集剤「スミフロックFA−40」を5ppm添加し、攪拌したところ20秒で良好なフロックが形成され容易に固液分離できた。上澄み液中のpHをpHメータで、フッ素(F)イオン濃度をJIS K0102 34.1に準じて測定した。測定結果を表3に示す。
<Example 10>
After F ion adsorption treatment by the method of Example 6, 5 ppm of anionic polymer flocculant “Sumifloc FA-40” manufactured by Sumitomo Alchem Co., Ltd. was added and stirred. Liquid separation was possible. The pH in the supernatant was measured with a pH meter, and the fluorine (F) ion concentration was measured according to JIS K0102 34.1. Table 3 shows the measurement results.

<実施例11>
表2に示すイオンを含む半導体製造工場より排出された排水に、純水を加えてフッ素イオン濃度を2mg/Lに調整した水溶液を作成した。該水溶液100mLに、複合金属化合物Aを0.1g添加し、5分間マグネティックスタラーを用いて攪拌した。その後、固液分離し、上澄み液中のpHをpHメータで、フッ素(F)イオン濃度をJIS K0102 34.1に準じて測定した。測定結果を表3に示す。
<Example 11>
An aqueous solution was prepared by adding pure water to waste water discharged from a semiconductor manufacturing factory containing ions shown in Table 2 to adjust the fluorine ion concentration to 2 mg / L. 0.1 g of the composite metal compound A was added to 100 mL of the aqueous solution, and the mixture was stirred for 5 minutes using a magnetic stirrer. Thereafter, solid-liquid separation was performed, and the pH in the supernatant was measured with a pH meter, and the fluorine (F) ion concentration was measured according to JIS K0102 34.1. Table 3 shows the measurement results.

<実施例12>
表2に示すイオンを含む半導体製造工場より排出された排水に、フッ化ナトリウムを加えてフッ素イオン濃度を300mg/Lに調整した水溶液を作成した。該水溶液100mLに、複合金属化合物Aを11.0g添加し、5分間マグネティックスタラーを用いて攪拌した。その後、固液分離し、上澄み液中のpHをpHメータで、フッ素(F)イオン濃度をJIS K0102 34.1に準じて測定した。測定結果を表3に示す。
<Example 12>
An aqueous solution was prepared by adding sodium fluoride to waste water discharged from a semiconductor manufacturing factory containing ions shown in Table 2 to adjust the fluorine ion concentration to 300 mg / L. To 100 mL of the aqueous solution, 11.0 g of the composite metal compound A was added and stirred for 5 minutes using a magnetic stirrer. Thereafter, solid-liquid separation was performed, and the pH in the supernatant was measured with a pH meter, and the fluorine (F) ion concentration was measured according to JIS K0102 34.1. Table 3 shows the measurement results.

<比較例1>
消石灰1gを、表2に示すイオンを含む半導体製造工場より排出された排水100mLに添加し、5分間マグネティックスタラーを用いて攪拌した。その後、固液分離し、上澄み液中のpHをpHメータで、フッ素(F)イオン濃度をJIS K0102 34.1に準じて測定した。測定結果を表3に示す。
<Comparative Example 1>
1 g of slaked lime was added to 100 mL of waste water discharged from a semiconductor manufacturing factory containing ions shown in Table 2, and stirred for 5 minutes using a magnetic stirrer. Thereafter, solid-liquid separation was performed, and the pH in the supernatant was measured with a pH meter, and the fluorine (F) ion concentration was measured according to JIS K0102 34.1. Table 3 shows the measurement results.

<比較例2>
消石灰使用量を3.5gとした以外は比較例1と同操作を実施した。測定結果を表3に示す。
<Comparative example 2>
The same operation as Comparative Example 1 was performed except that the amount of slaked lime used was 3.5 g. Table 3 shows the measurement results.

