JP2005000823A - Method for treating geothermal water - Google Patents

Method for treating geothermal water Download PDF

Info

Publication number
JP2005000823A
JP2005000823A JP2003167817A JP2003167817A JP2005000823A JP 2005000823 A JP2005000823 A JP 2005000823A JP 2003167817 A JP2003167817 A JP 2003167817A JP 2003167817 A JP2003167817 A JP 2003167817A JP 2005000823 A JP2005000823 A JP 2005000823A
Authority
JP
Japan
Prior art keywords
geothermal water
treatment tank
arsenic
treatment
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167817A
Other languages
Japanese (ja)
Inventor
Hidehiko Okada
秀彦 岡田
Hiroshi Nakazawa
廣 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003167817A priority Critical patent/JP2005000823A/en
Publication of JP2005000823A publication Critical patent/JP2005000823A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the adsorption efficiency of arsenic in geothermal water by making silica adsorption on iron hydroxide harder. <P>SOLUTION: First, geothermal water at least containing silica and arsenic and taken out from underground is charged into an oxidizing tank 1, and pretreatment of controlling the pH of the geothermal water to ≥9 and further adding an oxidizer thereto is performed. Next, the geothermal water is intermittently fed to a treatment tank 2, ferric ions are added to the treatment tank 2 per feed to precipitate arsenic, and sediment produced by the precipitation is separated from supernatant fluid. Then, when new geothermal water is treated in the treatment tank 2, the separated sediment is charged to the treatment tank 2 and is repeatedly used. Further, the pH of the treatment liquid in the treatment tank 2 is controlled to 3 to 5 on the treatment, and the repetition number of the use of the sediment is made ≥5 times. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は地下から取り出される地熱水の処理方法に係り、特に地熱水中に含有される砒素(As)を高い効率で除去することができる地熱水の処理方法に関する。
【0002】
【従来の技術】
近年、地熱発電所が注目されてきている。このような発電所では地下から出てくる高温高圧の蒸気を動力として発電用タービンを駆動し発電を行なう。
この際、蒸気の採集地によっては地下から蒸気だけではなく、蒸気とともに高温の地熱水が噴出する場合がある。このような地熱水には砒素(As)が含有されることが多く、例えば、この地熱水を暖房用に利用する場合等では、地熱水から砒素を除去しなければならない。また、入浴用に用いられる地熱水としての温泉水も同様である。
【0003】
従来このような地熱水の処理方法として、例えば水酸化鉄共沈法が用いられている。
この水酸化鉄共沈法は、砒素を含有した地熱水に第二鉄イオンを添加、例えば硫酸第二鉄水溶液を添加して反応させ水酸化鉄を生成し砒素を共沈させ、共沈により生成された澱物を砂ろ過等で除去する方法である。
【0004】
しかしながら、この従来の水酸化鉄共沈法では、必ずしも砒素の除去効率が十分とはいえず、本願発明者らは、より一層除去効率を向上させる研究を行なってきた。そして、新たな地熱水を処理する際に、分離された澱物を繰り返し用いることが有効であることを見出した。
【0005】
ところが、従来、重金属を含有する排水の処理方法として、澱物を繰り返し用いる技術が、例えば、特許文献1(特開平11−314094号公報)に記載されている。
これは、砒素および他の重金属類を含有する排水にpH7以上で硫化剤を添加し、引き続き、pH7.5以上に調整して生成した硫化物系析出物が液中に存在したままの状態で第二鉄イオンを添加し、生成した澱物を液から分離する方法であり、この際、濾別した澱物を次期の第二鉄イオンの添加と同時にまたはその前後に添加する排水の処理法である。
【0006】
【特許文献1】
特開平11−314094号公報
【0007】
【発明が解決しようとする課題】
しかしながら、この従来の澱物を第二鉄イオンの添加と同時にまたはその前後に添加する方法にあっては、これをそのまま地熱水に適用しても、必ずしも砒素の除去効率が十分とはいえないという問題があった。その理由は、地熱水をpH7.5以上に調整して第二鉄イオンを添加した際には、水酸化鉄にシリカも吸着し易いことから、それだけ、砒素の吸着を阻害してしまうと考えられるからである。そのため、従来の澱物を添加する方法を単に適用することができない。
【0008】
本発明は上記の問題点に鑑みてなされたもので、水酸化鉄にシリカを吸着しにくくして、地熱水中の砒素の吸着効率を向上させた地熱水の処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
このような目的を達成するため本発明の地熱水の処理方法は、少なくともシリカ及び砒素を含み地下から取出される地熱水を処理槽に間欠若しくは連続して供給し、該処理槽において第二鉄イオンを加えて砒素を共沈させ、共沈により生成された澱物を上澄みと分離する地熱水の処理方法において、
上記処理槽で処理する際に、上記分離された澱物を該処理槽に入れて用いるとともに、上記処理槽の処理液のpHを、3≦pH≦5にして処理する構成としている。
また、澱物の沈殿の際には、凝集剤を用いてよい。凝集剤としては、例えば、陽イオン性高分子凝集剤が挙げられる。澱物の分離は、例えば、沈殿法、あるいは、磁気分離法など、適宜の方法で行なわれる。
【0010】
これにより、処理槽の処理液のpHが、3≦pH≦5の範囲では、シリカが吸着しにくくなり、砒素の吸着効率を向上させることができる。pHが3に満たないと、水酸化鉄の生成が不十分で砒素の除去効率が低いという不都合があり、pHが5を超えると、シリカが吸着していくので、砒素の吸着効率が低下してくる。
この場合、上記処理槽の処理液のpHを、3.5≦pH≦4.5にして処理することがより望ましい。より確実にシリカの吸着が抑制される。
【0011】
