JP5199050B2 - Water treatment apparatus and water treatment method - Google Patents
Water treatment apparatus and water treatment method Download PDFInfo
- Publication number
- JP5199050B2 JP5199050B2 JP2008316817A JP2008316817A JP5199050B2 JP 5199050 B2 JP5199050 B2 JP 5199050B2 JP 2008316817 A JP2008316817 A JP 2008316817A JP 2008316817 A JP2008316817 A JP 2008316817A JP 5199050 B2 JP5199050 B2 JP 5199050B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolysis
- water
- tank
- reaction
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Description
本発明は、処理原水から何らかの除去対象物を除去するための水処理装置に関する。 The present invention relates to a water treatment apparatus for removing any object to be removed from treated raw water.
従来、被処理水内に溶出させた金属イオンと不純物とを反応させることにより、不純物を凝集させる技術がある(特許文献1を参照)。その他、溶出させた鉄イオンまたはアルミニウムイオンを生物膜濾過槽へ供給する汚水処理技術等がある(特許文献2から7を参照)。
接水表面にスケールを生成させたり、蒸発残渣物として蓄積したりする主成分の一つとして、水に溶解している溶解性シリカがある。スケール生成は、例えば配管の閉塞や熱交換器の熱交換効率の低下を招く。また、残渣物蓄積は、加湿装置やボイラ蒸気発生装置において性能低下および保守メンテナンスの大幅な増加を招く。このため、従来、シリカ除去技術として、逆浸透膜による除去(以下、逆浸透膜法)や、イオン交換樹脂による除去(以下、イオン交換膜法)、凝集剤添加による凝集沈殿分離(以下、凝集剤添加法)、電気分解による凝集沈殿分離(以下、電気分解法)、等が提案されている。 One of the main components that generate scale on the surface in contact with water and accumulate as evaporation residue is soluble silica dissolved in water. The scale generation causes, for example, piping blockage or a reduction in heat exchange efficiency of the heat exchanger. Moreover, residue accumulation causes a performance drop and a significant increase in maintenance in a humidifier or boiler steam generator. For this reason, conventionally, as a silica removal technique, removal using a reverse osmosis membrane (hereinafter referred to as reverse osmosis membrane method), removal using an ion exchange resin (hereinafter referred to as ion exchange membrane method), and aggregation and precipitation separation by adding a flocculant (hereinafter referred to as aggregation) Agent addition method), coagulation precipitation separation by electrolysis (hereinafter, electrolysis method), and the like have been proposed.
ここで、逆浸透膜法を採用した場合、シリカは膜の目詰まり原因物質の最たるものでもあり、膜寿命を大幅に短縮させるため、運転コストが膨大になる。そのため、逆浸透膜法は、純水プラントの原水としてシリカ濃度の高い原水を処理するには適さない。また、イオン交換膜法を採用した場合、技術的には確実にシリカを吸着除去できるが、運転コストが逆浸透膜法以上に高くなる。シリカ除去量によるが、一般的な地下水(シリカ濃度50〜100ppm)の処理を仮定すると、1t当たり数千円以上の処理コストとなり、超純水よりも遙かに高い精製コストが発生するため、実用は困難である。また、凝集剤添加法は、地下水や水道水レベルの濃度のシリカ除去に用いるには非常に効率が悪いことが実証されており、凝集剤添加法は実用に適さない。 Here, when the reverse osmosis membrane method is employed, silica is also the most causative substance for membrane clogging, and the membrane life is greatly shortened, resulting in an enormous operating cost. Therefore, the reverse osmosis membrane method is not suitable for treating raw water having a high silica concentration as raw water for a pure water plant. Further, when the ion exchange membrane method is adopted, technically, silica can be surely adsorbed and removed, but the operating cost is higher than that of the reverse osmosis membrane method. Depending on the amount of silica removed, assuming the treatment of general groundwater (silica concentration 50 to 100 ppm), the treatment cost is several thousand yen or more per ton, and a purification cost much higher than that of ultrapure water occurs. Practical use is difficult. Further, it has been proved that the flocculant addition method is very inefficient for use in removing silica at a level of groundwater or tap water, and the flocculant addition method is not suitable for practical use.
電気分解法では、電気分解により凝集作用に有効な例えばアルミニウムイオンなどの金属イオンを電極から溶出させることで、弱酸性の負電荷を持つシリカイオンとの反応効率を向上させる。更に、電気分解法では、負電極からの水素ガスの発生で処理水中の水酸化物イオン量を増加させる効果により、水酸化アルミニウムによる、コロイド物質の吸着が促進される。 In the electrolysis method, metal ions such as aluminum ions, which are effective for aggregating action, are eluted from the electrodes by electrolysis, thereby improving the reaction efficiency with silica ions having a weakly acidic negative charge. Further, in the electrolysis method, the adsorption of the colloidal substance by aluminum hydroxide is promoted by the effect of increasing the amount of hydroxide ions in the treated water by the generation of hydrogen gas from the negative electrode.
図6および図7は、電気分解法によって除去対象物質の除去を行う従来の装置の構成を示す図である。図6に示す装置は、処理の対象となる水の流れにおいて、上流から順に、処理原水に対して電気分解処理が行われる電気分解反応槽と、凝集物の沈殿による除去対象物の分離・除去が行われる沈殿槽と、を有する。また、図7に示す装置は、図6と同様の電気分解反応槽および沈殿槽に加えて、電気分解反応槽で生成された凝集物と除去対象
物の接触反応を促進させ、凝集物を更に大きなフロックに成長させることで、沈殿槽における凝集物の沈降時間を短縮化させるための緩速攪拌槽を有する。
6 and 7 are diagrams showing the configuration of a conventional apparatus for removing a substance to be removed by electrolysis. The apparatus shown in FIG. 6 separates and removes an electrolysis reaction tank in which electrolysis processing is performed on the raw raw water in order from the upstream in the flow of water to be treated, and an object to be removed by precipitation of aggregates. A sedimentation tank in which In addition to the same electrolytic reaction tank and precipitation tank as in FIG. 6, the apparatus shown in FIG. 7 promotes the contact reaction between the aggregate generated in the electrolytic reaction tank and the object to be removed. It has a slow stirring tank for shortening the sedimentation time of the aggregate in the sedimentation tank by growing it into a large floc.