<比較例3>
協和化学工業株式会社製ハイドロタルサイト類化合物(DHT−4)3.5gを、表2に示すイオンを含む半導体製造工場より排出された排水100mLに添加し、5分間マグネティックスタラーを用いて攪拌した。後、固液分離し、上澄み液中のpHをpHメータで、フッ素(F)イオン濃度をJIS K0102 34.1に準じて測定した。測定結果を表3に示す。
<Comparative Example 3>
3.5 g of hydrotalcite compound (DHT-4) manufactured by Kyowa Chemical Industry Co., Ltd. is added to 100 mL of waste water discharged from a semiconductor manufacturing factory containing the ions shown in Table 2, and stirred for 5 minutes using a magnetic stirrer. did. Thereafter, solid-liquid separation was performed, and the pH in the supernatant was measured with a pH meter, and the fluorine (F) ion concentration was measured according to JIS K0102 34.1. Table 3 shows the measurement results.

Figure 0004845188
Figure 0004845188

複合金属化合物AのX線回折図である。2 is an X-ray diffraction diagram of a composite metal compound A. FIG. 複合金属化合物DのX線回折図である。2 is an X-ray diffraction pattern of a composite metal compound D. FIG.

Claims (15)

下記式(I)
[Mg(OH)・Al(OH)6−2y−z・(CO・(Cl)・nHO (I)
(式中、x、y、zおよびnは、1≦x≦12、0≦y≦1、0≦z≦1、0.1≦n≦10、0.1≦(y+z)≦1.5を満足する)
で表され、
(1)水酸化マグネシウムスラリー中に、(2)アルミニウム塩水溶液および(3)炭酸アルカリ水溶液または苛性アルカリ水溶液を、
各成分のモル比を、Mg/Alが0.5〜15、炭酸アルカリ/Alが0.5〜1.2、苛性アルカリ/Alが1〜2.4になるようにして投入し、
反応終了時点でpH6.0〜9.0となるように反応pHを調整し、温度10〜50℃で反応させることにより得られ、
粉末X線回折法による測定に基づいて、水酸化マグネシウム結晶のパターンが認められる複合金属化合物からなる、フッ素イオンを含有する排水の処理剤。
Formula (I)
[Mg (OH) 2] x · Al 2 (OH) 6-2y-z · (CO 3) y · (Cl) z · nH 2 O (I)
(Wherein x, y, z and n are 1 ≦ x ≦ 12, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0.1 ≦ n ≦ 10, 0.1 ≦ (y + z) ≦ 1.5. Satisfy)
Represented by
(1) In a magnesium hydroxide slurry , (2) an aqueous solution of aluminum salt and (3) an aqueous alkali carbonate solution or an aqueous caustic solution ,
The molar ratio of each component was set so that Mg / Al was 0.5 to 15, alkali carbonate / Al was 0.5 to 1.2, and caustic alkali / Al was 1 to 2.4.
It is obtained by adjusting the reaction pH so that the pH is 6.0 to 9.0 at the end of the reaction, and reacting at a temperature of 10 to 50 ° C.
A treatment agent for wastewater containing fluorine ions, comprising a composite metal compound in which a magnesium hydroxide crystal pattern is observed based on measurement by a powder X-ray diffraction method.
式(I)中、xは、2≦x≦7の範囲を満足する請求項1記載の処理剤。   The processing agent according to claim 1, wherein x satisfies a range of 2≤x≤7 in the formula (I). 式(I)中、(y+z)は、0.15≦(y+z)≦1.2の範囲を満足する請求項1記載の処理剤。   The processing agent according to claim 1, wherein (y + z) in the formula (I) satisfies a range of 0.15 ≦ (y + z) ≦ 1.2. 式(I)中、nは、0.5≦n≦5の範囲を満足する請求項1記載の処理剤。   The processing agent according to claim 1, wherein n in the formula (I) satisfies a range of 0.5 ≦ n ≦ 5. 複合金属化合物は、粉末X線回折法による測定に基づいて、ハイドロタルサイト、水酸化アルミニウムおよび炭酸マグネシウムの結晶パターンが認められない請求項1記載の処理剤。   The processing agent according to claim 1, wherein the composite metal compound does not have a crystal pattern of hydrotalcite, aluminum hydroxide, and magnesium carbonate based on measurement by a powder X-ray diffraction method. 複合金属化合物は、レーザー光回折散乱法により測定された平均粒子径が0.1〜50μmの範囲である請求項1記載の処理剤。   The treatment agent according to claim 1, wherein the composite metal compound has an average particle diameter measured by a laser light diffraction scattering method in a range of 0.1 to 50 µm. 複合金属化合物は、水中におけるフッ素イオン濃度を8mg/L以下とすることが可能である請求項1記載の処理剤。   The treatment agent according to claim 1, wherein the composite metal compound has a fluorine ion concentration in water of 8 mg / L or less. 複合金属化合物は、水中におけるフッ素イオン濃度を0.8mg/L以下とすることが可能である請求項1記載の処理剤。   The treatment agent according to claim 1, wherein the composite metal compound has a fluorine ion concentration in water of 0.8 mg / L or less. フッ素イオンを含有する排水に、下記式(I)、