また、上記の目的を達成するため本発明の地熱水の処理方法は、少なくともシリカ及び砒素を含み地下から取出される地熱水を処理槽に間欠に供給し、該処理槽への供給毎に第二鉄イオンを加えて砒素を共沈させるとともに、共沈により生成された澱物を上澄みと分離する地熱水の処理方法において、
新たな地熱水を上記処理槽で処理する際に、上記分離された澱物を該処理槽に入れて繰り返し用いるとともに、上記処理槽の処理液のpHを、3≦pH≦5にして処理し、上記澱物の用いる繰り返し使用回数を5回以上にした構成としている。
【0012】
これにより、処理槽の処理液のpHが、3≦pH≦5の範囲では、シリカが吸着しにくくなり、砒素の吸着効率を向上させることができる。pHが3に満たないと、水酸化鉄の生成が不十分で砒素の除去効率が低いという不都合があり、pHが5を超えると、シリカが吸着していくので、砒素の吸着効率が低下してくる。
この場合も、上記処理槽の処理液のpHを、3.5≦pH≦4.5にして処理することがより望ましい。より確実にシリカの吸着が抑制される。
また、澱物の用いる繰り返し使用回数を5回以上にしているので、澱物の効果により、砒素の吸着効率が向上させられるとともに、それだけ、加える第二鉄イオンの量を少なくでき、処理コストを大幅に削減できるようになる。繰り返し回数を5回以上にすると、澱物容量がほぼ一定化し、処理効率が安定化してくる。
【0013】
更に、必要に応じ、上記処理槽へ地熱水を供給する前に、該地熱水のpHを、9≦pHにするとともに、酸化剤を添加する前処理を行なう構成としている。
酸化剤としては、例えば、次亜塩素酸ソーダあるいは過酸化水素が用いられる。一般に、砒素は地熱水中では主に亜砒酸として存在する3価の砒素(以下「As(III )」とも記す)と、主に砒酸として存在する5価の砒素(以下「As(V)」とも記す)とが溶解して存在しているが、地熱水中では砒素はAs(III )として存在する割合が高いことが分かってきている。
【0014】
ここで、前処理として地熱水のpH値を上昇させると、As(III )がAs(V)に効率的に酸化処理される。このpH値の上昇により、As(III )がAs(V)に効率的に酸化処理される。更に、酸化剤を添加するので、これにより、地熱水中のAs(III )がより確実にAs(V)となり、地熱水中の砒素を水酸化鉄共沈法で除去し易いようにすることができる。
【0015】
また、必要に応じ、上記処理槽へ地熱水を供給する前に、該地熱水のpHを、9≦pHにするとともに、空気曝気による前処理を行なう構成としている。これにより、地熱水中のAs(III )がより確実にAs(V)となり、地熱水中の砒素を水酸化鉄共沈法で除去し易いようにすることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態に係る地熱水の処理方法について説明する。本実施の形態が処理する地熱水は、少なくともシリカ及び砒素を含み地下から取出されるものである。地熱水としては、例えば、3価の砒素(As(III ))の濃度3.4mg/lで、pH8.4のものである。
【0017】
本実施の形態では、図1に示すように、酸化槽1と、処理槽2とを設け、酸化槽1で前処理を行ない、次に、この酸化槽1の地熱水を処理槽2に移し、ここで、この処理槽2への供給毎に第二鉄イオンを加えて砒素を共沈させるとともに、その後、処理槽2から上澄みを取り、共沈により生成された澱物を処理槽に残すようにする。そして、新たな地熱水を処理槽2で処理する際に、分離された澱物を処理槽に入れて繰り返し用いる。
【0018】
先ず、最初の酸化槽1での前処理について説明すると、処理すべき地熱水にアルカリ化剤を添加する。このアルカリ化剤としては水酸化ナトリウムが好適である。これにより、もともとpH8.4であった地熱水のpHを9.0以上、例えばpH10とする。この処理により、3価の砒素(As(III ))は5価の砒素(As(V))に酸化される。
この状態で、更に、酸化剤を添加する。酸化剤としては、例えば、次亜塩素酸ソーダあるいは過酸化水素水が好適である。これにより、3価の砒素(As(III ))は5価の砒素(As(V))に確実に酸化される。また、空気曝気による前処理を行なう構成としても良い。
【0019】
次に、処理槽2での処理について説明する。先ず、図1(a)に示すように、第1回目の処理について説明する。上記の酸化槽1の地熱水を処理槽2に移し、処理液のpHを、3≦pH≦5、望ましくは、3.5≦pH≦4.5にする。このpH調整においては、例えば、硫酸を用いる。また、pHが低くなりすぎたならば、このアルカリ化剤として例えば水酸化ナトリウムを用いる。
【0020】
この状態で、第二鉄イオンを加えて砒素を共沈させる。例えば、硫酸第二鉄溶液を添加する。3価の砒素(As(III ))の濃度3.4mg/lという条件下では、第二鉄イオンの添加量を、毎回、70mg/l〜120mg/lにしたことが有効である。70mg/lに満たないと、処理効率が劣る。また、120mg/lを超えると、Feの量が多くなるので、それだけ、コスト高になって採算性を損ねる。望ましくは、第二鉄イオンの添加量は、毎回、80±5mg/lである。これにより、共沈処理が行なわれる。この場合、処理槽2の処理液のpHが、3≦pH≦5、望ましくは、3.5≦pH≦4.5なので、処理液中のシリカが吸着しにくくなり、それだけ、砒素の吸着効率が向上させられる。
また、この場合、凝集剤を投入しても良い。凝集剤としては、例えば、陽イオン性高分子凝集剤が挙げられる。
そして、その後、沈殿法により澱物を沈殿させ、処理槽2から上澄みを取り、共沈により生成された澱物を処理槽に残すようにする。あるいは、この際、磁気分離法など、別の適宜の方法で行なっても良い。
【0021】
次に、図1(b)に示すように、処理槽2での、第二回目以降の処理について説明する。上記と同様に酸化槽1の処理された処理液は、澱物が残された処理槽2に移される。そして、上記と同様に、処理液のpHを、3≦pH≦5、望ましくは、3.5≦pH≦4.5にする。このpH調整においては、例えば、硫酸を用いる。また、pHが低くなりすぎたならば、アルカリ化剤として例えば水酸化ナトリウムを用いる。
【0022】
この状態で、第二鉄イオンを加えて砒素を共沈させる。例えば、硫酸第二鉄溶液を添加する。3価の砒素(As(III ))の濃度3.4mg/lという条件下では、第二鉄イオンの添加量は、上記と同様に、毎回、70mg/l〜120mg/l、望ましくは、毎回、80±5mg/lである。これにより、共沈処理が行なわれる。この場合、処理槽2の処理液のpHが、3≦pH≦5、望ましくは、3.5≦pH≦4.5なので、処理液中のシリカが吸着しにくくなり、それだけ、砒素の吸着効率が向上させられる。
【0023】
また、澱物を繰り返し用いるので、澱物の効果により、砒素の吸着効率が向上させられるとともに、それだけ、加える第二鉄イオンの量を少なくでき、処理コストを大幅に削減できるようになる。繰り返し回数を5回以上にすると、澱物容量がほぼ一定化し、処理効率が安定化してくる。
このようにして、繰り返し地熱水を処理する。
【0024】
図2には、別の実施の形態に係る地熱水の処理方法を示す。これは、酸化槽1と、処理槽2と、沈殿槽3とを設け、酸化槽1で前処理を行ない、次に、この酸化槽1の地熱水を処理槽2に連続的に移し、ここで、第二鉄イオンを連続あるいは間欠に加えて砒素を共沈させるとともに、処理槽2から上澄みを取出し、沈殿槽3に移して更に澱物を沈殿させ、上澄みと澱物とを分ける。この場合、磁気分離法など、別の適宜の方法で行なっても良い。そして、澱物は処理槽2に戻す。そのため、処理槽2には、処理槽2内で生じている澱物と、沈殿槽3で回収した澱物とが収容されることになる。処理槽2に澱物が増えて溜まってきた場合には、処理槽2の下端から適時に回収する。酸化槽1での処理及び処理槽2での処理は、上記と同じになるように行なう。上記と異なって、連続的に処理を行なうことができるので、処理効率が向上させられる。
【0025】
【実験例】
次に、本発明に係る地熱水の処理方法の実験例について説明する。この実験例で用いた地熱水は、3価の砒素(As(III ))の濃度3.4mg/lで、pH8.4のものである。
(実験例1)
地熱水の前処理におけるpH値と砒素の酸化の程度との関係を測定した。本例では、地熱水中のpH値を変化させ、変化毎に過酸化水素を地熱水中のAs(III )の1倍モル添加して10分間撹拌し、その後のAs(III )の酸化率を求め、pHの影響について検討した。pHは水酸化ナトリウムで調整した。結果を図3に示す。