比較的低コストでのシリカ除去が可能な電気分解法は、実用化可能性の高い技術である。しかし、性能面、コスト面、装置サイズ面で決して十分ではなく、更なる高性能化、低コスト化、コンパクト化の達成が必須である。性能と、コストおよび装置サイズと、の関係はトレードオフの関係にある。例えば、除去性能を向上させるには、より多くの金属イオンを溶出させかつ反応時間を長くすることで達成できるが、溶出量の増加は金属電極の交換頻度を上昇させランニングコストが大幅に上がってしまう。本方式でのランニングコストに占める金属電極の交換費用は50%以上であり、電極の消費増加は望ましくない。また、反応時間を長くするためには、電気分解反応槽を大型化する必要があり、装置コストの増大および設置スペースの拡大を招く。反対に、装置サイズのコンパクト化および低コスト化は、除去性能を犠牲にする。 An electrolysis method capable of removing silica at a relatively low cost is a technology that is highly practical. However, performance, cost, and device size are not sufficient, and it is essential to achieve higher performance, lower cost, and compactness. The relationship between performance, cost, and device size is a trade-off relationship. For example, to improve the removal performance, it can be achieved by eluting more metal ions and increasing the reaction time. However, the increase in the amount of elution increases the frequency of replacement of the metal electrode and significantly increases the running cost. End up. The replacement cost of the metal electrode in the running cost in this method is 50% or more, and an increase in electrode consumption is not desirable. Moreover, in order to lengthen reaction time, it is necessary to enlarge an electrolysis reaction tank, resulting in an increase in apparatus cost and an increase in installation space. On the other hand, the downsizing and cost reduction of the device size sacrifices the removal performance.
本発明は、上記した問題に鑑み、コストの増大や装置サイズの拡大を招かずに、水処理装置による除去対象物の除去性能を向上させることを課題とする。 In view of the problems described above, an object of the present invention is to improve the removal performance of an object to be removed by a water treatment apparatus without incurring an increase in cost or an increase in apparatus size.
本発明は、上記した課題を解決するために、電気分解処理が行われることで生成された電気分解処理水内の凝集物が沈殿した沈殿物を、沈殿処理前の電気分解処理水に混合させることで、コストの増大や装置サイズの拡大を招かずに、水処理装置による除去対象物の除去性能を向上させることを可能にした。 In order to solve the above-described problems, the present invention mixes the precipitate in which aggregates in the electrolyzed water generated by the electrolysis process are precipitated with the electrolyzed water before the precipitation process. This makes it possible to improve the removal performance of the object to be removed by the water treatment device without incurring an increase in cost or an increase in device size.
詳細には、本発明は、所定の除去対象物を含む処理原水に対して電気分解処理を行う電気分解手段と、前記電気分解手段によって生成された電気分解処理水に含まれる前記除去対象物の凝集物を沈殿させる沈殿手段と、前記沈殿手段によって沈殿された沈殿物の少なくとも一部を、前記電気分解手段によって生成された前記電気分解処理水に混合させる混合手段と、を備える水処理装置である。 Specifically, the present invention relates to an electrolysis unit that performs an electrolysis process on the treated raw water including a predetermined removal target, and the removal target included in the electrolysis process water generated by the electrolysis unit. A water treatment apparatus comprising: precipitation means for precipitating aggregates; and mixing means for mixing at least part of the precipitate precipitated by the precipitation means with the electrolyzed water generated by the electrolysis means. is there.
本発明に係る水処理装置は、処理の対象となる原水から、所定の除去対象物を除去するための装置である。即ち、電気分解処理の対象となる処理原水は、除去対象物を含む原水であり、除去対象物としては、例えば、処理原水に溶解した溶解性シリカが挙げられる。但し、除去対象物は溶解性シリカに限られず、本発明に係る水処理装置では、除去対象物として、シリカ、鉄、Mn(マンガン)、F(フッ素)、SS(Suspended Solids、浮遊物質)等、広範囲の物質を除去することが可能であり、除去対象物は特定の一物質に限定されるものではない。 The water treatment apparatus according to the present invention is an apparatus for removing a predetermined object to be removed from raw water to be treated. That is, the treated raw water to be subjected to electrolysis treatment is raw water containing a removal target, and examples of the removal target include soluble silica dissolved in the treated raw water. However, the removal target is not limited to soluble silica, and in the water treatment apparatus according to the present invention, as the removal target, silica, iron, Mn (manganese), F (fluorine), SS (Suspended Solids), etc. A wide range of substances can be removed, and the object to be removed is not limited to a specific substance.
また、電気分解手段による電気分解処理は、処理原水に外部から電気エネルギーを与えることで電気分解反応を起こさせ、除去対象物を凝集させて分離する処理である。例えば、アルミニウムイオンなどの金属イオンを電極から溶出させることで、弱酸性の負電荷を持つシリカイオンとの反応効率を向上させることが出来る。このため、電気分解処理が行われることで生成された電気分解処理水には、除去対象物の凝集物が含まれる。なお、アルミニウムイオンを溶出させるために、前記電気分解手段は、前記処理原水に対して、アルミニウム板を正電極として用いる電気分解処理を行ってもよい。 In addition, the electrolysis process by the electrolysis means is a process in which an electrolysis reaction is caused by applying electric energy from the outside to the treated raw water, and the removal target is aggregated and separated. For example, by eluting metal ions such as aluminum ions from the electrode, the reaction efficiency with silica ions having a weakly acidic negative charge can be improved. For this reason, the electrolyzed water produced | generated by performing an electrolysis process contains the aggregate of a removal target object. In addition, in order to elute aluminum ion, the said electrolysis means may perform the electrolysis process which uses an aluminum plate as a positive electrode with respect to the said process raw | natural water.
