JPH0657354B2 - Simultaneous removal method of arsenic and silicon - Google Patents

Simultaneous removal method of arsenic and silicon

Info

Publication number
JPH0657354B2
JPH0657354B2 JP18533485A JP18533485A JPH0657354B2 JP H0657354 B2 JPH0657354 B2 JP H0657354B2 JP 18533485 A JP18533485 A JP 18533485A JP 18533485 A JP18533485 A JP 18533485A JP H0657354 B2 JPH0657354 B2 JP H0657354B2
Authority
JP
Japan
Prior art keywords
arsenic
treated
silicon
water
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18533485A
Other languages
Japanese (ja)
Other versions
JPS6245394A (en
Inventor
俶将 猪狩
弘陽 村上
辰雄 広瀬
秀幸 徳丸
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP18533485A priority Critical patent/JPH0657354B2/en
Publication of JPS6245394A publication Critical patent/JPS6245394A/en
Publication of JPH0657354B2 publication Critical patent/JPH0657354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、種々の排水の高度処理、ボイラー用水の水
質管理、地熱発電所の排水処理等において、砒素と珪素
とを同時に除去するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is intended for simultaneous removal of arsenic and silicon in advanced treatment of various wastewater, water quality control of boiler water, wastewater treatment of geothermal power plants, and the like. Regarding the method.

[従来の技術] 被処理水中の砒素の除去に関しては、鉄やアルミニウム
等の金属酸化物を添加して共沈させる金属酸化物共沈法
(日化、1974、(8)、P 1489〜1493及び日化、1980、(1
1)、P 1792〜1979)が一般に行なわれており、また、活
性炭の吸着によるによる活性炭吸着法(日化、1979、(1
0)、P 1365〜1370)やマグネシア系吸着剤を使用するマ
グネシア系吸着剤法(産業公害、Vol.19、NO.3、P212〜
222)等も提案されている。
[Prior Art] Regarding removal of arsenic in water to be treated, a metal oxide coprecipitation method in which a metal oxide such as iron or aluminum is added and coprecipitated (Nika, 1974, (8), P 1489-1493) And Nikka, 1980, (1
1), P 1792-1979), and the activated carbon adsorption method by the adsorption of activated carbon (Nikka, 1979, (1
0), P 1365 to 1370) and magnesia-based adsorbent method using magnesia-based adsorbent (industrial pollution, Vol. 19, NO. 3, P212-
222) etc. have also been proposed.

また、被処理水中の珪素の除去に関しては、イオン交換
樹脂を使用するイオン交換樹脂法(化学と工業、4、9
8、1951)やマグネシウム化合物を使用するマグネシウ
ム化合物法(工業化学雑誌、56、746、1953)が知られ
ており、また、マグネシア系吸着剤を使用するマグネシ
ア系吸着剤法(産業公害、vol.20、NO.4、P 358〜363)
も検討されている。
Moreover, regarding the removal of silicon in the water to be treated, an ion exchange resin method using an ion exchange resin (Chemicals and Industry, 4, 9
8, 1951) and a magnesium compound method using a magnesium compound (industrial chemistry magazine, 56, 746, 1953), and a magnesia-based adsorbent method (industrial pollution, vol. 20, NO.4, P 358 ~ 363)
Are also being considered.

[発明が解決しようとする問題点] しかしながら、上記砒素の除去法における金属酸化物共
沈法においては、地熱発電所の排水処理のように多量の
処理を行うと難脱水性の水酸化物スラッジが多量に発生
してその処理が問題になり、また、活性炭吸着法におい
ては、除去効率と処理コストの点で問題があり、さら
に、マグネシア系吸着剤法においては、除去効率の点で
は優れているが吸着剤が高価であって処理コストが高く
つくという問題があった。
[Problems to be Solved by the Invention] However, in the metal oxide coprecipitation method in the above-mentioned arsenic removal method, if a large amount of treatment such as wastewater treatment of a geothermal power plant is carried out, it is difficult to dehydrate the hydroxide sludge. Occurs in a large amount, and its treatment becomes a problem.In addition, the activated carbon adsorption method has a problem in terms of removal efficiency and treatment cost, and the magnesia-based adsorbent method is superior in terms of removal efficiency. However, there is a problem that the adsorbent is expensive and the treatment cost is high.