[Mg(OH)・Al(OH)6−2y−z・(CO・(Cl)・nHO (I)
(式中、x、y、zおよびnは、1≦x≦12、0≦y≦1、0≦z≦1、0.1≦n≦10、0.1≦(y+z)≦1.5を満足する)
で表され、
(1)水酸化マグネシウムスラリー中に、(2)アルミニウム塩水溶液および(3)炭酸アルカリ水溶液または苛性アルカリ水溶液を、
各成分のモル比を、Mg/Alが0.5〜15、炭酸アルカリ/Alが0.5〜1.2、苛性アルカリ/Alが1〜2.4になるようにして投入し、
反応終了時点でpH6.0〜9.0となるように反応pHを調整し、温度10〜50℃で反応させることにより得られ、
粉末X線回折法による測定に基づいて、水酸化マグネシウム結晶のパターンが認められる複合金属化合物を接触せしめることを特徴とする、排水中のフッ素イオンを低減させる方法。
In wastewater containing fluorine ions, the following formula (I),
[Mg (OH) 2] x · Al 2 (OH) 6-2y-z · (CO 3) y · (Cl) z · nH 2 O (I)
(Wherein x, y, z and n are 1 ≦ x ≦ 12, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0.1 ≦ n ≦ 10, 0.1 ≦ (y + z) ≦ 1.5. Satisfy)
Represented by
(1) In a magnesium hydroxide slurry , (2) an aqueous solution of aluminum salt and (3) an aqueous alkali carbonate solution or an aqueous caustic solution ,
The molar ratio of each component was set so that Mg / Al was 0.5 to 15, alkali carbonate / Al was 0.5 to 1.2, and caustic alkali / Al was 1 to 2.4.
It is obtained by adjusting the reaction pH so that the pH is 6.0 to 9.0 at the end of the reaction, and reacting at a temperature of 10 to 50 ° C.
A method for reducing fluorine ions in waste water, which comprises contacting a composite metal compound in which a magnesium hydroxide crystal pattern is observed based on measurement by a powder X-ray diffraction method.
フッ素イオンの濃度が0.85〜300mg/Lの排水に、複合金属化合物を接触せしめる請求項9記載の方法。   The method according to claim 9, wherein the composite metal compound is brought into contact with waste water having a fluorine ion concentration of 0.85 to 300 mg / L. 排水100重量部当り、複合金属化合物0.1〜10重量部を接触せしめる請求項9記載の方法。   The method according to claim 9, wherein 0.1 to 10 parts by weight of the composite metal compound is brought into contact with 100 parts by weight of the waste water. 接触は、4〜60℃の範囲の温度で行う請求項9記載の方法。 Contact The method of claim 9, wherein at a temperature in the range of 4 to 60 ° C.. 接触と同時にあるいは接触後に、凝集剤を添加する請求項9記載の方法。   The method according to claim 9, wherein the flocculant is added simultaneously with or after the contact. 複合金属化合物1重量部当り、凝集剤0.01〜0.5重量部を添加する請求項13記載の方法。   The method according to claim 13, wherein 0.01 to 0.5 part by weight of a flocculant is added per 1 part by weight of the composite metal compound. 接触後の排水pHが、5.6〜8.6である請求項9記載の方法。   The method according to claim 9, wherein the drainage pH after contact is 5.6 to 8.6.
JP2006069273A 2006-03-14 2006-03-14 Waste water treatment agent and method for reducing fluorine ions in waste water Active JP4845188B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006069273A JP4845188B2 (en) 2006-03-14 2006-03-14 Waste water treatment agent and method for reducing fluorine ions in waste water
CN2007100857490A CN101041529B (en) 2006-03-14 2007-03-14 Drainge treating agent and method for reducing fluorin ion in drainge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069273A JP4845188B2 (en) 2006-03-14 2006-03-14 Waste water treatment agent and method for reducing fluorine ions in waste water