ここで、沈殿手段によって凝集物が沈殿されることによって、電気分解処理水から除去対象物が除去されるが、本発明では、沈殿した沈殿物にまだ除去対象物を取り込む能力が残存していることに着目し、高濃度の凝集物である沈殿物の少なくとも一部を、電気分解処理水に混合させることによって、沈殿物と電気分解処理水内に残存する除去対象物との間で第二の反応を促進させ、除去対象物の凝集を促進させる。また、これと同時に、除去
対象物を凝集物に最大限に取り込むことで、凝集物の沈降性の向上、更には余剰汚泥の脱水性能の向上といった効果を得ることが可能である。
Here, the aggregate is precipitated by the precipitation means, so that the removal target is removed from the electrolyzed water, but in the present invention, the ability to take the removal target into the precipitated precipitate still remains. In particular, by mixing at least a part of the precipitate, which is a high-concentration aggregate, with the electrolyzed water, the second between the precipitate and the removal target remaining in the electrolyzed water. This promotes the agglomeration of the object to be removed. At the same time, it is possible to obtain the effect of improving the sedimentation property of the aggregate and further improving the dewatering performance of the excess sludge by taking the object to be removed into the aggregate to the maximum.
このようにすることで、本発明に係る水処理装置は、従来と同量の電極消費および装置サイズであっても、従来以上の除去性能を得ることを可能としている。即ち、本発明によれば、電極の消費や電気分解反応槽の大型化を抑えつつ、水処理装置による除去対象物の除去性能を向上させることが出来る。また、上記の通り余剰汚泥の脱水性能が向上することで、脱水汚泥量を削減することが出来る。 By doing in this way, the water treatment apparatus according to the present invention makes it possible to obtain a removal performance that is higher than the conventional one even with the same amount of electrode consumption and the same apparatus size as the conventional one. That is, according to this invention, the removal performance of the removal target object by a water treatment apparatus can be improved, suppressing consumption of an electrode and the enlargement of an electrolysis reaction tank. Moreover, the amount of dewatered sludge can be reduced by improving the dewatering performance of excess sludge as described above.
また、前記電気分解手段は、電気分解反応槽に導入された前記処理原水に対して電気分解処理を行い、前記沈殿手段は、前記電気分解反応槽から送られた前記電気分解処理水を沈殿槽において滞留させることで該凝集物を沈殿させ、前記混合手段は、前記沈殿槽内に沈殿した沈殿物の少なくとも一部を、前記該沈殿槽に送られる前の前記電気分解処理水に混合させてもよい。 The electrolysis means performs electrolysis treatment on the treated raw water introduced into the electrolysis reaction tank, and the precipitation means sets the electrolyzed water sent from the electrolysis reaction tank to the precipitation tank. The agglomerate is precipitated by being retained in the step, and the mixing means mixes at least a part of the precipitate precipitated in the precipitation tank with the electrolyzed water before being sent to the precipitation tank. Also good.
ここで、電気分解反応槽は、処理原水が導入される槽であり、沈殿槽は、電気分解反応槽において電気反応処理が行われた電気分解処理水が送られる槽である。即ち、水処理装置では、処理される水の流れの上流側に電気分解反応槽が、下流側に沈殿槽が設けられる。本発明では、沈殿槽において沈殿した沈殿物の少なくとも一部を、沈殿槽に送られる前の電気分解処理水に混合させること、換言すると、沈殿物をより上流側へ返送することで、電気分解処理水に沈殿物を混合させ、除去対象物の凝集を促進させることとしている。 Here, the electrolysis reaction tank is a tank into which treated raw water is introduced, and the precipitation tank is a tank to which electrolysis treated water that has been subjected to electroreaction processing in the electrolysis reaction tank is sent. That is, in the water treatment apparatus, an electrolysis reaction tank is provided on the upstream side of the water flow to be treated, and a precipitation tank is provided on the downstream side. In the present invention, at least a part of the precipitate precipitated in the settling tank is mixed with the electrolyzed water before being sent to the settling tank, in other words, by returning the precipitate to the upstream side, The precipitate is mixed with the treated water to promote the aggregation of the object to be removed.
また、前記混合手段は、前記電気分解処理水が前記電気分解反応槽から前記沈殿槽に送られる経路に設けられた混合反応槽に対して、前記沈殿槽内に沈殿した沈殿物の少なくとも一部を送ることで、前記沈殿物を前記電気分解処理水に混合させ、本発明に係る水処理装置は、前記混合反応槽において前記沈殿物と前記電気分解処理水との混合を促進する攪拌手段を更に備えてもよい。 In addition, the mixing means may include at least a part of the precipitate precipitated in the settling tank with respect to the mixed reaction tank provided in a path through which the electrolyzed water is sent from the electrolysis reaction tank to the settling tank. The precipitate is mixed with the electrolyzed water, and the water treatment apparatus according to the present invention includes a stirring means for promoting mixing of the precipitate and the electrolyzed water in the mixing reaction tank. Further, it may be provided.