また、上記珪素の除去法におけるイオン交換樹脂法にお
いては、特にシリカに対して除去効率が悪いという問題
があり、また、マグネシウム化合物法やマグネシア系吸
着剤法においては、マグネシウム化合物法や吸着剤が高
価であって処理コストが高くつくという問題があった。
Further, the ion exchange resin method in the above method for removing silicon has a problem that the removal efficiency is particularly low for silica, and the magnesium compound method or the magnesia-based adsorbent method has a problem that There is a problem that it is expensive and the processing cost is high.

さらに、砒素と珪素とが共存する被処理水の脱砒素・脱
珪素処理においては、同時に両者を除去する方法がな
く、上記砒素の除去法のいずれかと上記珪素の除去法の
いずれかを組合せて2段階で処理せざるを得ないという
問題があった。
Further, in the dearsenic / desiliconization treatment of the water to be treated in which arsenic and silicon coexist, there is no method for removing both at the same time, and any one of the above arsenic removal methods and any of the above silicon removal methods may be combined. There was a problem that it had to be processed in two stages.

[問題点を解決するための手段] 本発明は、かかる観点に鑑みて創案されたもので、被処
理水中に含まれる砒素と珪素とを同時に除去する方法を
提供するものである。
[Means for Solving Problems] The present invention has been conceived in view of such a viewpoint, and provides a method for simultaneously removing arsenic and silicon contained in water to be treated.

すなわち、本発明は、被処理水中に含まれる砒素及び珪
素を同時に除去するに当り、砒素及び珪素の吸着剤とし
てアルカリ処理スラグとマグネシア系吸着剤との混合物
を使用する砒素及び珪素の同時除去法である。
That is, the present invention is a simultaneous removal method for arsenic and silicon, which uses a mixture of alkali-treated slag and a magnesia-based adsorbent as an adsorbent for arsenic and silicon in simultaneously removing arsenic and silicon contained in water to be treated. Is.

本発明方法で使用するアルカリ処理スラグは、微粉末状
の水砕スラグを例えば苛性ソーダ等のアルカリで処理し
て比表面積を増大させ、表面を改質させた水砕スラグで
ある。すなわち、アルカリ処理スラグを調製するに際し
ては、水砕スラグをブレーン比表面積3,000cm2
g以上、好ましくは3,500〜4,500cm2/gに
破砕し、次いで得られた微粉末状の水砕スラグ100重
量部に対して少なくとも0.5N、好ましくは3N以上
のアルカリ溶液150〜900重量部、好ましくは40
0〜600重量部を添加し、温度80〜105℃、好ま
しくは90〜100℃で少なくとも15分間、好ましく
は60分以上加熱処理し、濾過分離した後水洗し乾燥す
る。
The alkali-treated slag used in the method of the present invention is a granulated slag obtained by treating the finely powdered granulated slag with an alkali such as caustic soda to increase the specific surface area and modifying the surface. That is, when preparing the alkali-treated slag, the granulated slag is prepared with a Blaine specific surface area of 3,000 cm 2 /
g or more, preferably 3,500 to 4,500 cm 2 / g, and then crushed to 100 parts by weight of the obtained finely powdered granulated slag, and at least 0.5 N, preferably 3 N or more of an alkaline solution 150 to 900 parts by weight, preferably 40
0 to 600 parts by weight is added, and the mixture is heat-treated at a temperature of 80 to 105 ° C., preferably 90 to 100 ° C. for at least 15 minutes, preferably 60 minutes or more, filtered, separated, washed with water and dried.

また、本発明で使用するマグネシア系吸着剤は、マグネ
シア形成可能なマグネシウム化合物、例えば水酸化マグ
ネシウム、炭酸マグネシウム、塩基性炭酸マグネシウ
ム、水酸化マグネシウムスラッジ等を焼成して得られる
マグネシアを主材とし、これに酸化鉄、酸化アルミニウ
ム等の金属酸化物を0.01〜40重量%、好ましくは
0.1〜25重量%の範囲で少量添加し、混合したもの
である。
Further, the magnesia-based adsorbent used in the present invention is a magnesium compound capable of forming magnesia, such as magnesium hydroxide, magnesium carbonate, basic magnesium carbonate, magnesia obtained by firing magnesium hydroxide sludge as a main material, A small amount of a metal oxide such as iron oxide or aluminum oxide is added to this in an amount of 0.01 to 40% by weight, preferably 0.1 to 25% by weight, and mixed.

