JP2007283168A - Adsorbent and its manufacturing method - Google Patents

Adsorbent and its manufacturing method Download PDF

Info

Publication number
JP2007283168A
JP2007283168A JP2006110723A JP2006110723A JP2007283168A JP 2007283168 A JP2007283168 A JP 2007283168A JP 2006110723 A JP2006110723 A JP 2006110723A JP 2006110723 A JP2006110723 A JP 2006110723A JP 2007283168 A JP2007283168 A JP 2007283168A
Authority
JP
Japan
Prior art keywords
adsorbent
rare earth
earth metal
hydroxide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006110723A
Other languages
Japanese (ja)
Other versions
JP2007283168A5 (en
Inventor
Yasushi Takahashi
康史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006110723A priority Critical patent/JP2007283168A/en
Publication of JP2007283168A publication Critical patent/JP2007283168A/en
Publication of JP2007283168A5 publication Critical patent/JP2007283168A5/ja
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for adsorbing arsenic and a component harmful for other environments at a high efficiency. <P>SOLUTION: The adsorbent can be manufactured by a step for reacting a material containing an oxide of a rare earth metal with an acidic chemical, forming this to a hydroxide by an alkaline chemical, and further oxidizing the hydroxide by an oxidizing agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は固定化性能の良い吸着剤及びその製造方法に関する。   The present invention relates to an adsorbent with good immobilization performance and a method for producing the same.

希土類金属を用いたヒ素、フッ素、ホウ素の除去方法としては、被処理水に水溶性の希土類金属化合物を添加し、除去対象物質と不溶性の塩を生成させて除去する方法が知られている(例えば、特許文献1、特許文献2)。   As a method for removing arsenic, fluorine, and boron using rare earth metals, a method is known in which a water-soluble rare earth metal compound is added to the water to be treated to generate a substance to be removed and an insoluble salt to remove ( For example, Patent Document 1 and Patent Document 2).

しかしながら、上述の特許文献1等に記載された方法によれば、不溶性塩の固液分離のために凝集処理が必要であり、また、添加した希土類金属化合物の回収、再利用のためには、この不溶性塩を再溶解させて再び固液分離する必要があり、操作が煩雑で、希土類金属化合物の再利用が困難であるという欠点がある。また、被処理水の濃度によっては未反応の希土類金属が溶出するという問題があるため、添加する希土類金属化合物の濃度を厳密に管理する必要があるという不具合もある。   However, according to the method described in Patent Document 1 and the like described above, an agglomeration treatment is necessary for the solid-liquid separation of the insoluble salt, and for the recovery and reuse of the added rare earth metal compound, This insoluble salt needs to be redissolved and solid-liquid separated again, so that the operation is complicated and it is difficult to reuse the rare earth metal compound. Moreover, since there is a problem that unreacted rare earth metal is eluted depending on the concentration of the water to be treated, there is also a problem that it is necessary to strictly control the concentration of the rare earth metal compound to be added.

一方ガラスの研磨に使用する酸化セリウムの廃棄物を原材料とし、水和処理することで、希土類金属の水和酸化物を主剤とする砒素不溶化処理剤を得る技術が報告されている(特許文献3)。この技術によると、希土類金属の水和酸化物と砒素の不可逆的な反応により希土類化合物と砒素が化合物を生成し、結果として砒素が固定化(不溶化)される。   On the other hand, there has been reported a technique for obtaining an arsenic insolubilizing treatment agent mainly composed of a hydrated oxide of a rare earth metal by hydrating a cerium oxide waste used for polishing glass as a raw material (Patent Document 3). ). According to this technique, a rare earth compound and arsenic produce a compound by an irreversible reaction between a rare earth metal hydrated oxide and arsenic, and as a result, arsenic is immobilized (insolubilized).

特開平11−235594号公報JP 11-235594 A 特開平11−47765号公報Japanese Patent Laid-Open No. 11-47765 特開2001−200236号公報JP 2001-200366 A

しかしながら特許文献3記載の技術は、砒素以外の環境に有害な除去されるべき成分については固定化性能が低いという問題があった。   However, the technique described in Patent Document 3 has a problem that the component other than arsenic that is harmful to the environment has low immobilization performance.

固定化剤の原料として使用されるガラス研磨材の廃棄物においては、通常は3価の酸化セリウムと4価の酸化セリウムが混在する。そしてこれらの廃研磨材を水和処理した場合、4価の水酸化セリウム(Ce(OH)4)と比べて3価の水酸化セリウム(Ce(OH)3)の量の方が多くなる。しかし、例えば六価クロム、セレン(4価)、セレン(6価)、ホウ素、水銀、アンチモンなど砒素以外の成分については、4価の水酸化セリウム(Ce(OH)4)の方が高い固定化能を示す。しかし特許文献3記載の技術においては、希土類化合物を酸化して価数を調整する工程は含まれていない。 In a glass abrasive waste used as a raw material for a fixing agent, trivalent cerium oxide and tetravalent cerium oxide are usually mixed. And when these abrasive waste and hydration treatment, the greater the better the amount of trivalent cerium hydroxide as compared to tetravalent cerium hydroxide (Ce (OH) 4) ( Ce (OH) 3). However, for example, hexavalent chromium, selenium (tetravalent), selenium (hexavalent), boron, mercury, antimony, and other components other than arsenic, tetravalent cerium hydroxide (Ce (OH) 4 ) is more highly fixed. Shows ability. However, the technique described in Patent Document 3 does not include a step of oxidizing the rare earth compound to adjust the valence.