【0026】
この結果から、地熱水中の亜砒酸(As(III ))は、酸化剤としての過酸化水素水により、砒酸(As(V))に酸化するが、地熱水中のpHは8.1なので、効率よいAs(III )の酸化を行なうにはpHを9以上にしてから過酸化水素水を添加することが有効であることが分かる。
【0027】
(実験例2)
処理槽2において第二鉄イオンを加えて砒素を共沈させる際の、地熱水のpH値と砒素の除去の程度を測定した。本例では、地熱水中のAs(III )を過酸化水素で酸化した後、Fe(III )を添加し種々のpHに調節して水酸化鉄を生成し、10分間撹拌後、ろ過し、ろ液のAs濃度を測定した。添加溶液は、硫酸第二鉄溶液である。結果を、図4に示す。
【0028】
この結果から、処理液のpHを、3≦pH≦5、望ましくは、3.5≦pH≦4.5にして処理することが有効に砒素を除去できることが分かる。
【0029】
(実験例3)
処理槽2において第二鉄イオンを加えて砒素を共沈させる際の、地熱水のpH値とシリカの除去の程度を測定した。本例では、地熱水中のAs(III )を過酸化水素で酸化した後、Fe(III )を添加し種々のpHに調節して水酸化鉄を生成し、10分間撹拌後、ろ過し、ろ液のSi濃度を測定した。添加溶液は、硫酸第二鉄溶液である。結果を、図5に示す。
【0030】
この結果から、処理液のpHが5を超えると、シリカの吸着量が多くなっていくことが分かる。即ち、上記実験例2の結果とも対応し、処理液のpHが5以下であると、シリカが吸着しにくくなり、砒素の吸着効率が向上させられる。
【0031】
(実験例4)
澱物繰り返し実験を行なった。この実験は、澱物を繰り返し使用し、繰り返し使用毎に、Fe(III )を添加し、その添加量に対するろ液のAs濃度を測定した。添加量は、40mg/l,60mg/l,80mg/l,120mg/lの4態様とした。結果を図6に示す。
【0032】
この結果から、澱物がAsを吸着するため回数を重ねると処理効率が増加するが、60mg/l以下では、処理効率が劣るが、80mg/l以上では、澱物と新たに添加されたFe(III )との相乗効果により、処理効率が大幅に増加する。120mg/lを超えると、処理効率は増加するが、Feの量が多くなるので、それだけ、コスト高になって採算性を損ねる。このことから、Fe(III )の毎回の添加量を適正量にすれば、Asを除去するのに必要なFe(III )量を削減できることが分かる。望ましくは、第二鉄イオンの添加量は、毎回、80±5mg/lである。
【0033】
(実験例5)
澱物を繰り返し使用行なった場合の澱物容量(静置20分後)に及ぼす繰り返し回数の影響について実験した。本例では、▲1▼ビーカに地熱水200mlを入れ、Fe(III )を120mg/lになるように添加し、pH4.0に調整し、メスシリンダーに移し、反転撹拌を10回行なった。20分静置後沈降した澱物の容積を測定した。▲2▼測定後、上澄水を捨て、澱物をビーカに移した。▲1▼と▲2▼の操作を繰り返した。結果を図7に示す。
【0034】
この結果から、澱物繰り返し法では、はじめ澱物の容積は増加するが、ある回数以上になると澱物容積が一定となることが分かる。澱物の用いる繰り返し使用回数を5回以上にすると、澱物容量がほぼ一定化し、処理効率が安定化してくる。
【0035】
【発明の効果】
以上説明したように、本発明の地熱水の処理方法によれば、地熱水を処理槽に間欠若しくは連続して供給し、この処理槽において第二鉄イオンを加えて砒素を共沈させる際、共沈により生成され分離された澱物を処理槽に入れて用いるとともに、処理槽の処理液のpHを、3≦pH≦5、望ましくは、3.5≦pH≦4.5にして処理する構成としたので、処理槽の処理液のpHの関係で、シリカが吸着しにくくなり、それだけ、砒素の吸着効率を向上させることができるという効果がある。また、澱物の用いる繰り返し使用回数を5回以上にすれば、澱物の効果により、砒素の吸着効率が向上させられるとともに、それだけ、加える第二鉄イオンの量を少なくでき、処理コストを大幅に削減できるようになる。また、繰り返し回数を5回以上にすると、澱物容量がほぼ一定化し、処理効率が安定化してくるという効果も奏する。
【0036】
また、処理槽へ地熱水を供給する前に、地熱水のpHを、9≦pHにするとともに、酸化剤を添加する前処理を行なう構成とした場合には、pH値の上昇により、As(III )がAs(V)に効率的に酸化処理することができるとともに、酸化剤を添加するので、これにより、地熱水中のAs(III )がより確実にAs(V)となり、地熱水中の砒素を水酸化鉄共沈法で除去し易いようにすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る地熱水の処理方法を示す図である。
【図2】本発明の別の実施例に係る地熱水の処理方法を示す図である。
【図3】本発明の実験例に係り、地熱水の前処理におけるpH値と砒素の酸化の程度との関係を示すグラフである。
【図4】本発明の実験例に係り、処理槽において第二鉄イオンを加えて砒素を共沈させる際の、地熱水のpH値と砒素の除去の程度との関係を示すグラフである。
【図5】本発明の実験例に係り、処理槽において第二鉄イオンを加えて砒素を共沈させる際の、地熱水のpH値とシリカの除去の程度との関係を示すグラフである。
【図6】本発明の実験例に係り、澱物を繰り返し使用する際、繰り返し使用毎に添加するFe(III )の量と砒素の除去の程度との関係を示すグラフである。
【図7】本発明の実験例に係り、澱物を繰り返し使用する際、澱物容量と繰り返し回数との関係を示すグラフである。
【符号の説明】
1 酸化槽
2 処理槽
3 沈殿槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating geothermal water taken out from underground, and more particularly, to a method for treating geothermal water that can remove arsenic (As) contained in geothermal water with high efficiency.
[0002]
[Prior art]
In recent years, geothermal power plants have attracted attention. In such a power plant, power is generated by driving a turbine for power generation using high-temperature and high-pressure steam coming out of the underground.
At this time, depending on the place where the steam is collected, not only the steam but also high-temperature geothermal water may spout from the basement. Such geothermal water often contains arsenic (As). For example, when this geothermal water is used for heating, arsenic must be removed from the geothermal water. The same applies to hot spring water as geothermal water used for bathing.
[0003]
Conventionally, for example, an iron hydroxide coprecipitation method has been used as a method for treating such geothermal water.