本発明においては、上記アルカリ処理スラグとマグネシ
ア系吸着剤とを混合して得られた混合物を脱砒素・脱珪
素用の混合吸着剤として使用する。
In the present invention, a mixture obtained by mixing the alkali-treated slag and the magnesia-based adsorbent is used as a mixed adsorbent for dearsenic / desiliconization.

これらアルカリ処理スラグとマグネシア系吸着剤との混
合比率は、砒素及び珪素の同時除去性能やコストの点か
ら、好ましくはアルカリ処理スラグ60〜90重量部と
マグネシア系吸着剤10〜40重量部、より好ましくは
アルカリ処理スラグ70〜80重量部とマグネシア系吸
着剤20〜30重量部である。
The mixing ratio of the alkali-treated slag and the magnesia-based adsorbent is preferably 60 to 90 parts by weight of the alkali-treated slag and 10 to 40 parts by weight of the magnesia-based adsorbent, in view of simultaneous removal performance of arsenic and silicon and cost. The alkali-treated slag is preferably 70 to 80 parts by weight and the magnesia-based adsorbent is 20 to 30 parts by weight.

このようにして調製された混合吸着剤を使用して除去し
得る砒素化合物しては、3価の亜砒酸とその塩や5価の
砒酸とその塩を挙げることができ、また、珪素化合物と
しては、オルト珪酸とその塩やメタ珪酸とその塩を挙げ
ることができ、さらに、本発明の混合吸着剤は、被処理
水中の砒素及び珪素の濃度については、特に制限はない
が、それぞれ数ppmから数百ppmあるいはそれ以上の濃度
の被処理水に対して適用することができる。
Examples of the arsenic compound that can be removed by using the mixed adsorbent thus prepared include trivalent arsenous acid and its salt, and pentavalent arsenic acid and its salt. , Orthosilicic acid and its salts and metasilicic acid and its salts, further, the mixed adsorbent of the present invention, the concentration of arsenic and silicon in the water to be treated is not particularly limited, from several ppm respectively. It can be applied to water to be treated with a concentration of several hundred ppm or higher.

従って、この脱砒素・脱珪素用の混合吸着剤を使用して
被処理水の処理を行うに当っては、この被処理水のpH値
や被処理水中に存在する砒素化合物の原子価等に応じて
好ましくはpH調整や前処理を行うのがよい。
Therefore, when treating the water to be treated using this mixed adsorbent for dearsenic / desiliconization, the pH value of the water to be treated and the valence of the arsenic compound present in the water to be treated are to be determined. Accordingly, it is preferable to perform pH adjustment and pretreatment.

すなわち、アルカリ処理スラグやマグネシア系吸着剤
は、これらを水中に懸濁させるとその混合比率にかかわ
りなく約pH11程度のアルカリ性になる。そして、脱砒
素と脱珪素とを同時に行う場合の最適なpH値はpH10.
5〜11.5の範囲であり、被処理水のpH値が5.8〜
8.3程度の弱酸性ないし弱アルカリ性の範囲にある場
合は本発明の混合吸着剤を添加した際に被処理水が最適
なpH値の範囲になり、特に何等のpH調整を必要としな
い。しかしながら、被処理水のpH値がpH5.8より低い
強酸性である場合には、本発明の混合吸着剤を添加して
も最適なpH値の範囲にならず、好ましくは苛性ソーダ、
消石灰等の適当なアルカリを使用して予め被処理水を中
和し、混合吸着剤添加後のpH値が上記最適な範囲10.
5〜11.5になるようにpH調整を行うのがよい。
That is, when the alkali-treated slag and the magnesia-based adsorbent are suspended in water, the pH of the alkali-treated slag becomes about 11 regardless of the mixing ratio. The optimum pH value when performing dearsenic and silicon removal at the same time is pH 10.
It is in the range of 5 to 11.5, and the pH value of the water to be treated is 5.8 to
In the case of a weak acidity or weak alkalinity range of about 8.3, when the mixed adsorbent of the present invention is added, the water to be treated has an optimum pH value range, and no particular pH adjustment is required. However, when the pH value of the water to be treated is strongly acidic lower than pH 5.8, the addition of the mixed adsorbent of the present invention does not result in an optimum pH value range, preferably caustic soda,
The water to be treated is neutralized in advance using a suitable alkali such as slaked lime, and the pH value after addition of the mixed adsorbent is in the above-mentioned optimum range.
It is preferable to adjust the pH so that it becomes 5-11.5.