また特許文献3においては研磨材の廃棄物の品質にも注目していない。廃研磨材を得るにあたり、通常PAC剤(ポリ塩化アルミニウム)や硫酸バンド(硫酸アルミニウム)も用いてフロック化させ、脱水ケーキ状にし、廃研磨材を回収している。そのために、廃研磨材を水和処理した後でも、固形分を100%とした場合に上記成分が20〜40重量%含まれる。すなわち、廃研磨材中にアルミ系成分などの固定化性能のない成分が含まれるために、廃研磨材を水和処理して得られた砒素不溶化処理剤の固定化効率が低下する。   In Patent Document 3, attention is not paid to the quality of abrasive waste. In obtaining waste abrasives, they are usually flocked using a PAC agent (polyaluminum chloride) and a sulfuric acid band (aluminum sulfate) to form a dehydrated cake, and the waste abrasives are collected. Therefore, even after hydrating the waste abrasive, the above component is contained in an amount of 20 to 40% by weight when the solid content is 100%. That is, since the waste abrasive contains a component having no immobilization performance such as an aluminum-based component, the immobilization efficiency of the arsenic insolubilizing agent obtained by hydrating the waste abrasive is lowered.

よって砒素のみならず、六価クロム、セレン(4価)、セレン(6価)、ホウ素、水銀、アンチモンなどの環境や人体に有害な成分を高い効率で固定化することを可能とする技術を提供することが本発明の課題である。   Therefore, not only arsenic but also technology that can fix highly harmful components such as hexavalent chromium, selenium (tetravalent), selenium (hexavalent), boron, mercury, antimony, etc. It is an object of the present invention to provide.

上記問題点を解決するために本発明は、希土類金属の酸化物を含む材料を酸性の薬剤と反応させ、これをアルカリ性の薬剤によって水酸化物と成し、更に該水酸化物を酸化剤で酸化することを特徴とする吸着剤の製造方法を提供する。更に本発明は、希土類金属の水酸化物を酸化することにより得られる希土類金属の化合物を主成分とすることを特徴とする吸着剤も提供する。本発明は価数を調整する工程を含むことにより、セリウムなど3価の希土類金属の酸化物を4価に酸化することを特徴としている。   In order to solve the above problems, the present invention reacts a material containing an oxide of a rare earth metal with an acidic agent, forms it into a hydroxide with an alkaline agent, and further converts the hydroxide with an oxidizing agent. Provided is a method for producing an adsorbent characterized by oxidation. Furthermore, the present invention also provides an adsorbent characterized in that a main component is a rare earth metal compound obtained by oxidizing a rare earth metal hydroxide. The present invention is characterized in that an oxide of a trivalent rare earth metal such as cerium is oxidized to a tetravalent state by including a step of adjusting the valence.

本発明によれば、砒素のみならず、六価クロム、セレン(4価)、セレン(6価)、ホウ素、水銀、アンチモンなどの有害成分を高い効率で固定化することが可能であるという有利な効果を奏する。   According to the present invention, it is possible to fix not only arsenic but also harmful components such as hexavalent chromium, selenium (tetravalent), selenium (hexavalent), boron, mercury, and antimony with high efficiency. Has an effect.

以下に本発明の吸着剤の製造方法について詳細に説明する。本発明の吸着剤は、希土類金属の酸化物を含む鉱物原料、研磨材や廃研磨材を酸性の薬剤と反応させ、これをアルカリ性の薬剤によって水酸化物と成し、更に過酸化水素などの酸化剤で酸化することにより、3価の希土類金属を酸化してその価数を調整することにより、得ることができる。   Below, the manufacturing method of the adsorption agent of this invention is demonstrated in detail. The adsorbent of the present invention reacts mineral raw materials containing rare earth metal oxides, abrasives and waste abrasives with acidic chemicals to form hydroxides with alkaline chemicals, and further includes hydrogen peroxide and the like. It can be obtained by oxidizing a trivalent rare earth metal and adjusting its valence by oxidizing with an oxidizing agent.

本発明の好ましい実施態様において、前記希土類金属は、セリウム(Ce),サマリウム(Sm),ネオジム(Nd),ガドリニウム(Gd),ランタン(La),イットリウム(Y)及びプラセオジム(Pr)からなる群から選択されるが、それらに限定されるものではない。   In a preferred embodiment of the present invention, the rare earth metal is a group consisting of cerium (Ce), samarium (Sm), neodymium (Nd), gadolinium (Gd), lanthanum (La), yttrium (Y) and praseodymium (Pr). However, it is not limited to them.

下記に示す工程1から工程3により、3価の水酸化セリウム比率を下げ、4価の水酸化セリウムの比率を高めることができる。その工程を下記に示す。なお下記の工程1から工程3において希土類金属としてセリウムを使用した場合を例示して説明するが、上記に述べた他の希土類金属を用いても同様の反応により本発明の吸着剤を製造することができる。   By steps 1 to 3 shown below, the ratio of trivalent cerium hydroxide can be reduced and the ratio of tetravalent cerium hydroxide can be increased. The process is shown below. In addition, the case where cerium is used as the rare earth metal in the following Step 1 to Step 3 will be described as an example. Can do.

また本発明の吸着剤により吸着される被吸着物は、ヒ素、フッ素、ホウ素、鉛、カドミウム、水銀、アンチモン、クロム、モリブデン、セレン、リン、タリウム、インジウム及びビスマスからなる群から選択されるが、それらに限定されるものではない。   The adsorbed material adsorbed by the adsorbent of the present invention is selected from the group consisting of arsenic, fluorine, boron, lead, cadmium, mercury, antimony, chromium, molybdenum, selenium, phosphorus, thallium, indium and bismuth. However, it is not limited to them.