In this iron hydroxide coprecipitation method, ferric ions are added to geothermal water containing arsenic, for example, an aqueous solution of ferric sulfate is added and reacted to form iron hydroxide and coprecipitate arsenic. Is a method of removing the starch produced by sand filtration or the like.
[0004]
However, this conventional iron hydroxide coprecipitation method does not always have sufficient arsenic removal efficiency, and the inventors of the present application have conducted research to further improve the removal efficiency. And when processing new geothermal water, it discovered that it was effective to use the isolate | separated starch repeatedly.
[0005]
However, a technique for repeatedly using starch as a method for treating wastewater containing heavy metals has been described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 11-314094).
This is because the sulfide-based precipitate produced by adding a sulfiding agent at a pH of 7 or higher to wastewater containing arsenic and other heavy metals and subsequently adjusting the pH to 7.5 or higher remains in the liquid. It is a method of adding ferric ions and separating the produced starch from the liquid. At this time, the wastewater treatment method in which the filtered starch is added simultaneously with or before or after the addition of the next ferric ion. It is.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-314094
[Problems to be solved by the invention]
However, in the conventional method of adding starch at the same time as before or after the addition of ferric ion, even if this is applied to geothermal water as it is, the removal efficiency of arsenic is not always sufficient. There was no problem. The reason is that when geothermal water is adjusted to pH 7.5 or more and ferric ions are added, silica is also easily adsorbed to iron hydroxide, so that arsenic adsorption is inhibited accordingly. It is possible. Therefore, the conventional method of adding starch cannot be simply applied.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for treating geothermal water in which silica is hardly adsorbed on iron hydroxide and arsenic adsorption efficiency in geothermal water is improved. And
[0009]
[Means for Solving the Problems]
In order to achieve such an object, the geothermal water treatment method of the present invention supplies, at least intermittently or continuously, geothermal water containing at least silica and arsenic and taken out from the underground to the treatment tank. In a method for treating geothermal water in which ferric ions are added to coprecipitate arsenic and the starch produced by the coprecipitation is separated from the supernatant,
In the treatment in the treatment tank, the separated starch is used in the treatment tank, and the treatment liquid in the treatment tank is treated at a pH of 3 ≦ pH ≦ 5.
In addition, a flocculant may be used during the precipitation of the starch. Examples of the flocculant include cationic polymer flocculants. Separation of the starch is performed by an appropriate method such as a precipitation method or a magnetic separation method.
[0010]
Thereby, when the pH of the treatment liquid in the treatment tank is in the range of 3 ≦ pH ≦ 5, silica is hardly adsorbed, and the arsenic adsorption efficiency can be improved. If the pH is less than 3, there is an inconvenience that the generation of iron hydroxide is insufficient and the arsenic removal efficiency is low. If the pH exceeds 5, the silica is adsorbed, so that the arsenic adsorption efficiency decreases. Come.
In this case, it is more desirable to perform the treatment by setting the pH of the treatment liquid in the treatment tank to 3.5 ≦ pH ≦ 4.5. Silica adsorption is more reliably suppressed.