また、前記混合手段は、前記電気分解処理水が前記電気分解反応槽から前記沈殿槽に送られる経路に設けられた配管に対して、前記沈殿槽内に沈殿した沈殿物の少なくとも一部を送ることで、前記電気分解処理水と前記沈殿物とを混合させてもよい。 The mixing means sends at least a part of the sediment precipitated in the sedimentation tank to a pipe provided in a path through which the electrolyzed water is sent from the electrolysis reaction tank to the precipitation tank. Thus, the electrolyzed water and the precipitate may be mixed.
即ち、本発明では、電気分解反応槽および沈殿槽の他に、電気分解反応槽から送られた電気分解処理水と沈殿槽から送られた沈殿物とを混合させるための混合反応槽、または配管を更に設けることで、沈殿物を用いた除去対象物の凝集を促進させることとしている。また、混合のための配管の形状は、混合を促進させるために適した形状、例えば、直線ではなく蛇行した形状を有してもよい。 That is, in the present invention, in addition to the electrolytic reaction tank and the precipitation tank, a mixed reaction tank or a pipe for mixing the electrolytically treated water sent from the electrolytic reaction tank and the precipitate sent from the precipitation tank Is further provided to promote agglomeration of the object to be removed using the precipitate. Moreover, the shape of the piping for mixing may have a shape suitable for promoting mixing, for example, a meandering shape instead of a straight line.
また、混合のために沈殿槽から送られる沈殿物は、沈殿槽内の電気分解処理水と共に送られ、この沈殿槽から混合のために送られる汚泥(沈殿物を含む電気分解処理水)の量は、電気分解反応槽から混合のために送られる電気分解処理水の量に対して、5〜50%であってもよい。 In addition, the sediment sent from the settling tank for mixing is sent together with the electrolyzed water in the settling tank, and the amount of sludge (electrolyzed water containing the precipitate) sent from the settling tank for mixing. May be 5 to 50% with respect to the amount of the electrolyzed water sent from the electrolysis reactor for mixing.
また、本発明は、水処理方法の発明としても把握することが可能である。例えば、本発明は、所定の除去対象物を含む処理原水に対して電気分解処理を行う電気分解ステップと、前記電気分解ステップで生成された電気分解処理水に含まれる前記除去対象物の凝集物を沈殿させる沈殿ステップと、前記沈殿ステップで沈殿された沈殿物の少なくとも一部を、前記電気分解ステップで生成された前記電気分解処理水に混合させる混合ステップと、が実行される水処理方法である。 The present invention can also be understood as an invention of a water treatment method. For example, the present invention provides an electrolysis step for performing electrolysis treatment on treated raw water containing a predetermined removal object, and an aggregate of the removal object contained in the electrolysis treatment water generated in the electrolysis step. A water treatment method in which a precipitation step for precipitating and a mixing step for mixing at least a part of the precipitate precipitated in the precipitation step with the electrolysis-treated water generated in the electrolysis step are performed. is there.
本発明によって、コストの増大や装置サイズの拡大を招かずに、水処理装置による除去対象物の除去性能を向上させることが可能となる。 According to the present invention, it is possible to improve the removal performance of an object to be removed by a water treatment apparatus without incurring an increase in cost or an increase in apparatus size.
本発明に係る水処理装置の実施の形態について、図面に基づいて説明する。 An embodiment of a water treatment device according to the present invention will be described with reference to the drawings.
<第一の実施形態>
図1は、第一の実施形態に係る水処理装置1の構成を示す概略図である。水処理装置1は、処理の対象となる水の流れにおいて、上流から順に電気分解反応槽12、混合反応槽14、および沈殿槽16を有する。また、電気分解反応槽12には、処理原水(被処理水)の導入のための配管11が接続されており、電気分解反応槽12と混合反応槽14とは配管13で接続されており、混合反応槽14と沈殿槽16とは配管15で接続されており、沈殿槽16には、除去対象物の除去処理が施された処理水を外部に送出するための配管17が接続されている。
<First embodiment>
FIG. 1 is a schematic diagram illustrating a configuration of a water treatment apparatus 1 according to the first embodiment. The water treatment apparatus 1 includes an
更に、沈殿槽16には、沈殿槽16の下部に沈殿した沈殿物22を沈殿槽16内の水と共に送り出すための配管およびポンプ23が接続されており、沈殿槽16から送り出された沈殿物を含む水は、配管18を通って混合反応槽14または外部へ送られる。以下、本実施形態において、沈殿槽16から送り出される、沈殿物を含む水を、汚泥と称する。ここで、汚泥の送出先は、弁24および弁25が制御されることで制御される。具体的には、弁24が開弁している状態では、汚泥は混合反応槽14へ送出され、弁25が開弁している状態では、汚泥は外部へ送出される。
Furthermore, the
電気分解反応槽12は、配管11を介して処理の対象となる処理原水が導入され、処理原水に対して電気分解処理が行われる槽である。本実施形態に係る電気分解処理では、電気分解反応槽12に設けられたアルミニウム電極(アルミニウム板を用いた正電極。図示は省略する)から電気分解反応槽12内の水にアルミニウムイオンを溶出させることで、弱酸性の負電荷を持つシリカイオンとの反応を促進させる。また、電気分解法では、負電極からの水素ガスの発生で処理水中の水酸化物イオン量を増加させる効果により、水酸化アルミニウムによるコロイド物質の吸着が促進される。このような電気分解処理により、電気分解反応槽12において、凝集物が生成される。電気分解反応槽12において電気分解処理が施された、凝集物を含む水(以下、電気分解処理水と称する)は、配管13を経て混合反応槽14へ送られる。