(工程1)
廃研磨材に塩酸(HCl)などの酸性の薬剤を添加し、50〜100℃で1時間〜数日間反応させ、成分を溶解させる。この工程1において、酸化セリウムなどの希土類金属の酸化物をその塩とする。なおこの反応により、3価のセリウムは3価の塩となり、4価のセリウムは4価の塩となる。
2Ce203+6HCl → CeC13+H20
CeO2+4HCl → CeC14+H20
(Process 1)
An acidic chemical such as hydrochloric acid (HCl) is added to the waste abrasive and reacted at 50 to 100 ° C. for 1 hour to several days to dissolve the components. In this step 1, a rare earth metal oxide such as cerium oxide is used as its salt. By this reaction, trivalent cerium becomes a trivalent salt, and tetravalent cerium becomes a tetravalent salt.
2Ce 2 0 3 + 6HCl → CeC1 3 + H 2 0
CeO 2 + 4HCl → CeC1 4 + H 2 0

なお工程1の反応温度は50〜100℃、好ましくは65〜90℃であるが、その範囲に限定されるものではない。反応時間も1時間〜数日間、好ましくは12〜48時間であるが、その範囲に限定されるものではない。使用する酸は好適には塩酸であるが、それに限定されるものではなく、酸化セリウムをその塩に変換することができる限り、種々の無機酸又は有機酸を使用することができる。   The reaction temperature in step 1 is 50 to 100 ° C., preferably 65 to 90 ° C., but is not limited to this range. The reaction time is also 1 hour to several days, preferably 12 to 48 hours, but is not limited thereto. The acid used is preferably hydrochloric acid, but is not limited thereto, and various inorganic acids or organic acids can be used as long as cerium oxide can be converted into a salt thereof.

(工程2)
NH40Hなどのアルカリ性の薬剤を添加して中和し、pH8程度とする。それにより塩素などの塩であったセリウムは、3価又は4価の水酸化セリウムの水和物(Ce(OH)4・nH20)となって沈殿する。この沈殿をフィルタープレス法などで回収することができる。
CeC13+3NH40H → Ce(OH)3(沈降)+3NH4Cl
CeC14+4NH40H → Ce(OH)4(沈降)+4NH4Cl
(Process 2)
Neutralize by adding an alkaline agent such as NH 4 OH to about pH 8. As a result, cerium, which is a salt such as chlorine, precipitates as trivalent or tetravalent cerium hydroxide hydrate (Ce (OH) 4 .nH 2 0). This precipitate can be recovered by a filter press method or the like.
CeC1 3 + 3NH 4 0H → Ce (OH) 3 (sedimentation) + 3NH 4 Cl
CeC1 4 + 4NH 4 0H → Ce (OH) 4 (precipitation) + 4NH 4 Cl

なお工程2において、酸性の薬剤を中和して水酸化セリウムの水和物が十分に沈降するまでアルカリ性の薬剤を添加する。ここで使用されるアルカリ性の薬剤は好適にはNH40Hであるが、一般的に酸の中和に用いられる種々のアルカリ性の薬剤を使用することができる。 In Step 2, the alkaline chemical is added until the acidic chemical is neutralized and the cerium hydroxide hydrate is sufficiently precipitated. The alkaline agent used here is preferably NH 4 OH, but various alkaline agents generally used for acid neutralization can be used.

(工程3)
工程2で回収したセリウムの水酸化物に過酸化水素(H202)などの酸化剤を添加し、pH4〜5で反応させて、該水酸化物を酸化する。この工程3の酸化処理を行なうことにより3価の水酸化セリウムは4価の水酸化セリウムの水和物(Ce(OH)4・nH20)となり、よって六価クロム、セレン(4価)、セレン(6価)、ほう素、水銀、アンチモンなどに対する吸着効率を高めることができる。
Ce(OH)3+H202 → Ce(0H)4+H20
(Process 3)
An oxidant such as hydrogen peroxide (H 2 0 2 ) is added to the cerium hydroxide recovered in step 2 and reacted at pH 4 to 5 to oxidize the hydroxide. By performing the oxidation treatment in this step 3, trivalent cerium hydroxide becomes tetravalent cerium hydroxide hydrate (Ce (OH) 4 · nH 2 0), thus hexavalent chromium and selenium (tetravalent). Adsorption efficiency for selenium (hexavalent), boron, mercury, antimony, etc. can be increased.
Ce (OH) 3 + H 2 0 2 → Ce (0H) 4 + H 2 0

なおここで使用する酸化剤は、過酸化水素水、過マンガン酸カリウム、二クロム酸カリウム、二酸化硫黄、塩素、ビスマス酸ナトリウム、過硫酸塩、臭素酸塩、次亜塩素酸塩、次亜臭素酸塩からなる群から選択される少なくとも1種であるが、それらに限定されるものではない。   The oxidizing agent used here is hydrogen peroxide, potassium permanganate, potassium dichromate, sulfur dioxide, chlorine, sodium bismuthate, persulfate, bromate, hypochlorite, hypobromine. Although it is at least 1 sort (s) selected from the group which consists of an acid salt, it is not limited to them.

なお、ここでは工程2と工程3を別工程として説明したが、工程1の後、アルカリ性の薬剤と酸化剤を同時に添加して、一つの工程で処理してもよい。工程を少なくすることが可能であるため、工業的に有利である。ただし、一つの工程で処理すると反応効率が下がる傾向があるため、収率を上げたい場合には別工程としたほうがよい。   Here, the steps 2 and 3 have been described as separate steps. However, after the step 1, an alkaline chemical and an oxidizing agent may be added at the same time and processed in one step. Since the number of steps can be reduced, it is industrially advantageous. However, since the reaction efficiency tends to decrease when the treatment is performed in one step, it is better to use a separate step when it is desired to increase the yield.

また工程3の反応時間は6時間から24時間、好ましくは12時間から24時間であるが、その範囲に限定されるものではない。また反応時のpHは好ましくは4〜5であるが、それに限定されるものではなく、水酸化セリウムを3価から4価に酸化するために最も適切なpHを適宜選択することができる。   The reaction time in step 3 is 6 to 24 hours, preferably 12 to 24 hours, but is not limited to this range. The pH during the reaction is preferably 4 to 5, but is not limited thereto, and the most appropriate pH can be appropriately selected for oxidizing cerium hydroxide from trivalent to tetravalent.