[0011]
In addition, in order to achieve the above object, the geothermal water treatment method of the present invention intermittently supplies geothermal water containing at least silica and arsenic and extracted from the underground to the treatment tank. In a method for treating geothermal water in which ferric ions are added to coprecipitate the arsenic, and the starch produced by the coprecipitation is separated from the supernatant.
When new geothermal water is treated in the treatment tank, the separated starch is repeatedly used in the treatment tank, and the treatment liquid in the treatment tank has a pH of 3 ≦ pH ≦ 5. In addition, the number of repeated uses of the starch is set to 5 or more.
[0012]
Thereby, when the pH of the treatment liquid in the treatment tank is in the range of 3 ≦ pH ≦ 5, silica is hardly adsorbed, and the arsenic adsorption efficiency can be improved. If the pH is less than 3, there is an inconvenience that the generation of iron hydroxide is insufficient and the arsenic removal efficiency is low. If the pH exceeds 5, the silica is adsorbed, so that the arsenic adsorption efficiency decreases. Come.
Also in this case, it is more desirable to perform the treatment by setting the pH of the treatment liquid in the treatment tank to 3.5 ≦ pH ≦ 4.5. Silica adsorption is more reliably suppressed.
In addition, since the number of repeated uses of starch is 5 times or more, the effect of starch improves the adsorption efficiency of arsenic, and the amount of ferric ions added can be reduced accordingly, reducing the processing cost. It can be greatly reduced. When the number of repetitions is 5 times or more, the starch capacity becomes almost constant, and the processing efficiency is stabilized.
[0013]
Furthermore, before supplying geothermal water to the said processing tank as needed, while setting the pH of this geothermal water to 9 <= pH, it is set as the structure which performs the pretreatment which adds an oxidizing agent.
As the oxidizing agent, for example, sodium hypochlorite or hydrogen peroxide is used. In general, arsenic is also referred to as trivalent arsenic (hereinafter also referred to as “As (III)”) mainly present as arsenous acid in geothermal water and pentavalent arsenic (hereinafter referred to as “As (V)”) mainly present as arsenic acid. ) And dissolved, but it has been found that arsenic is present as As (III) in geothermal water.
[0014]
Here, when the pH value of the geothermal water is increased as pretreatment, As (III) is efficiently oxidized to As (V). As the pH value increases, As (III) is efficiently oxidized to As (V). Further, since an oxidizing agent is added, As (III) in the geothermal water is more reliably changed to As (V), and arsenic in the geothermal water can be easily removed by the iron hydroxide coprecipitation method. .
[0015]
Moreover, before supplying geothermal water to the said processing tank as needed, while setting pH of this geothermal water to 9 <= pH, it is set as the structure which performs the pretreatment by air aeration. As a result, As (III) in the geothermal water becomes As (V) more reliably, and arsenic in the geothermal water can be easily removed by the iron hydroxide coprecipitation method.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the processing method of the geothermal water which concerns on embodiment of this invention is demonstrated. The geothermal water to be treated in this embodiment contains at least silica and arsenic and is taken out from the underground. The geothermal water has, for example, a trivalent arsenic (As (III)) concentration of 3.4 mg / l and a pH of 8.4.
[0017]
In the present embodiment, as shown in FIG. 1, an oxidation tank 1 and a treatment tank 2 are provided, pretreatment is performed in the oxidation tank 1, and then geothermal water in the oxidation tank 1 is supplied to the treatment tank 2. Here, ferric ions are added to co-precipitate arsenic for every supply to the treatment tank 2, and then the supernatant is taken from the treatment tank 2 and the starch produced by the co-precipitation is put into the treatment tank. Try to leave. And when processing new geothermal water with the processing tank 2, the isolate | separated starch is put into a processing tank and it uses repeatedly.
[0018]
First, the pretreatment in the first oxidation tank 1 will be described. An alkalizing agent is added to the geothermal water to be treated. Sodium hydroxide is preferred as the alkalinizing agent. Thereby, the pH of the geothermal water which was originally pH 8.4 is set to 9.0 or more, for example, pH 10. By this treatment, trivalent arsenic (As (III)) is oxidized to pentavalent arsenic (As (V)).
In this state, an oxidizing agent is further added. As the oxidizing agent, for example, sodium hypochlorite or hydrogen peroxide water is suitable. This ensures that trivalent arsenic (As (III)) is oxidized to pentavalent arsenic (As (V)). Moreover, it is good also as a structure which performs the pretreatment by air aeration.
[0019]
Next, processing in the processing tank 2 will be described. First, as shown in FIG. 1A, the first process will be described. The geothermal water in the oxidation tank 1 is transferred to the treatment tank 2, and the pH of the treatment liquid is 3 ≦ pH ≦ 5, preferably 3.5 ≦ pH ≦ 4.5. In this pH adjustment, for example, sulfuric acid is used. If the pH is too low, sodium hydroxide is used as the alkalizing agent.
[0020]
In this state, ferric ions are added to coprecipitate arsenic. For example, a ferric sulfate solution is added. Under the condition that the concentration of trivalent arsenic (As (III)) is 3.4 mg / l, it is effective that the amount of ferric ion added is 70 mg / l to 120 mg / l each time. If it is less than 70 mg / l, the processing efficiency is inferior. On the other hand, if it exceeds 120 mg / l, the amount of Fe increases, so that the cost increases and the profitability is impaired. Desirably, the amount of ferric ion added is 80 ± 5 mg / l each time. Thereby, a coprecipitation process is performed. In this case, since the pH of the treatment liquid in the treatment tank 2 is 3 ≦ pH ≦ 5, preferably 3.5 ≦ pH ≦ 4.5, the silica in the treatment liquid is hardly adsorbed, and the adsorption efficiency of arsenic is increased accordingly. Can be improved.
In this case, a flocculant may be added. Examples of the flocculant include cationic polymer flocculants.
Thereafter, the starch is precipitated by a precipitation method, the supernatant is taken from the treatment tank 2, and the starch produced by the coprecipitation is left in the treatment tank. Alternatively, at this time, another appropriate method such as a magnetic separation method may be used.