また、砒素化合物については、3価の砒素化合物に比べ
て5価の砒素化合物の方が効率良く除去することができ
るので、被処理水中の砒素化合物が3価である場合、好
ましくは過酸化水素、オゾン、次亜塩素酸ソーダの酸化
剤を単独又は2種以上を組合せて使用し、酸化処理を行
って5価の砒素化合物にしてから本発明の混合吸着剤に
より脱砒素処理を行うのがよい。
Regarding the arsenic compound, the pentavalent arsenic compound can be removed more efficiently than the trivalent arsenic compound. Therefore, when the arsenic compound in the water to be treated is trivalent, hydrogen peroxide is preferable. It is preferable to use an oxidizing agent for ozone, sodium hypochlorite, or a combination of two or more kinds, perform an oxidation treatment to form a pentavalent arsenic compound, and then perform a dearsenic treatment with the mixed adsorbent of the present invention. Good.

本発明方法により砒素及び珪素を含有する被処理水を処
理するに際しては、従来公知の手段を採用することがで
き、例えば、混合吸着剤が粉末状である場合には攪拌混
合機(ミキサー)と分離機(セトラー)とを組合せたミ
キサー・セトラー方式やこれを多段に組込んだ多段ミキ
サー・セトラー方式が適当であり、また、混合吸着剤が
粒状、ペレット状、錠剤状等である場合には移動床方
式、流動層方式、カラム方式等が適当である。
When treating the water to be treated containing arsenic and silicon by the method of the present invention, conventionally known means can be adopted. For example, when the mixed adsorbent is in the form of powder, a stirring mixer (mixer) is used. A mixer-settler method that combines a separator (settler) and a multi-stage mixer-settler method that incorporates this in multiple stages are suitable, and when the mixed adsorbent is in the form of granules, pellets, tablets, etc. A moving bed system, a fluidized bed system, a column system, etc. are suitable.

なお、本発明の混合吸着剤は、単に砒素及び珪素の同時
除去のみならず、砒素化合物のみ又は珪素化合物のみを
含有する被処理水に対しても適用することができる。こ
の場合においても、砒素及び珪素の同時除去の場合と同
様の条件で同様の除去効率をあげることができる。
The mixed adsorbent of the present invention can be applied not only to simultaneous removal of arsenic and silicon, but also to water to be treated containing only an arsenic compound or only a silicon compound. Also in this case, similar removal efficiency can be achieved under the same conditions as in the case of simultaneous removal of arsenic and silicon.

[実施例] 以下、実施例及び比較例に基づいて、本発明方法を具体
的に説明する。
[Examples] Hereinafter, the method of the present invention will be specifically described based on Examples and Comparative Examples.

〔脱砒素・脱珪素用の混合吸着剤の調製〕[Preparation of mixed adsorbent for dearsenic / silicon removal]

第1表に示す高炉水砕スラグ(ブレーン比表面積4,0
00cm2/g、嵩比重1.665g/cm3、比表面積1m
2/g以下)10重量部を100重量部の3N−NaOH
水溶液中に添加し、90℃で3時間攪拌下に加熱処理し
た後、濾過し水洗して110℃で12時間乾燥し、アル
カリ処理スラグ粉末を得た。このアルカリ処理スラグ粉
末は、その嵩比重が0.530g/cm3であって、その
比表面積が69m2/gであった。
Granulated blast furnace slag shown in Table 1 (brain specific surface area 4,0
00 cm 2 / g, bulk specific gravity 1.665 g / cm 3 , specific surface area 1 m
2 / g or less) 10 parts by weight to 100 parts by weight of 3N-NaOH
The mixture was added to the aqueous solution, heated at 90 ° C. for 3 hours with stirring, filtered, washed with water, and dried at 110 ° C. for 12 hours to obtain an alkali-treated slag powder. The alkali-treated slag powder had a bulk specific gravity of 0.530 g / cm 3 and a specific surface area of 69 m 2 / g.

また、第2表に示す組成の水マグスラッジを110℃で
12時間乾燥し、粒度250〜325メッシュの乾燥マ
グネシアを得た。
Further, the water mag sludge having the composition shown in Table 2 was dried at 110 ° C. for 12 hours to obtain dried magnesia having a particle size of 250 to 325 mesh.