また本発明において、廃研磨材等を脱水する工程でフィルタープレス法を採用することができる。これによって脱水ケーキ中の水分量を低減し、工程1、2での処理濃度を高めることができる。また更に処理槽のサイズを小さくし、薬剤の添加量を少なくすることもできるので、少量の薬剤の添加で、反応に必要なpHの調整が可能となる。従来用いられている他の脱水ケーキの作製方法には、含水率にバラツキがあるという欠点があった。   In the present invention, a filter press method can be employed in the step of dewatering the waste abrasive or the like. As a result, the amount of water in the dehydrated cake can be reduced, and the treatment concentration in steps 1 and 2 can be increased. Furthermore, since the treatment tank can be further reduced in size and the amount of drug added can be reduced, the pH required for the reaction can be adjusted with the addition of a small amount of drug. Other methods for preparing dehydrated cakes that have been used conventionally have the disadvantage that the moisture content varies.

更に廃研磨剤を回収する工程において、鉄系の凝集剤を用いて水の中に分散した研磨材を凝集させ、フロック化し、回収することができる。なお使用される鉄系の凝集剤として塩化第二鉄は最も好適である。下記の式で示すように、無機凝集剤として塩化第二鉄(FeCl3)を用いると、工程2において、吸着性能を有する水酸化鉄(Fe(OH)3)となる。これにより、吸着性能のない成分の含有率を低くでき、吸着の効率を改善することができる。
FeCl3+3NH40H → Fe(OH)3(沈降)+3NH4Cl
Further, in the step of recovering the waste abrasive, the abrasive dispersed in water can be aggregated, flocked and recovered using an iron-based aggregating agent. Ferric chloride is most suitable as the iron-based flocculant used. As shown by the following formula, when ferric chloride (FeCl 3 ) is used as the inorganic flocculant, in step 2, iron hydroxide (Fe (OH) 3 ) having adsorption performance is obtained. Thereby, the content rate of the component without adsorption performance can be lowered, and the efficiency of adsorption can be improved.
FeCl 3 + 3NH 4 0H → Fe (OH) 3 (precipitation) + 3NH 4 Cl

以下、本発明の実施例を説明するが、下記の実施例は本発明の範囲を何ら限定するものではない。なお以下の組成表示は全て質量%表示である。   Examples of the present invention will be described below, but the following examples do not limit the scope of the present invention. In addition, the following composition display is a mass% display.

(実施例1)
本発明の吸着剤を作製するために、以下の組成(1)の廃研磨材を用いた。
<廃研磨材組成(1)>
CeO2:8% Ce203:7% La203:5% A1203:20% 含水率:60%
Example 1
In order to produce the adsorbent of the present invention, a waste abrasive having the following composition (1) was used.
<Waste abrasive composition (1)>
CeO 2 : 8% Ce 2 0 3 : 7% La 2 0 3 : 5% A1 2 0 3 : 20% Moisture content: 60%

この廃研磨材は、無機凝集剤としてポリ塩化アルミニウムを使用している。脱水方法は、フィルタープレス法である。上記の組成(1)の廃研磨材に適量の水を添加し、濃塩酸(35%-HCl)を添加し、75℃で12時間反応させ、成分を溶解させた。   This waste abrasive uses polyaluminum chloride as an inorganic flocculant. The dehydration method is a filter press method. An appropriate amount of water was added to the waste abrasive having the above composition (1), concentrated hydrochloric acid (35% -HCl) was added, and the mixture was reacted at 75 ° C. for 12 hours to dissolve the components.

その後、pHを確認しながらアンモニア水(25%-NH40H)を添加し、pH8とした。沈殿した成分を懸濁し、過酸化水素(70%濃度−H202)を添加してpHを4.5-5に調整し、過酸化水素が分解するまで反応させて4価の水酸化セリウムを沈降させた。フィルタープレス法で余分な水分を除去した。その結果以下の吸着剤が得られ、「組成A」と名付けた。
組成A Ce(OH)4:19% La(OH)3:6% Al(OH)3:25% 含水率:50%
Thereafter, aqueous ammonia (25% -NH 4 0H) was added while confirming the pH to adjust to pH 8. Suspend the precipitated components, add hydrogen peroxide (70% concentration -H 2 0 2 ) to adjust the pH to 4.5-5, and react until hydrogen peroxide is decomposed to produce tetravalent cerium hydroxide. Allowed to settle. Excess water was removed by a filter press method. As a result, the following adsorbent was obtained and named “Composition A”.
Composition A Ce (OH) 4 : 19% La (OH) 3 : 6% Al (OH) 3 : 25% Moisture content: 50%

(実施例2)
本発明の吸着剤を作製するために、以下の組成(2)の廃研磨材を用いた。
<廃研磨材組成(2)>
CeO2:5% Ce203:15% La203:5% A1203:15% その他5% 含水率:55%
(Example 2)
In order to produce the adsorbent of the present invention, a waste abrasive having the following composition (2) was used.
<Waste abrasive composition (2)>
CeO 2 : 5% Ce 2 0 3 : 15% La 2 0 3 : 5% A1 2 0 3 : 15% Other 5% Moisture content: 55%

この廃研磨材は、無機凝集剤としてポリ塩化アルミニウムを使用している。脱水方法は、フィルタープレス法である。上記の組成(2)の廃研磨材に適量の水を添加し、濃塩酸(35%-HCl)を添加し、75℃で12時間反応させ、成分を溶解させた。   This waste abrasive uses polyaluminum chloride as an inorganic flocculant. The dehydration method is a filter press method. An appropriate amount of water was added to the waste abrasive having the above composition (2), concentrated hydrochloric acid (35% -HCl) was added, and the mixture was reacted at 75 ° C. for 12 hours to dissolve the components.