[0021]
Next, as shown in FIG.1 (b), the process after the 2nd time in the processing tank 2 is demonstrated. Similarly to the above, the treated liquid in the oxidation tank 1 is transferred to the treatment tank 2 where the starch is left. In the same manner as described above, the pH of the treatment liquid is 3 ≦ pH ≦ 5, preferably 3.5 ≦ pH ≦ 4.5. In this pH adjustment, for example, sulfuric acid is used. If the pH becomes too low, sodium hydroxide, for example, is used as an alkalizing agent.
[0022]
In this state, ferric ions are added to coprecipitate arsenic. For example, a ferric sulfate solution is added. Under the condition that the concentration of trivalent arsenic (As (III)) is 3.4 mg / l, the amount of ferric ion added is 70 mg / l to 120 mg / l each time, preferably as described above. 80 ± 5 mg / l. Thereby, a coprecipitation process is performed. In this case, since the pH of the treatment liquid in the treatment tank 2 is 3 ≦ pH ≦ 5, preferably 3.5 ≦ pH ≦ 4.5, the silica in the treatment liquid is hardly adsorbed, and the adsorption efficiency of arsenic is increased accordingly. Can be improved.
[0023]
Further, since the starch is repeatedly used, the arsenic adsorption efficiency is improved by the effect of the starch, and the amount of ferric ions to be added can be reduced accordingly, and the processing cost can be greatly reduced. When the number of repetitions is 5 times or more, the starch capacity becomes almost constant, and the processing efficiency is stabilized.
In this way, geothermal water is treated repeatedly.
[0024]
In FIG. 2, the processing method of the geothermal water which concerns on another embodiment is shown. This is provided with an oxidation tank 1, a treatment tank 2, and a precipitation tank 3, and pre-treats in the oxidation tank 1, and then continuously transfers the geothermal water of the oxidation tank 1 to the treatment tank 2, Here, ferric ions are added continuously or intermittently to co-precipitate arsenic, and the supernatant is taken out from the treatment tank 2 and transferred to the precipitation tank 3 to further precipitate starch, and the supernatant and starch are separated. In this case, another appropriate method such as a magnetic separation method may be used. Then, the starch is returned to the treatment tank 2. Therefore, the starch generated in the processing tank 2 and the starch recovered in the precipitation tank 3 are accommodated in the processing tank 2. When starch increases and accumulates in the processing tank 2, it is collected from the lower end of the processing tank 2 in a timely manner. The treatment in the oxidation tank 1 and the treatment in the treatment tank 2 are performed in the same manner as described above. Unlike the above, since the processing can be performed continuously, the processing efficiency is improved.
[0025]
[Experimental example]
Next, an experimental example of the geothermal water treatment method according to the present invention will be described. The geothermal water used in this experimental example has a trivalent arsenic (As (III)) concentration of 3.4 mg / l and a pH of 8.4.
(Experimental example 1)
The relationship between the pH value and the degree of oxidation of arsenic in the pretreatment of geothermal water was measured. In this example, the pH value in the geothermal water is changed, and hydrogen peroxide is added 1 time as much as As (III) in the geothermal water for every change and stirred for 10 minutes, and then the oxidation rate of As (III) is obtained. The effect of pH was examined. The pH was adjusted with sodium hydroxide. The results are shown in FIG.
[0026]
From this result, arsenous acid (As (III)) in geothermal water is oxidized to arsenic acid (As (V)) by hydrogen peroxide water as an oxidizing agent, but the pH in geothermal water is 8.1, which is efficient. It can be seen that, in order to oxidize As (III), it is effective to add hydrogen peroxide after the pH is set to 9 or higher.
[0027]
(Experimental example 2)
The pH value of geothermal water and the degree of arsenic removal were measured when ferric ions were added in the treatment tank 2 to coprecipitate arsenic. In this example, As (III) in geothermal water was oxidized with hydrogen peroxide, Fe (III) was added and adjusted to various pH to produce iron hydroxide, stirred for 10 minutes, filtered, filtered The As concentration of the liquid was measured. The additive solution is a ferric sulfate solution. The results are shown in FIG.
[0028]
From this result, it can be seen that arsenic can be effectively removed by treating the treatment liquid at pH 3 ≦ pH ≦ 5, preferably 3.5 ≦ pH ≦ 4.5.
[0029]
(Experimental example 3)
The pH value of geothermal water and the degree of removal of silica when ferric ions were added in the treatment tank 2 to coprecipitate arsenic were measured. In this example, As (III) in geothermal water was oxidized with hydrogen peroxide, Fe (III) was added and adjusted to various pH to produce iron hydroxide, stirred for 10 minutes, filtered, filtered The Si concentration of the liquid was measured. The additive solution is a ferric sulfate solution. The results are shown in FIG.
[0030]
From this result, it can be seen that when the pH of the treatment liquid exceeds 5, the adsorption amount of silica increases. That is, corresponding to the result of Experimental Example 2 above, when the pH of the treatment liquid is 5 or less, silica is hardly adsorbed and arsenic adsorption efficiency is improved.
[0031]
(Experimental example 4)
Repeated starch experiments were performed. In this experiment, starch was repeatedly used, and Fe (III) was added for each repeated use, and the As concentration of the filtrate with respect to the added amount was measured. The addition amount was set to four modes of 40 mg / l, 60 mg / l, 80 mg / l, and 120 mg / l. The results are shown in FIG.
[0032]
From this result, the processing efficiency increases as the number of times the starch adsorbs As, but the processing efficiency is inferior at 60 mg / l or less, but at 80 mg / l or more, the starch and newly added Fe are added. Due to the synergistic effect with (III), the processing efficiency is greatly increased. If it exceeds 120 mg / l, the processing efficiency increases, but the amount of Fe increases, so that the cost increases and the profitability deteriorates. From this, it can be seen that the amount of Fe (III) required to remove As can be reduced by making the addition amount of Fe (III) appropriate each time. Desirably, the amount of ferric ion added is 80 ± 5 mg / l each time.