上記アルカリ処理スラグと乾燥マグネシアとを第3表に
示す割合で混合し、400℃で1時間焼成してNO.1〜N
O.4の粉末状の混合吸着剤を調製した。
The above alkali-treated slag and dry magnesia were mixed in the proportions shown in Table 3, and burned at 400 ° C for 1 hour to obtain NO.
A powdered mixed adsorbent of O.4 was prepared.

実施例1 砒酸ナトリウム及びオルト珪酸ナトリウムを純水中に溶
解し、5価の砒素7.5mg/及びSiO35mg/
の被処理水を調製し、これに上記第3表に示す各混合吸
着剤を第4表に示す濃度(ppm)で添加し、60分間攪
拌して接触させた後、濾過してpH値を測定すると共に、
工場排水試験法(JIS K 0102)に従って処理水中の砒素
分及び珪素分を定量して脱砒素率及び脱珪素率を測定し
た。結果を第4表に示す。
Example 1 Sodium arsenate and sodium orthosilicate were dissolved in pure water, and pentavalent arsenic 7.5 mg / and SiO 2 35 mg /
The water to be treated was prepared, and the mixed adsorbents shown in Table 3 above were added thereto at the concentrations (ppm) shown in Table 4, stirred for 60 minutes, brought into contact with each other, and then filtered to adjust the pH value. With the measurement
The arsenic content and the silicon content in the treated water were quantified according to the factory drainage test method (JIS K 0102) to measure the dearsenicization rate and the silicon removal rate. The results are shown in Table 4.

実施例2 亜砒酸ナトリウム及びメタ珪酸ナトリウムを純水中に溶
解し、3価の砒素7.8mg/及びSiO35mg/
の被処理水を調製し、この被処理水をそのままあるいは
35%過酸化水素水で酸化処理をして、第3表に示す混
合吸着剤を第5表に示す濃度(ppm)で添加し、実施例
1と同様にして脱砒素・脱珪素処理を行い、実施例1と
同様にしてpH値、脱砒素率及び脱珪素率をそれぞれ測定
した。結果を第5表に示す。
Example 2 Sodium arsenite and sodium metasilicate were dissolved in pure water, and trivalent arsenic 7.8 mg / and SiO 2 35 mg /
Water to be treated is prepared, and the water to be treated is oxidized as it is or with 35% hydrogen peroxide water, and the mixed adsorbent shown in Table 3 is added at the concentration (ppm) shown in Table 5, A dearsenic / silicon removal treatment was performed in the same manner as in Example 1, and a pH value, an arsenic removal rate and a silicon removal rate were measured in the same manner as in Example 1. The results are shown in Table 5.

[発明の効果] 本発明方法によれば、アルカリ処理スラグとマグネシア
系吸着剤とを併用することにより、砒素及び珪素が共存
する種々の排水の高度処理、ボイラー用水の水質管理、
地熱発電所の排水処理等の被処理水中の砒素と珪素とを
同時にかつ効率良く除去することができる。
[Effects of the Invention] According to the method of the present invention, by using an alkali-treated slag and a magnesia-based adsorbent in combination, advanced treatment of various wastewater in which arsenic and silicon coexist, water quality control of boiler water,
Arsenic and silicon in water to be treated such as wastewater treatment of a geothermal power plant can be removed simultaneously and efficiently.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−28491(JP,A) 特開 昭52−9963(JP,A) 特開 昭54−137490(JP,A) 特開 昭56−51283(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 61-28491 (JP, A) JP-A 52-9963 (JP, A) JP-A 54-137490 (JP, A) JP-A 56- 51283 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被処理水中に含まれる砒素及び珪素を同時
に除去するに当り、砒素及び珪素の吸着剤としてアルカ
リ処理スラグとマグネシア系吸着剤との混合物を使用す
ることを特徴とする砒素及び珪素の同時除去法。
1. When simultaneously removing arsenic and silicon contained in water to be treated, a mixture of alkali-treated slag and a magnesia-based adsorbent is used as an adsorbent for arsenic and silicon. Simultaneous removal method.
【請求項2】砒素及び珪素の吸着剤がアルカリ処理スラ
グ10〜90重量部とマグネシア系吸着剤90〜10重
量部の混合物である特許請求の範囲第1項記載の砒素及
び珪素の同時除去法。
2. The simultaneous removal method for arsenic and silicon according to claim 1, wherein the adsorbent for arsenic and silicon is a mixture of 10 to 90 parts by weight of alkali-treated slag and 90 to 10 parts by weight of magnesia adsorbent. .
【請求項3】被処理水のpH値が10.5〜11.5であ
る特許請求の範囲第1項又は第2項記載の砒素及び珪素
の同時除去法。
3. The simultaneous removal method of arsenic and silicon according to claim 1 or 2, wherein the pH value of the water to be treated is 10.5-11.5.
【請求項4】被処理水が酸化剤で予備処理されたもので
ある特許請求の範囲第1項ないし第3項のいずれかに記
載の砒素及び珪素の同時除去法。
4. The method for simultaneous removal of arsenic and silicon according to claim 1, wherein the water to be treated is pretreated with an oxidizing agent.
JP18533485A 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon Expired - Lifetime JPH0657354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18533485A JPH0657354B2 (en) 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18533485A JPH0657354B2 (en) 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon

Publications (2)

Publication Number Publication Date
JPS6245394A JPS6245394A (en) 1987-02-27
JPH0657354B2 true JPH0657354B2 (en) 1994-08-03

Family

ID=16168988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18533485A Expired - Lifetime JPH0657354B2 (en) 1985-08-23 1985-08-23 Simultaneous removal method of arsenic and silicon

Country Status (1)

Country Link
JP (1) JPH0657354B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003170177A (en) * 2001-12-04 2003-06-17 Denki Kagaku Kogyo Kk Agent for decreasing harmful substance
JP2005000823A (en) * 2003-06-12 2005-01-06 Japan Science & Technology Agency Method for treating geothermal water
WO2006080587A1 (en) * 2005-01-31 2006-08-03 Egs Company, Limited Immobilizing agent and immobilization method for harmful component
SE528474C2 (en) * 2005-03-04 2006-11-21 Bergsskolan Kompetensutvecklin Method of adsorption of metal ions
JP6031270B2 (en) * 2011-06-27 2016-11-24 Jfeスチール株式会社 Methods for reducing harmful elements
JP6031271B2 (en) * 2011-10-31 2016-11-24 Jfeスチール株式会社 Hazardous element reducing material and method for reducing harmful element
JP6859123B2 (en) * 2017-02-10 2021-04-14 株式会社クラレ Silica-containing water treatment method and its treatment equipment
JP2018149520A (en) * 2017-03-14 2018-09-27 オルガノ株式会社 Water treatment method, magnesium agen for water treatment, and method for producing magnesium agent for water treatment
CN114101275B (en) * 2021-11-25 2023-02-03 赛恩斯环保股份有限公司 Mineralization and detoxification treatment method of arsenic alkali residue

Also Published As

Publication number Publication date
JPS6245394A (en) 1987-02-27

Similar Documents

Publication Publication Date Title
JP5913436B2 (en) Boron remover
EP0352096A2 (en) Compositions to encapsulate chromium, arsenic, and other toxic metals in wastes
CN111547804A (en) Composite defluorinating agent for industrial wastewater, preparation method and method for defluorinating industrial wastewater
JP2007283168A (en) Adsorbent and its manufacturing method
JP4607847B2 (en) Treatment method and treatment agent for boron-containing wastewater
US5397500A (en) Compositions for treating waste water which contains heavy metals
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP4558633B2 (en) Wastewater treatment method containing fluoride ions
CN101041496B (en) Treatment method for drainge containing fluorin ion and drainge treating agent
WO2008001442A1 (en) Anion adsorbent, water or soil cleanup agent and process for producing the same
JP2010082497A (en) Water treating agent and method for treating water
JP2009254920A (en) Heavy metal treating agent and method of making heavy metal-contaminated matter harmless
KR101293283B1 (en) Method for removing fluoride from waste water containing fluoroboric acid
JPH0130555B2 (en)
KR100318661B1 (en) Wastewater treatment agent and its treatment method
JP2007283216A (en) Boron-containing wastewater treatment method
JP4696017B2 (en) Treatment method for boron-containing wastewater
JPH11221576A (en) Treatment of selenium-containing waste water or selenium-containing sludge
JPS6214984A (en) Method for adsorptive removal of phosphorus
JP2023025362A (en) Harmful substance treatment agent and method for treating harmful substance-containing waste water
JP4995794B2 (en) Boron remover and method for treating boron-containing water
AU749564B2 (en) Composition and process for the removal of the phosphate ion content of waters
JP2007283217A (en) Boron-containing wastewater treatment method
JPH0218906B2 (en)
CN114560549B (en) Application of synthetic wurtzite in advanced oxidation process water treatment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term