The
混合反応槽14は、電気分解反応槽12から配管13を介して送られた電気分解処理水と、沈殿槽16から配管18を介して返送された汚泥(沈殿物を含む電気分解処理水)とを混合させることで、電気分解処理水内の凝集物と、除去されずに残存しているシリカイオンやコロイダルシリカとの更なる反応を促進させるための槽である。なお、電気分解反応槽12において進行する反応を第一の反応とした場合、混合反応槽14において進行する反応は、第二の反応である。また、本実施形態では、電気分解反応槽12から送られた電気分解処理水と沈殿槽16から送られた汚泥との混合を促進するために、攪拌装置21による攪拌を行う。混合反応槽14において混合されることで残存する除去対象物についての凝集が進行し、電気分解反応槽12から送出された時点よりも更に多くの凝集物を含むこととなった電気分解処理水は、配管15を経て沈殿槽16へ送られる。
The mixing
沈殿槽16は、混合反応槽14から送出された電気分解処理水が導入され、この電気分解処理水からの凝集物の分離が行われる槽である。本実施形態では、混合反応槽14から送出された電気分解処理水が、沈殿槽16内で所定時間滞留することで、凝集物の沈殿による除去対象物の分離・除去が行われる。沈殿した凝集物は、沈殿槽16の下部に溜まる
ことで汚泥となる。なお、混合反応槽14における第二の反応により、除去対象物の除去性能向上に加えて、汚泥の沈降性が改善される。このため、汚泥の返送率にもよるが、例えば返送率5〜30%の範囲では汚泥の返送を行わない場合に比べて沈殿槽16の水量が5〜30%増量することとなり、一見、沈殿槽16の大型化が必要にも思われる。しかし、凝集物の沈降性が向上することによって沈殿に必要な時間が短くなるため、実際には、従来と同等またはよりコンパクトな沈殿槽16を採用することが可能となる。この汚泥は、少なくともその一部がポンプ23および配管18を介して混合反応槽14へ返送されることで、上述した、電気分解反応槽12から送られた電気分解処理水との混合による第二の反応に用いられる。この場合、弁24を開弁した状態でポンプ23を駆動することで、汚泥を返送することが出来る。また、汚泥が所定量以上沈殿した場合には、弁25を開弁した状態でポンプ23を駆動することで、汚泥を外部へ排出することが出来る。
The
電気分解処理水が沈殿槽16内に所定時間滞留すると、凝集物は沈殿槽16の下部へ沈殿し、沈殿槽16の上部には、除去対象物(本実施形態では、シリカ等)が除去された処理水が残る。除去対象物が除去された処理水は、配管17を介して外部に送出され、様々な目的に用いることが可能である。
When the electrolyzed water stays in the
<第二の実施形態>
図2は、第二の実施形態に係る水処理装置1bの構成を示す概略図である。水処理装置1bは、処理の対象となる水の流れにおいて、上流から順に電気分解反応槽12、混合反応管19、および沈殿槽16を有する。本実施形態に係る水処理装置1bは、混合反応槽14に代えて混合反応管19を採用している点を除いて、図1を用いて示した第一の実施形態に係る水処理装置1と概略同様である。
<Second Embodiment>
FIG. 2 is a schematic diagram showing a configuration of a water treatment device 1b according to the second embodiment. The water treatment apparatus 1b includes an
混合反応管19は、電気分解反応槽12から配管13を介して送られた電気分解処理水と、沈殿槽16から配管18を介して返送された汚泥とを混合させることで、電気分解処理水内の凝集物と、除去されずに残存している除去対象物(シリカイオンやコロイダルシリカ等)との更なる反応を促進させるための配管である。本実施形態では、電気分解反応槽12から送られた電気分解処理水と沈殿槽16から送られた汚泥との混合を促進し、また、反応に十分な時間を確保するために、混合反応管19として、蛇行した形状、および反応に十分な時間を確保出来るだけの長さを有する配管を採用している。混合反応管19において混合されることで残存する除去対象物についての凝集が進行し、電気分解反応槽12から送出された時点よりも更に多くの凝集物を含むこととなった電気分解処理水は、配管15を経て沈殿槽16へ送られる。本実施形態において示した水処理装置1bによれば、混合反応槽14および攪拌装置21が不要となり、混合反応管19で代替されるため、コスト面でより有利である。
The mixing reaction tube 19 mixes the electrolyzed water sent from the
<第三の実施形態>
図3は、第三の実施形態に係る水処理装置1cの構成を示す概略図である。水処理装置1cは、処理の対象となる水の流れにおいて、上流から順に電気分解反応槽12c、および沈殿槽16を有する。また、電気分解反応槽12cには、処理原水の導入のための配管11が接続されており、電気分解反応槽12cと沈殿槽16とは配管15cで接続されており、沈殿槽16には、除去対象物の除去処理が施された処理水を外部に送出するための配管17が接続されている。
<Third embodiment>
FIG. 3 is a schematic diagram showing a configuration of a water treatment device 1c according to the third embodiment. The water treatment device 1c includes an
更に、沈殿槽16には、沈殿槽16の下部に沈殿した沈殿物22を沈殿槽16内の水と共に送り出すための配管およびポンプ23が接続されており、沈殿槽16から送り出された沈殿物を含む水(汚泥)は、配管18cを通って電気分解反応槽12cまたは外部へ送られる。ここで、汚泥の送出先は、弁24および弁25が制御されることで制御される。具体的には、弁24が開弁している状態では、汚泥は電気分解反応槽12cへ送出され、
弁25が開弁している状態では、汚泥は外部へ送出される。
Furthermore, the
In the state where the
本実施形態において、電気分解反応槽12cは、配管11を介して処理の対象となる処理原水が導入され、処理原水に対して電気分解処理が行われる槽である。電気分解反応槽12cにおいて行われる電気分解処理の内容は、上記第一の実施形態で説明した内容と概略同様であるが、本実施形態に係る水処理装置1cは、電気分解反応槽12cに、沈殿槽16から配管18cを介して汚泥が返送される点で、第一の実施形態または第二の実施形態に示した水処理装置1、1bと異なる。即ち、本実施形態における電気分解反応槽12cでは、電気分解反応槽12c内の水に沈殿槽16から返送された汚泥が混合されることによって、電気分解処理による凝集物の生成と並行して、凝集物と除去対象物との反応促進が行われる。
In the present embodiment, the
本実施形態に係る水処理装置1cでは、汚泥を滞留時間が比較的長い電気分解反応槽12cに投入し反応させることで、電気分解処理と同時処理させている。本実施形態において示した水処理装置1cによれば、反応のための設備(例えば、混合反応槽14や混合反応管19等)を別途用意する必要がないため、水処理装置1c全体をコンパクト且つ安価に構築することが出来る。
In the water treatment apparatus 1c according to the present embodiment, sludge is put into the
電気分解反応槽12cにおいて電気分解処理および汚泥混合が施された電気分解処理水は、配管15cを経て沈殿槽16へ送られる。沈殿槽16へ送られた凝集物は、沈殿槽16の下部に溜まることで汚泥となる。この汚泥は、少なくともその一部がポンプ23および配管18cを介して電気分解反応槽12cへ返送される。
The electrolyzed water that has been subjected to electrolysis and sludge mixing in the