[0033]
(Experimental example 5)
An experiment was conducted on the influence of the number of repetitions on the starch volume (after 20 minutes of standing) when the starch was repeatedly used. In this example, (1) 200 ml of geothermal water was added to a beaker, Fe (III) was added to 120 mg / l, adjusted to pH 4.0, transferred to a graduated cylinder, and inverted stirring was performed 10 times. . The volume of the starch that settled after standing for 20 minutes was measured. (2) After the measurement, the supernatant water was discarded and the starch was transferred to a beaker. The operations (1) and (2) were repeated. The results are shown in FIG.
[0034]
From this result, it can be seen that, in the starch repetition method, the starch volume initially increases, but the starch volume becomes constant after a certain number of times. If the number of repeated uses of the starch is 5 times or more, the starch volume becomes almost constant and the processing efficiency is stabilized.
[0035]
【The invention's effect】
As described above, according to the method for treating geothermal water of the present invention, geothermal water is intermittently or continuously supplied to the treatment tank, and ferric ions are added to the tub to coprecipitate arsenic. At the same time, the starch produced and separated by coprecipitation is used in the treatment tank, and the pH of the treatment liquid in the treatment tank is 3 ≦ pH ≦ 5, preferably 3.5 ≦ pH ≦ 4.5. Since the treatment is performed, the silica is less likely to be adsorbed due to the pH of the treatment liquid in the treatment tank, and the arsenic adsorption efficiency can be improved accordingly. In addition, if the number of repeated uses of starch is increased to 5 times or more, the adsorption efficiency of arsenic can be improved due to the effect of starch, and the amount of ferric ions to be added can be reduced accordingly, greatly increasing the processing cost. Can be reduced. In addition, when the number of repetitions is 5 times or more, the starch capacity is almost constant, and the processing efficiency is stabilized.
[0036]
Further, before supplying the geothermal water to the treatment tank, the pH of the geothermal water is set to 9 ≦ pH and the pretreatment for adding the oxidizing agent is performed. As (III) can be efficiently oxidized to As (V) and an oxidant is added. As a result, As (III) in the geothermal water becomes As (V) more reliably. Arsenic can be easily removed by iron hydroxide coprecipitation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for treating geothermal water according to an embodiment of the present invention.
FIG. 2 is a diagram showing a method for treating geothermal water according to another embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the pH value and the degree of arsenic oxidation in the pretreatment of geothermal water according to an experimental example of the present invention.
FIG. 4 is a graph showing the relationship between the pH value of geothermal water and the degree of arsenic removal when ferric ions are added and co-precipitated in a treatment tank according to an experimental example of the present invention. .
FIG. 5 is a graph showing the relationship between the pH value of geothermal water and the degree of silica removal when ferric ions are added to coprecipitate arsenic in a treatment tank according to an experimental example of the present invention. .
FIG. 6 is a graph showing the relationship between the amount of Fe (III) added for each repeated use and the degree of arsenic removal when the starch is used repeatedly, according to the experimental example of the present invention.
FIG. 7 is a graph showing the relationship between the starch capacity and the number of repetitions when the starch is repeatedly used in the experimental example of the present invention.
[Explanation of symbols]
1 Oxidation tank 2 Treatment tank 3 Settling tank

Claims (6)

少なくともシリカ及び砒素を含み地下から取出される地熱水を処理槽に間欠若しくは連続して供給し、該処理槽において第二鉄イオンを加えて砒素を共沈させ、共沈により生成された澱物を上澄みと分離する地熱水の処理方法において、
上記処理槽で処理する際に、上記分離された澱物を該処理槽に入れて用いるとともに、上記処理槽の処理液のpHを、3≦pH≦5にして処理することを特徴とする地熱水の処理方法。
Geothermal water containing at least silica and arsenic and taken out from the underground is intermittently or continuously supplied to the treatment tank, and ferric ions are added in the treatment tank to co-precipitate arsenic, and the starch produced by the coprecipitation In the method of treating geothermal water that separates things from the supernatant,
When the treatment is performed in the treatment tank, the separated starch is used in the treatment tank, and the treatment liquid is treated at a pH of 3 ≦ pH ≦ 5. Hot water treatment method.
上記処理槽の処理液のpHを、3.5≦pH≦4.5にして処理することを特徴とする請求項1記載の地熱水の処理方法。2. The method for treating geothermal water according to claim 1, wherein the treatment liquid in the treatment tank is treated with a pH of 3.5 ≦ pH ≦ 4.5. 少なくともシリカ及び砒素を含み地下から取出される地熱水を処理槽に間欠に供給し、該処理槽への供給毎に第二鉄イオンを加えて砒素を共沈させるとともに、共沈により生成された澱物を上澄みと分離する地熱水の処理方法において、
新たな地熱水を上記処理槽で処理する際に、上記分離された澱物を該処理槽に入れて繰り返し用いるとともに、上記処理槽の処理液のpHを、3≦pH≦5にして処理し、上記澱物の用いる繰り返し使用回数を5回以上にしたことを特徴とする地熱水の処理方法。
Geothermal water containing at least silica and arsenic is extracted from the underground and supplied to the treatment tank intermittently, and ferric ions are added to co-precipitate each time it is supplied to the treatment tank. In a method of treating geothermal water that separates the starch from the supernatant,
When new geothermal water is treated in the treatment tank, the separated starch is repeatedly used in the treatment tank, and the treatment liquid in the treatment tank has a pH of 3 ≦ pH ≦ 5. And the processing method of the geothermal water characterized by making the frequency | count of repeated use which the said starch uses into 5 times or more.