その後、pHを確認しながらアンモニア水(25%-NH40H)を添加し、pH8とした。沈殿した成分を懸濁し、過酸化水素(70%濃度-H202)を添加してpH4.5-5に調整し、過酸化水素が分解するまで反応させて4価の水酸化セリウムを沈降させた。フィルタープレス法で余分な水分を除去した。その結果以下の吸着剤が得られ、「組成B」と名付けた。
組成B Ce(OH)4:25% La(OH)3:6% A1(0H)3:18% その他6% 含水率:45%
Thereafter, aqueous ammonia (25% -NH 4 0H) was added while confirming the pH to adjust to pH 8. Suspend the precipitated components, add hydrogen peroxide (70% concentration -H 2 0 2 ) to adjust the pH to 4.5-5, react until hydrogen peroxide decomposes, and add tetravalent cerium hydroxide. Allowed to settle. Excess water was removed by a filter press method. As a result, the following adsorbent was obtained and named “Composition B”.
Composition B Ce (OH) 4 : 25% La (OH) 3 : 6% A1 (0H) 3 : 18% Others 6% Moisture content: 45%

(実施例3)
本発明の吸着剤を作製するために、以下の組成(3)の廃研磨材を用いた。
<廃研磨材組成(3)>
CeO2:8% Ce203:20% La203:5% FeCl3:5% A1203:3% その他4% 含水率:55%
(Example 3)
In order to produce the adsorbent of the present invention, a waste abrasive having the following composition (3) was used.
<Waste abrasive composition (3)>
CeO 2 : 8% Ce 2 0 3 : 20% La 2 0 3 : 5% FeCl 3 : 5% A1 2 0 3 : 3% Other 4% Moisture content: 55%

この廃研磨材は、主な無機凝集剤として塩化第二鉄を使用し、加えて補助的にポリ塩化アルミニウムを使用している。脱水方法は、フィルタープレス法である。上記の組成(3)の廃研磨材に適量の水を添加し、濃塩酸(35%-HCl)を添加し、75℃で12時間反応させ、成分を溶解させた。   This waste abrasive uses ferric chloride as the main inorganic flocculant and additionally uses polyaluminum chloride. The dehydration method is a filter press method. An appropriate amount of water was added to the waste abrasive having the above composition (3), concentrated hydrochloric acid (35% -HCl) was added, and the mixture was reacted at 75 ° C. for 12 hours to dissolve the components.

その後、pHを確認しながらアンモニア水(25%-NH40H)を添加し、pH8とした。沈殿した成分を懸濁し、過酸化水素(70%濃度-H202)を添加してpH4.5-5に調整し、過酸化水素が分解するまで反応させて4価の水酸化セリウムを沈降させた。フィルタープレス法で余分な水分を除去した。その結果以下の吸着剤が得られ、「組成C」と名付けた。
組成C Ce(OH)4:30% La(OH)3:6% Fe(OH)3:6% Al(OH)3:3% その他5% 含水率:50%
Thereafter, aqueous ammonia (25% -NH 4 0H) was added while confirming the pH to adjust to pH 8. Suspend the precipitated components, add hydrogen peroxide (70% concentration -H 2 0 2 ) to adjust the pH to 4.5-5, react until hydrogen peroxide decomposes, and add tetravalent cerium hydroxide. Allowed to settle. Excess water was removed by a filter press method. As a result, the following adsorbent was obtained and named “Composition C”.
Composition C Ce (OH) 4 : 30% La (OH) 3 6% Fe (OH) 3 6% Al (OH) 3 3% Other 5% Moisture content 50%

(実施例4)
更に以下の組成(4)の材料を用いて本発明の吸着剤を作製した。
<未使用研磨材組成(4)>
CeO2:15% Ce203:45% La203:20% Pr6O11:5% Nd203:5.5% その他10%
Example 4
Furthermore, the adsorbent of the present invention was produced using a material having the following composition (4).
<Unused abrasive composition (4)>
CeO 2 : 15% Ce 2 0 3 : 45% La 2 0 3 : 20% Pr 6 O 11 : 5% Nd 2 0 3 : 5.5% Others 10%

この材料は未使用の研磨材を使用しており、水分を殆ど含有しておらず、且つ酸化セリウムの含有率が高く、希土類化合物以外の化学成分の含有率が低い。この材料を使用して以下の処理を行なった。上記の組成(4)に適量の水を添加し、濃塩酸(35%-HCl)を添加し、75℃で12時間反応させ、成分を溶解させた。   This material uses an unused abrasive, contains little moisture, has a high content of cerium oxide, and a low content of chemical components other than rare earth compounds. The following treatment was performed using this material. An appropriate amount of water was added to the composition (4), concentrated hydrochloric acid (35% -HCl) was added, and the mixture was reacted at 75 ° C. for 12 hours to dissolve the components.

その後、pHを確認しながらアンモニア水(25%-NH40H)を添加し、pH8とした。沈殿した成分を懸濁し、過酸化水素(70%濃度-H202)を添加してpH4.5-5に調整し、過酸化水素が分解するまで反応させて4価の水酸化セリウムを沈降させた。フィルタープレス法で余分な水分を除去した。その結果以下の吸着剤が得られ、「組成D」と名付けた。
組成D Ce(OH)4:33% La(OH)3:11% Nd(OH)3:3% Pr(OH)3:3% その他5% 含水率:45%
Thereafter, aqueous ammonia (25% -NH 4 0H) was added while confirming the pH to adjust to pH 8. Suspend the precipitated components, add hydrogen peroxide (70% concentration -H 2 0 2 ) to adjust the pH to 4.5-5, react until hydrogen peroxide decomposes, and add tetravalent cerium hydroxide. Allowed to settle. Excess water was removed by a filter press method. As a result, the following adsorbent was obtained and named “Composition D”.
Composition D Ce (OH) 4 : 33% La (OH) 3 : 11% Nd (OH) 3 : 3% Pr (OH) 3 : 3% Other 5% Moisture content: 45%

(比較例1)
比較例の吸着剤を作製するために、以下の組成(2)の廃研磨材を用いた。
<廃研磨材組成(2)>
CeO2:5% Ce203:15% La203:5% A1203:15% その他5% 含水率:55%
(Comparative Example 1)
In order to produce the adsorbent of the comparative example, a waste abrasive having the following composition (2) was used.
<Waste abrasive composition (2)>
CeO 2 : 5% Ce 2 0 3 : 15% La 2 0 3 : 5% A1 2 0 3 : 15% Other 5% Moisture content: 55%

この廃研磨材は、無機凝集材としてポリ塩化アルミニウムを使用している。脱水方法は、フィルタープレス法である。廃研磨材組成として、組成(2)を用いて特許文献3(特開2001−200236号公報)の方法に準じて処理を行った。   This waste abrasive uses polyaluminum chloride as an inorganic aggregate. The dehydration method is a filter press method. The waste abrasive composition was processed according to the method of Patent Document 3 (Japanese Patent Laid-Open No. 2001-200266) using the composition (2).