従来技術に対する本発明の有効性を確認するため、本発明の試験装置および従来技術の試験装置を製作し、処理原水に含まれるシリカを対象とした除去性能の比較実験を行った。ここで、本発明の試験装置としては、図1を用いて説明した第一の実施形態に示した構成の水処理装置1を採用し、従来技術の試験装置としては、図6に示した構成の装置、および図7に示した構成の装置を採用した。 In order to confirm the effectiveness of the present invention with respect to the prior art, the test apparatus of the present invention and the test apparatus of the prior art were manufactured, and a comparative experiment on the removal performance for silica contained in the treated raw water was conducted. Here, as the test apparatus of the present invention, the water treatment apparatus 1 having the configuration shown in the first embodiment described with reference to FIG. 1 is adopted, and the test apparatus of the prior art has the configuration shown in FIG. And the apparatus having the configuration shown in FIG.
図4は、本実施例に係る試験装置において用いられた混合反応槽14を示す図であり、図5は、本実施例に係る試験装置の混合反応槽14において用いられた攪拌プロペラを示す図である。試験装置では、内寸として底面が一辺250mmの正方形、深さが400mmの立方体状の混合反応槽14が用いられ、この混合反応槽14に、水深270mmまで電気分解処理水を導入して試験が行われた。なお、3装置とも電界処理槽での処理は同じであるため、電気分解に必要な電力コストおよびアルミ電極の消費量とも同じである。また、その他の実験条件を表1に示す。
FIG. 4 is a diagram showing the mixing
上記条件による試験の結果、本発明に係る水処理装置1の除去性能は、従来技術に係る装置に比して約30%向上していることが確認できた。本実施例によるシリカ除去結果を表2に示す。 As a result of the test under the above conditions, it was confirmed that the removal performance of the water treatment device 1 according to the present invention was improved by about 30% as compared with the device according to the prior art. The silica removal results according to this example are shown in Table 2.
なお、図7に示す従来技術では、図6に示された従来技術に攪拌槽が追加されている。このため、図7に示す従来技術では、図6に示された従来技術に比べて電気分解反応槽で生成された凝集物と除去対象物の接触反応が10分増加した分、若干の除去性能の改善が確認できた。しかし、本発明の高濃度な凝集物(汚泥)を戻して混入させての反応に比べると、除去性能の改善効果は遙かに小さい。 In the prior art shown in FIG. 7, a stirring tank is added to the prior art shown in FIG. For this reason, in the prior art shown in FIG. 7, compared with the prior art shown in FIG. 6, the contact reaction between the agglomerate generated in the electrolysis reaction tank and the object to be removed is increased by 10 minutes, so that some removal performance is obtained. The improvement was confirmed. However, the improvement effect of the removal performance is much smaller than the reaction of returning the high concentration aggregate (sludge) of the present invention and mixing it.
また、本実施例では、混合反応処理時間を10分、汚泥返送率を30%としたが、これは目標とする除去率によって最適値に設定されることが好ましい。また、汚泥返送率が高い場合、反応時間は短くすることができる。なお、汚泥返送による凝集物の沈降性の改善効果によって沈殿に要する時間が改善され、沈殿槽16における水量増加が相殺されるため、沈殿槽16の大型化は必要ない。本発明の実施にあたっては、除去対象物の濃度に応じて最適な汚泥返送率を選択することで、装置全体のコンパクト化および処理コストの削減を達成することが出来る。おおよその範囲としては、混合反応時間1分〜60分、汚泥返送率5〜50%である。なお、返送率50%の場合、混合反応槽14から沈殿槽16への流入量は、処理水量の1.5倍となる。
In this embodiment, the mixing reaction processing time is 10 minutes and the sludge return rate is 30%, but this is preferably set to an optimum value depending on the target removal rate. Moreover, when the sludge return rate is high, the reaction time can be shortened. In addition, since the time required for sedimentation is improved by the effect of improving the sedimentation property of the aggregates by returning the sludge, and the increase in the amount of water in the
また、図2を用いて説明した第二の実施形態に示した構成の水処理装置1bを試験装置
として採用した場合についても、処理原水に含まれるシリカを対象とした、従来技術の試験装置との比較実験を行った。本実施例では、1分以上の反応時間を確保可能な長さおよび容量を有する混合反応管19を採用し、汚泥返送率20%、反応時間5分の条件で実験を行った。他の条件は実施例1と同じである。実験の結果、本実施例におけるシリカ除去率は70%であった。
Moreover, also when the water treatment apparatus 1b having the configuration shown in the second embodiment described with reference to FIG. 2 is adopted as a test apparatus, a conventional test apparatus for silica contained in treated raw water and A comparative experiment was conducted. In this example, a mixed reaction tube 19 having a length and capacity capable of ensuring a reaction time of 1 minute or longer was employed, and an experiment was conducted under the conditions of a sludge return rate of 20% and a reaction time of 5 minutes. Other conditions are the same as those in Example 1. As a result of the experiment, the silica removal rate in this example was 70%.