Publications (2)

Publication Number Publication Date
JP2007244954A JP2007244954A (en) 2007-09-27
JP4845188B2 true JP4845188B2 (en) 2011-12-28

Family

ID=38589806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069273A Active JP4845188B2 (en) 2006-03-14 2006-03-14 Waste water treatment agent and method for reducing fluorine ions in waste water

Country Status (2)

Country Link
JP (1) JP4845188B2 (en)
CN (1) CN101041529B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195843A (en) * 2008-02-22 2009-09-03 Teijin Engineering Ltd Molding containing fine particle of nitrate ion-selective adsorbent and its manufacturing method
JP5943176B2 (en) * 2010-10-29 2016-06-29 三菱マテリアル株式会社 Method and apparatus for treating harmful substance-containing water.
CN102992440A (en) * 2012-11-28 2013-03-27 常州大学 Purification method of photovoltaic wastewater
CN103224274A (en) * 2013-05-07 2013-07-31 西南石油大学 Preparation method of multinucleated inorganic coagulant
CN104944555A (en) * 2014-03-31 2015-09-30 株式会社韩水 Inorganic coagulant for fluorine removing water treatment and production method of inorganic coagulant
CN105148850B (en) * 2015-09-08 2017-10-20 华南理工大学 The method of sulfate ion in a kind of composite Adsorption water of layer structure
CN107337299B (en) * 2017-08-25 2020-09-29 辽宁工程技术大学 Defluorination water purifying agent and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523353B2 (en) * 1971-12-25 1977-01-27
JPS58214338A (en) * 1982-06-04 1983-12-13 Kyowa Chem Ind Co Ltd Composite adsorbent
JPS6034927A (en) * 1983-08-05 1985-02-22 Kyowa Chem Ind Co Ltd Purification of cyclohexanone containing organic acid as by-product
JP2005193167A (en) * 2004-01-08 2005-07-21 Sophia Co Ltd Drainage purification method and purification method
WO2005087664A1 (en) * 2004-03-16 2005-09-22 Waseda University Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance

Also Published As

Publication number Publication date
CN101041529A (en) 2007-09-26
JP2007244954A (en) 2007-09-27
CN101041529B (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4845188B2 (en) Waste water treatment agent and method for reducing fluorine ions in waste water
JP2007283168A (en) Adsorbent and its manufacturing method
JP5175472B2 (en) Production method of hydrocalumite
JP5744940B2 (en) Method for treating radioactive Cs-contaminated water, radioactive Cs adsorbent and method for producing the same
JP5831914B2 (en) Water treatment method
JP4809080B2 (en) Waste water treatment method and waste water treatment agent containing fluorine ions
WO2018168558A1 (en) Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
JP5451323B2 (en) Water treatment method
JP4558633B2 (en) Wastewater treatment method containing fluoride ions
JP4607847B2 (en) Treatment method and treatment agent for boron-containing wastewater
JPWO2017061118A1 (en) Anion adsorption method
JP2010082497A (en) Water treating agent and method for treating water
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JP5020488B2 (en) Hydrotalcite-like compound, method for producing the same, and anion remover
Lin et al. Role of phase transformation of barium perborates in the effective removal of boron from aqueous solution via chemical oxo-precipitation
KR102175414B1 (en) Highly basic aluminum chloride and its manufacturing method
JPS6245394A (en) Simultaneous removal of arsenic and silicon
JP4696017B2 (en) Treatment method for boron-containing wastewater
TW200715390A (en) Manufacturing methods of fine cerium oxide particles and its slurry for shallow trench isolation process of semiconductor
JP2006045015A (en) Oxide sol or hydroxide sol of rare earth element
JP2013132601A (en) Method for treating fluorine-containing wastewater
JP6805935B2 (en) How to reuse phosphorus adsorbent in environmental water
JP5306977B2 (en) Method for treating boron-containing water and boron removing agent
JP2015108606A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER
JP6901807B1 (en) Treatment method of water containing selenate ion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250