廃研磨材100gに塩酸(5M-HCl)を5Lと、純水25Lを添加し、攪拌した後に130℃で1時間30分間加熱処理し、冷却した後、NaOHでpHを確認しながら、pHを6-7に調整し、遠心分離して固形物を得た。その結果以下の吸着剤が得られ、「組成E」と名付けた。
組成E Ce(OH)3:16% Ce(OH)4:6% La(OH)3:6% Al(OH)3:16% その他6% 含水率:50%
Add 5 L of hydrochloric acid (5M-HCl) and 25 L of pure water to 100 g of waste abrasive, stir, heat-treat at 130 ° C for 1 hour and 30 minutes, cool, and then check the pH with NaOH. The solid was obtained by adjusting to 6-7 and centrifuging. As a result, the following adsorbent was obtained and named “Composition E”.
Composition E Ce (OH) 3 : 16% Ce (OH) 4 : 6% La (OH) 3 : 6% Al (OH) 3 : 16% Other 6% Moisture content: 50%

なお実施例1から4及び比較例において得られた吸着剤、すなわち組成Aから組成Eの組成をまとめて表1に示す。表1において、単位は質量%、括弧内は固形成分中の各成分の割合を示している。全ての実施例において4価のセリウム化合物(Ce(OH)4)を10質量%以上含有しており、固形成分中の割合も20質量%以上含有していた。本発明により、4価の希土類金属化合物を多く含む吸着剤を得ることができることが判る。 Table 1 summarizes the adsorbents obtained in Examples 1 to 4 and Comparative Example, that is, compositions A to E. In Table 1, the unit is mass%, and the parentheses indicate the proportion of each component in the solid component. In all Examples, a tetravalent cerium compound (Ce (OH) 4 ) was contained in an amount of 10% by mass or more, and the ratio in the solid component was also contained in an amount of 20% by mass or more. It can be seen that an adsorbent containing a large amount of tetravalent rare earth metal compound can be obtained by the present invention.

Figure 2007283168
Figure 2007283168

(効果の確認)
<吸着能力の評価方法>
組成AからEの吸着剤を0.25g秤量し、100mg/Lの濃度の各種成分溶液25mlに投入し、24時間揺動した後に濾過し、濾液を測定液とした。組成AからEの吸着剤のプレスケーキ品1g当りの、各種成分の吸着能力(mg)を求めて表1に示す。なお、砒素(As)、クロム(Cr:6価)、セレン(Se:4価)、セレン(Se:6価)、ホウ素(pH6.5)、水銀(硝酸水銀)の定量はICP分析により行なった。
(Confirmation of effect)
<Adsorption capacity evaluation method>
0.25 g of the adsorbents of composition A to E was weighed, put into 25 ml of various component solutions having a concentration of 100 mg / L, shaken for 24 hours, filtered, and the filtrate was used as a measurement solution. Table 1 shows the adsorption capacities (mg) of various components per gram of the press cake product of the adsorbents having the compositions A to E. Arsenic (As), chromium (Cr: hexavalent), selenium (Se: tetravalent), selenium (Se: hexavalent), boron (pH 6.5), mercury (mercury nitrate) are quantified by ICP analysis. It was.

なお上記の各種成分として使用した試薬は以下の通りである。
ヒ素:Na2HAsO4
ホウ素:メタホウ酸
フッ素:NaF
6価クロム:2クロム酸カリウム・硝酸(0.01mol/1)溶液
水銀〈硝酸水銀〉:硝酸第2水銀・硝酸(0.5mol/l)溶液
セレン(4価):酸化セレン(IV)・硝酸(0.1mol/l)溶液
セレン(6価):セレン(VI)酸ナトリウム(Na2SeO4)を酸で溶解し使用。
In addition, the reagent used as said various components is as follows.
Arsenic: Na 2 HAsO 4
Boron: Fluorine metaborate: NaF
Hexavalent chromium: Potassium dichromate, nitric acid (0.01 mol / 1) mercury <mercury nitrate>: Mercuric nitrate, nitric acid (0.5 mol / l) solution Selenium (tetravalent): Selenium oxide (IV), nitric acid ( 0.1 mol / l) Solution selenium (hexavalent): Sodium selenium (VI) acid (Na 2 SeO 4 ) dissolved in acid and used.

Figure 2007283168
Figure 2007283168

表2に示すように、使用済みの研磨材を処理する際に希土類化合物の酸化処理工程を組み込むことで、得られた吸着剤の吸着能力は約1.5倍近く増加した(実施例1,2)。また出発原料として、使用済み研磨材の回収工程に鉄系の無機凝集材を組み合わせたものを用いることで、吸着性能は、2倍以上となった(実施例3)。更に出発原料として未使用の研磨材を原料として用いたところ、未使用の研磨材はセリウムやランタンなど希土類金属の酸化物を高濃度で含むので、それを原料として非常に高い吸着能力を示す吸着剤を得ることができた(実施例4)。   As shown in Table 2, the adsorption capacity of the obtained adsorbent was increased by about 1.5 times by incorporating a rare earth compound oxidation process when treating used abrasives (Examples 1 and 2). . Further, by using a combination of an iron-based inorganic agglomerated material in the used abrasive recovery process as a starting material, the adsorption performance was more than doubled (Example 3). Furthermore, when an unused abrasive is used as a starting material, the unused abrasive contains a high concentration of rare earth metal oxides such as cerium and lanthanum. An agent could be obtained (Example 4).