上記処理槽の処理液のpHを、3.5≦pH≦4.5にして処理することを特徴とする請求項3記載の地熱水の処理方法。4. The method for treating geothermal water according to claim 3, wherein the treatment liquid in the treatment tank is treated with a pH of 3.5 ≦ pH ≦ 4.5. 上記処理槽へ地熱水を供給する前に、該地熱水のpHを、9≦pHにするとともに、酸化剤を添加する前処理を行なうことを特徴とする請求項1,2,3または4記載の地熱水の処理方法。Before the geothermal water is supplied to the treatment tank, the pH of the geothermal water is set to 9 ≦ pH and a pretreatment for adding an oxidizing agent is performed. 4. The method for treating geothermal water according to 4. 上記処理槽へ地熱水を供給する前に、該地熱水のpHを、9≦pHにするとともに、空気曝気による前処理を行なうことを特徴とする請求項1,2,3,4または5記載の地熱水の処理方法。Before supplying geothermal water to the treatment tank, the pH of the geothermal water is set to 9 ≦ pH, and pretreatment by air aeration is performed. 5. The method for treating geothermal water according to 5.
JP2003167817A 2003-06-12 2003-06-12 Method for treating geothermal water Pending JP2005000823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167817A JP2005000823A (en) 2003-06-12 2003-06-12 Method for treating geothermal water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167817A JP2005000823A (en) 2003-06-12 2003-06-12 Method for treating geothermal water

Publications (1)

Publication Number Publication Date
JP2005000823A true JP2005000823A (en) 2005-01-06

Family

ID=34093522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167817A Pending JP2005000823A (en) 2003-06-12 2003-06-12 Method for treating geothermal water

Country Status (1)

Country Link
JP (1) JP2005000823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203239A (en) * 2006-02-03 2007-08-16 Dowa Holdings Co Ltd Method for treatment of arsenic-containing wastewater
CN105600891A (en) * 2015-11-09 2016-05-25 杨鹏 System used for remediating water body with high ferrite

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531437A (en) * 1978-08-29 1980-03-05 Japan Metals & Chem Co Ltd Removal of arsenic and silicic acid present in industrial waste water
JPS6135894A (en) * 1984-07-27 1986-02-20 Dowa Mining Co Ltd Removal of arsenic in waste water
JPS6245394A (en) * 1985-08-23 1987-02-27 Agency Of Ind Science & Technol Simultaneous removal of arsenic and silicon
JPS62121691A (en) * 1985-11-22 1987-06-02 Dowa Koei Kk Method for removing arsenic and silicic acid from geothermal water
JPH0228391B2 (en) * 1987-05-12 1990-06-22 Dowa Koei Kk KOJOHAIEKITONODATSUHISHORIHO
JPH05245483A (en) * 1992-03-03 1993-09-24 Mitsui Miike Mach Co Ltd Removing of arsenic in underground hot water
JPH11314094A (en) * 1998-03-06 1999-11-16 Dowa Mining Co Ltd Method for treating drainage containing arsenic and other heavy metals
JP2002102863A (en) * 2000-09-29 2002-04-09 Japan Science & Technology Corp Treating method for geothermal water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531437A (en) * 1978-08-29 1980-03-05 Japan Metals & Chem Co Ltd Removal of arsenic and silicic acid present in industrial waste water
JPS6135894A (en) * 1984-07-27 1986-02-20 Dowa Mining Co Ltd Removal of arsenic in waste water
JPS6245394A (en) * 1985-08-23 1987-02-27 Agency Of Ind Science & Technol Simultaneous removal of arsenic and silicon
JPS62121691A (en) * 1985-11-22 1987-06-02 Dowa Koei Kk Method for removing arsenic and silicic acid from geothermal water
JPH0228391B2 (en) * 1987-05-12 1990-06-22 Dowa Koei Kk KOJOHAIEKITONODATSUHISHORIHO
JPH05245483A (en) * 1992-03-03 1993-09-24 Mitsui Miike Mach Co Ltd Removing of arsenic in underground hot water
JPH11314094A (en) * 1998-03-06 1999-11-16 Dowa Mining Co Ltd Method for treating drainage containing arsenic and other heavy metals
JP2002102863A (en) * 2000-09-29 2002-04-09 Japan Science & Technology Corp Treating method for geothermal water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203239A (en) * 2006-02-03 2007-08-16 Dowa Holdings Co Ltd Method for treatment of arsenic-containing wastewater
JP4614093B2 (en) * 2006-02-03 2011-01-19 Dowaメタルマイン株式会社 Arsenic wastewater treatment method
CN105600891A (en) * 2015-11-09 2016-05-25 杨鹏 System used for remediating water body with high ferrite

Similar Documents

Publication Publication Date Title
JP3739480B2 (en) Treatment method of flue gas desulfurization waste water
CN110092503B (en) Method for treating copper-nickel alloy electroplating wastewater of pyrophosphate-citric acid system
CN107337301A (en) A kind of method of the electric Fenton processing waste water of additional hydrogen peroxide
CN106587456B (en) A kind of advanced oxidation based on Activation of Molecular Oxygen-flocculation method for treating water
CN105084589A (en) Treatment method and system for wet magnesium desulphurization wastewater
CN109851021A (en) It is a kind of for strengthening the compound adjusting control agent and its application that precipitation by metallic ion floatation in waste water removes
CN110092502B (en) Method for treating pyrophosphate-zinc citrate nickel alloy electroplating wastewater
CN107954555A (en) Amine process desulfurization acid waste water purifies and Application way
JP4520963B2 (en) Bacterial oxidation method of ferrous ions contained in low pH wastewater
JP2005000823A (en) Method for treating geothermal water
JPH09290299A (en) Treatment of waste water from thermal electric power plant
JP4507267B2 (en) Water treatment method
AU2016405671B2 (en) Method and process arrangement of removing cations from water
CN110759511B (en) Treatment method of gun black tin-nickel alloy electroplating wastewater
JP2001286875A (en) Method for treating arsenic-containing waste water
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP5199050B2 (en) Water treatment apparatus and water treatment method
JP4382167B2 (en) Thermal power plant wastewater treatment method
JP3923020B2 (en) Aquatic organism processing method and apparatus
JP4061671B2 (en) Thermal power plant wastewater treatment method
JPH0461712B2 (en)
JPH10128388A (en) Method and apparatus for treating selenium-containing waste water
JP2010137179A (en) Water treatment apparatus and water treatment method
JPH08192191A (en) Method for treating unsteady-state drainage of thermal power station
JP2003103265A (en) Treatment method for molybdenum containing acidic wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016