1、1b、1c 水処理装置
12 電気分解反応槽
14 混合反応槽
16 沈殿槽
19 混合反応管
1, 1b, 1c
Claims (6)
前記電気分解手段によって生成された電気分解処理水に含まれる前記除去対象物の凝集物を沈殿させる沈殿手段と、
前記沈殿手段によって沈殿された沈殿物の少なくとも一部を、前記電気分解手段によって生成された前記電気分解処理水に混合させる混合手段と、を備え、
前記混合手段は、前記第一の反応を進行させる電気分解処理が行われた後の前記電気分解処理水に、前記沈殿物の少なくとも一部を混合させることで、該電気分解処理水内の前記凝集物を更に凝集させるための第二の反応を進行させる、
水処理装置。 And electrolysis means for advancing the first reaction to have line electrolysis process, to agglomerate the removal target relative to the processing raw water containing a predetermined removal target,
Precipitation means for precipitating aggregates of the removal target contained in the electrolyzed water generated by the electrolysis means;
Mixing means for mixing at least a part of the precipitate precipitated by the precipitation means with the electrolyzed water generated by the electrolysis means ,
The mixing means mixes at least a part of the precipitate in the electrolysis-treated water after the electrolysis treatment for causing the first reaction to proceed, so that the electrolysis-treated water in the electrolysis-treated water is mixed. Proceed with a second reaction to further agglomerate the agglomerates,
Water treatment equipment.
前記沈殿手段は、前記電気分解反応槽から送られた前記電気分解処理水を沈殿槽において滞留させることで該凝集物を沈殿させ、
前記混合手段は、前記電気分解処理水が前記電気分解反応槽から前記沈殿槽に送られる経路に設けられた混合反応槽に対して、前記沈殿槽内に沈殿した沈殿物の少なくとも一部を送ることで、前記沈殿物を前記沈殿槽に送られる前の前記電気分解処理水に混合させ、前記混合反応槽において前記沈殿物と前記電気分解処理水との混合を促進する攪拌手段を更に備える、
請求項1に記載の水処理装置。 The electrolysis means performs electrolysis treatment on the treated raw water introduced into the electrolysis reaction tank,
The precipitation means precipitates the agglomerates by retaining the electrolyzed water sent from the electrolysis reaction tank in the settling tank,
The mixing means sends at least a part of the precipitate precipitated in the settling tank to a mixed reaction tank provided in a path through which the electrolyzed water is sent from the electrolysis reaction tank to the settling tank. Then, the precipitate is further mixed with the electrolyzed water before being sent to the settling tank, and further provided with stirring means for promoting the mixing of the precipitate and the electrolyzed water in the mixed reaction tank.
The water treatment apparatus according to claim 1 .
前記沈殿手段は、前記電気分解反応槽から送られた前記電気分解処理水を沈殿槽において滞留させることで該凝集物を沈殿させ、
前記混合手段は、前記電気分解処理水が前記電気分解反応槽から前記沈殿槽に送られる経路に設けられた、蛇行した形状または前記第二の反応のための時間を確保可能な長さを有する配管に対して、前記沈殿槽内に沈殿した沈殿物の少なくとも一部を送ることで、前記沈殿槽に送られる前の前記電気分解処理水と前記沈殿物とを混合させる、
請求項1に記載の水処理装置。 The electrolysis means performs electrolysis treatment on the treated raw water introduced into the electrolysis reaction tank,
The precipitation means precipitates the agglomerates by retaining the electrolyzed water sent from the electrolysis reaction tank in the settling tank,
The mixing means is provided in a path through which the electrolyzed water is sent from the electrolysis reaction tank to the settling tank, and has a meandering shape or a length capable of securing time for the second reaction. By sending at least a part of the sediment precipitated in the sedimentation tank to the piping, the electrolyzed water before being sent to the sedimentation tank and the sediment are mixed.
The water treatment apparatus according to claim 1 .
請求項1から3の何れか一項に記載の水処理装置。 The removal object is soluble silica dissolved in the treated raw water.
The water treatment apparatus according to any one of claims 1 to 3 .
請求項1から4の何れか一項に記載の水処理装置。 The electrolysis means performs an electrolysis process using an aluminum plate as a positive electrode for the treated raw water.
The water treatment apparatus according to any one of claims 1 to 4 .
前記電気分解ステップで生成された電気分解処理水に含まれる前記除去対象物の凝集物を沈殿させる沈殿ステップと、
前記沈殿ステップで沈殿された沈殿物の少なくとも一部を、前記電気分解ステップで生成された前記電気分解処理水に混合させる混合ステップと、が実行され、
前記混合ステップでは、前記第一の反応を進行させる電気分解処理が行われた後の前記電気分解処理水に、前記沈殿物の少なくとも一部が混合されることで、該電気分解処理水内の前記凝集物を更に凝集させるための第二の反応が進行する、
水処理方法。 And electrolysis step of advancing the first reaction to have line electrolysis process, to agglomerate the removal target relative to the processing raw water containing a predetermined removal target,
A precipitation step of precipitating aggregates of the removal target contained in the electrolyzed water produced in the electrolysis step;
And a mixing step of mixing at least a part of the precipitate precipitated in the precipitation step with the electrolyzed water generated in the electrolysis step, and
In the mixing step, at least a part of the precipitate is mixed in the electrolysis-treated water after the electrolysis treatment that causes the first reaction to proceed, so that the inside of the electrolysis-treated water A second reaction proceeds to further aggregate the aggregate.