本発明により、砒素、六価クロム、セレン(4価)、セレン(6価)、ホウ素、水銀、アンチモンなどの有害物質を効率的に固定する吸着剤の製造が可能となった。本発明の吸着剤は汚染土壌、汚染水に対する汚染成分の吸着剤、不溶化剤、固定化剤、凝集剤などに使用することができる。よって本発明により提供された吸着剤を被吸着物の無害化処理設備に導入し、環境の改善に資することができる。   The present invention makes it possible to produce an adsorbent that efficiently fixes harmful substances such as arsenic, hexavalent chromium, selenium (tetravalent), selenium (hexavalent), boron, mercury, and antimony. The adsorbent of the present invention can be used as an adsorbent of a contaminating component with respect to contaminated soil and contaminated water, an insolubilizing agent, a fixing agent, a flocculant and the like. Therefore, the adsorbent provided by the present invention can be introduced into a detoxification treatment facility for an object to be adsorbed, which contributes to improvement of the environment.

Claims (11)

希土類金属の酸化物を含む材料を酸性の薬剤と反応させ、これをアルカリ性の薬剤によって水酸化物と成し、更に該水酸化物を酸化剤で酸化することを特徴とする吸着剤の製造方法。   A method for producing an adsorbent, comprising reacting a material containing a rare earth metal oxide with an acidic agent, forming the hydroxide with an alkaline agent, and further oxidizing the hydroxide with an oxidizing agent. . フィルタープレス法により、前記希土類金属の酸化物及び前記水酸化物を回収することを特徴とする請求項1に記載の吸着剤の製造方法。   The method for producing an adsorbent according to claim 1, wherein the rare earth metal oxide and the hydroxide are recovered by a filter press method. 希土類金属の酸化物に加えて鉄系の凝集剤を含む材料を用いることを特徴とする請求項1又は請求項2に記載の吸着剤の製造方法。   The method for producing an adsorbent according to claim 1 or 2, wherein a material containing an iron-based flocculant in addition to the rare earth metal oxide is used. 前記希土類金属は、セリウム(Ce),サマリウム(Sm),ネオジム(Nd),ガドリニウム(Gd),ランタン(La),イットリウム(Y)及びプラセオジム(Pr)からなる群から選択された少なくとも1種であることを特徴とする請求項1から請求項3のいずれか1つの請求項に記載の吸着剤の製造方法。   The rare earth metal is at least one selected from the group consisting of cerium (Ce), samarium (Sm), neodymium (Nd), gadolinium (Gd), lanthanum (La), yttrium (Y), and praseodymium (Pr). It exists, The manufacturing method of the adsorption agent as described in any one of Claims 1-3 characterized by the above-mentioned. 前記酸化剤は、過酸化水素水、過マンガン酸カリウム、二クロム酸カリウム、二酸化硫黄、塩素、ビスマス酸ナトリウム、過硫酸塩、臭素酸塩、次亜塩素酸塩及び次亜臭素酸塩からなる群から選択される少なくとも1種であることを特徴とする請求項1から請求項4のいずれか1つの請求項に記載の吸着剤の製造方法。   The oxidizing agent comprises hydrogen peroxide, potassium permanganate, potassium dichromate, sulfur dioxide, chlorine, sodium bismuth, persulfate, bromate, hypochlorite and hypobromite. The method for producing an adsorbent according to any one of claims 1 to 4, wherein the adsorbent is at least one selected from the group. 前記吸着剤により吸着される被吸着物が、ヒ素、フッ素、ホウ素、鉛、カドミウム、水銀、アンチモン、クロム、モリブデン、セレン、リン、タリウム、インジウム及びビスマスからなる群から選択される少なくとも1種であることを特徴とする請求項1から請求項5のいずれか1つの請求項に記載の吸着剤の製造方法。   The adsorbed material adsorbed by the adsorbent is at least one selected from the group consisting of arsenic, fluorine, boron, lead, cadmium, mercury, antimony, chromium, molybdenum, selenium, phosphorus, thallium, indium and bismuth. The method for producing an adsorbent according to any one of claims 1 to 5, wherein the adsorbent is provided. 希土類金属の水酸化物を酸化することにより得られる希土類金属の化合物を主成分とすることを特徴とする吸着剤。   An adsorbent comprising, as a main component, a rare earth metal compound obtained by oxidizing a rare earth metal hydroxide. 前記希土類金属は、セリウム(Ce),サマリウム(Sm),ネオジム(Nd),ガドリニウム(Gd),ランタン(La),イットリウム(Y)及びプラセオジム(Pr)からなる群から選択された少なくとも1種であることを特徴とする請求項7に記載の吸着剤。   The rare earth metal is at least one selected from the group consisting of cerium (Ce), samarium (Sm), neodymium (Nd), gadolinium (Gd), lanthanum (La), yttrium (Y), and praseodymium (Pr). The adsorbent according to claim 7, wherein the adsorbent is present. 前記吸着剤により吸着される被吸着物が、ヒ素、フッ素、ホウ素、鉛、カドミウム、水銀、アンチモン、クロム、モリブデン、セレン、リン、タリウム、インジウム及びビスマスからなる群から選択される少なくとも1種であることを特徴とする請求項7又は請求項8記載の吸着剤。   The adsorbent to be adsorbed by the adsorbent is at least one selected from the group consisting of arsenic, fluorine, boron, lead, cadmium, mercury, antimony, chromium, molybdenum, selenium, phosphorus, thallium, indium and bismuth. The adsorbent according to claim 7 or 8, wherein the adsorbent is present. 4価のセリウム化合物の含有率が、10質量%以上であることを特徴とする請求項7から請求項9のいずれか1つの請求項に記載の吸着剤。   The adsorbent according to any one of claims 7 to 9, wherein the content of the tetravalent cerium compound is 10% by mass or more. 前記吸着剤に含まれる固形成分のうち、4価のセリウム化合物の含有率が20質量%以上であることを特徴とする請求項7から請求項10のいずれか1つの請求項に記載の吸着剤。   11. The adsorbent according to claim 7, wherein a content of the tetravalent cerium compound is 20% by mass or more among solid components contained in the adsorbent. .
JP2006110723A 2006-04-13 2006-04-13 Adsorbent and its manufacturing method Withdrawn JP2007283168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110723A JP2007283168A (en) 2006-04-13 2006-04-13 Adsorbent and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110723A JP2007283168A (en) 2006-04-13 2006-04-13 Adsorbent and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007283168A true JP2007283168A (en) 2007-11-01
JP2007283168A5 JP2007283168A5 (en) 2009-03-12

Family

ID=38755433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110723A Withdrawn JP2007283168A (en) 2006-04-13 2006-04-13 Adsorbent and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007283168A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111682A1 (en) * 2007-03-12 2008-09-18 Nippon Sheet Glass Company, Limited Method for treatment of selenium in solution containing sulfur oxide
JP2010275179A (en) * 2009-04-28 2010-12-09 Tsurumi Soda Co Ltd Method for recovering cerium
JP2012508106A (en) * 2008-11-11 2012-04-05 モリーコープ ミネラルズ エルエルシー Composition containing rare earth element and method using rare earth element
JP2013184120A (en) * 2012-03-08 2013-09-19 Dowa Eco-System Co Ltd Selenium adsorbent, method of manufacturing the same, and treatment method of selenium-containing liquid
JP5793230B1 (en) * 2014-09-05 2015-10-14 日本化学工業株式会社 Iodate ion adsorbent and method for producing the same
JP5793231B1 (en) * 2014-09-05 2015-10-14 日本化学工業株式会社 Iodate ion adsorbent and method for producing the same
CN105062492A (en) * 2015-08-19 2015-11-18 河南省地质环境规划设计院有限公司 Chemical stabilizer suitable for soil remediation of arsenic polluted site and use method of chemical stabilizer
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
CN105797682A (en) * 2016-05-27 2016-07-27 广东工业大学 Functional magnetic carbon nanotube composite material, preparation method thereof and application of functional magnetic carbon nanotube composite material to water treatment
JP2016137412A (en) * 2015-01-26 2016-08-04 日本化学工業株式会社 Adsorbent and production method thereof
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
WO2018129772A1 (en) * 2017-01-10 2018-07-19 苏州大学张家港工业技术研究院 Method for treating selenate-containing wastewater

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111682A1 (en) * 2007-03-12 2008-09-18 Nippon Sheet Glass Company, Limited Method for treatment of selenium in solution containing sulfur oxide
JP2012508106A (en) * 2008-11-11 2012-04-05 モリーコープ ミネラルズ エルエルシー Composition containing rare earth element and method using rare earth element
JP2010275179A (en) * 2009-04-28 2010-12-09 Tsurumi Soda Co Ltd Method for recovering cerium
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
JP2013184120A (en) * 2012-03-08 2013-09-19 Dowa Eco-System Co Ltd Selenium adsorbent, method of manufacturing the same, and treatment method of selenium-containing liquid
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
US10577259B2 (en) 2014-03-07 2020-03-03 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
JP5793230B1 (en) * 2014-09-05 2015-10-14 日本化学工業株式会社 Iodate ion adsorbent and method for producing the same
JP5793231B1 (en) * 2014-09-05 2015-10-14 日本化学工業株式会社 Iodate ion adsorbent and method for producing the same
WO2016035839A1 (en) * 2014-09-05 2016-03-10 日本化学工業株式会社 Iodate ion adsorbent and method for producing same
JP2016137412A (en) * 2015-01-26 2016-08-04 日本化学工業株式会社 Adsorbent and production method thereof
CN105062492A (en) * 2015-08-19 2015-11-18 河南省地质环境规划设计院有限公司 Chemical stabilizer suitable for soil remediation of arsenic polluted site and use method of chemical stabilizer
CN105797682B (en) * 2016-05-27 2018-05-18 广东工业大学 A kind of magnetic carbon-nano tube composite material of functionalization, its preparation method and its application in water process
CN105797682A (en) * 2016-05-27 2016-07-27 广东工业大学 Functional magnetic carbon nanotube composite material, preparation method thereof and application of functional magnetic carbon nanotube composite material to water treatment
WO2018129772A1 (en) * 2017-01-10 2018-07-19 苏州大学张家港工业技术研究院 Method for treating selenate-containing wastewater

Similar Documents

Publication Publication Date Title
JP2007283168A (en) Adsorbent and its manufacturing method
CN102531236B (en) Treating method of arsenic in waste acid
EP3733613B1 (en) Wastewater treatment method
JP5352853B1 (en) Method of treating radioactive Cs contaminated water
JP2020193130A (en) Method for producing lithium hydroxide
CN108584943A (en) A kind of method of purification of Nano diamond
WO2018168558A1 (en) Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
JP7372691B2 (en) How to obtain scorodite with a high arsenic content from an acidic solution with a high sulfuric acid content
JP2014173924A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER, AND RADIOACTIVE Cs ABSORBENT AND METHOD FOR PRODUCING THE SAME
JP2007244954A (en) Wastewater treatment agent, and method for reducing fluorine ion in wastewater
CN114836635B (en) Method for preparing high-purity metal arsenic by nonferrous smelting arsenic-containing solid waste short process
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
JP2010260030A (en) Adsorbent for adsorbing contaminating component and method for producing the adsorbent
WO2008111682A1 (en) Method for treatment of selenium in solution containing sulfur oxide
JP2023025362A (en) Harmful substance treatment agent and method for treating harmful substance-containing waste water
JPH07196323A (en) Production of cobalt oxide of low sodium content
JP2923757B2 (en) Reduction method of hexavalent selenium
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP3957660B2 (en) Method for synthesizing reactive oxygen species inclusion materials
JP2015108606A (en) METHOD FOR TREATING RADIOACTIVE Cs-CONTAMINATED WATER
JP3970208B2 (en) Method for synthesizing reactive oxygen species inclusion materials
JP6901807B1 (en) Treatment method of water containing selenate ion
JP5250742B1 (en) Method of treating radioactive Cs contaminated water
CN109179486B (en) Preparation method of thallium chloride based on interface effect

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101025