Water treatment method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008316817A JP5199050B2 (en) | 2008-12-12 | 2008-12-12 | Water treatment apparatus and water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008316817A JP5199050B2 (en) | 2008-12-12 | 2008-12-12 | Water treatment apparatus and water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010137177A JP2010137177A (en) | 2010-06-24 |
JP5199050B2 true JP5199050B2 (en) | 2013-05-15 |
Family
ID=42347777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008316817A Active JP5199050B2 (en) | 2008-12-12 | 2008-12-12 | Water treatment apparatus and water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5199050B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101030075B1 (en) * | 2010-09-16 | 2011-04-19 | 주식회사 대진환경산업 | Apparatus for treating waste water effluent with electrocoagulation floating type and method for treating waste water effluent using the same |
CN111977848A (en) * | 2020-08-19 | 2020-11-24 | 河南嵩岳新能源科技有限公司 | Sewage discharge equipment with heavy metal precipitation structure and operation method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4859658A (en) * | 1971-11-27 | 1973-08-21 | ||
JPS526816B2 (en) * | 1973-08-17 | 1977-02-25 | ||
JPS554475B2 (en) * | 1974-08-15 | 1980-01-30 | ||
JPS5172145A (en) * | 1974-12-18 | 1976-06-22 | Niigata Engineering Co Ltd | Jinetsukaihatsuto niokeru shirikano jokyohoho |
JPS5215166A (en) * | 1975-07-25 | 1977-02-04 | Hitachi Ltd | Fluorin-containing waste water treating method |
JPS6025197B2 (en) * | 1976-02-27 | 1985-06-17 | タキロン株式会社 | Alcohol waste treatment method |
JPH10323674A (en) * | 1997-05-23 | 1998-12-08 | Kurita Water Ind Ltd | Organic matter-containing water treatment apparatus |
JP3055544B2 (en) * | 1998-12-11 | 2000-06-26 | 日立プラント建設株式会社 | Method and apparatus for removing heavy metals from biopolymer |
JP2002307074A (en) * | 2001-04-11 | 2002-10-22 | Mitsubishi Heavy Ind Ltd | Wastewater treatment method and wastewater treatment apparatus |
JP3768128B2 (en) * | 2001-09-04 | 2006-04-19 | 三洋電機株式会社 | Water treatment equipment |
JP3630126B2 (en) * | 2001-09-20 | 2005-03-16 | 栗田工業株式会社 | Method of treating water containing fluorine and manganese ions |
JP2003126861A (en) * | 2001-10-29 | 2003-05-07 | Toshiba Corp | Method and apparatus for water treatment |
JP2004097932A (en) * | 2002-09-09 | 2004-04-02 | Sanyo Electric Co Ltd | Water treatment apparatus |
JP2006122840A (en) * | 2004-10-29 | 2006-05-18 | Sanyo Electric Co Ltd | Apparatus for treating water |
JP2008149222A (en) * | 2006-12-14 | 2008-07-03 | Nt Lab:Kk | Removal method of fluorine ions in hot spring water |
-
2008
- 2008-12-12 JP JP2008316817A patent/JP5199050B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010137177A (en) | 2010-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4663012B2 (en) | Reverse electrodialysis of nitrogen compounds-electrochemical wastewater treatment process | |
JP2015112593A (en) | Apparatus and method for treating waste water having high hardness | |
CN202542980U (en) | Industrial circulating water bypass filtration treatment device | |
US8658014B2 (en) | Electrocoagulation for removal of dissolved naphthenic acids from water | |
CN102079597B (en) | Method for removing copper ions in sewage | |
RU2422383C2 (en) | Complex for sorption treatment of contaminated waters | |
CN210313881U (en) | Heavy metal industrial wastewater treatment system | |
CN118026473A (en) | Sewage zero discharge treatment method and device for filter production line | |
JP5199050B2 (en) | Water treatment apparatus and water treatment method | |
CN214990901U (en) | Process system for treating precipitated white carbon black wastewater | |
JP4396965B2 (en) | Heavy metal removal method and apparatus | |
JP6307276B2 (en) | Selenium-containing water treatment apparatus and selenium-containing water treatment method | |
CN115304197B (en) | Fracturing flowback fluid treatment device and method | |
CN212924676U (en) | Silicon-containing wastewater treatment system | |
CN113226557A (en) | Process and apparatus for treating process water | |
JP2010137179A (en) | Water treatment apparatus and water treatment method | |
CN110372125B (en) | Difficult metal ion integrated processing device that gets rid of in waste water | |
US20220033284A1 (en) | Current based water treatment process and system | |
CN112062366A (en) | Coal-fired power plant desulfurization wastewater comprehensive treatment system and method | |
WO2020169873A1 (en) | METHOD AND PROCESS ARRANGEMENT FOR REMOVING Si BASED COMPOUNDS FROM A LEACHING LIQUOR AND USE | |
JP2008149222A (en) | Removal method of fluorine ions in hot spring water | |
Zouboulis et al. | Cadmium ion removal by electroflotation onto sewage sludge biomass | |
RU2530026C2 (en) | Method and apparatus for breaking down colloidal system by electrochemical decomposition of emulsions | |
CN115044777B (en) | Method for efficiently recycling metal-containing phosphoric acid polishing solution | |
CN118221307B (en) | Treatment method and treatment system for recycling phosphate from water-washed phosphate ore concentrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130207 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5199050 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |