【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は、半導体製造工場等から排出される研
磨廃水等、ガリウム及び砒素を含む廃水の浄化処
理方法に関する。
〔従来の技術〕
半導体製造工場等からは、ガリウム及び砒素を
含む廃水が排出される。このうち、特に砒素につ
いては、有害物質としてその排出が厳しく規制さ
れている。また、排出先が農業用水の場合には、
他の塩類も除去しなければならないため、廃水を
系外に排出させないクローズドシステムを採るこ
とが多くなつてきている。
従来、この種の廃水を処理するには、廃水に塩
化第二鉄を添加し、その後、PHを中性付近に調整
して水酸化鉄を生成し、砒素を共沈により除去し
た後、処理水を必要に応じて塩類や有機汚染物を
除去するため蒸発処理する方法が採用されてい
る。
〔発明が解決しようとする課題〕
しかしながら、前記の方法では、処理水中の砒
素を環境基準の0.05mg/以下にするのに、原水
の砒素濃度によつて若干異なるが、Fe濃度が廃
水中に含まれる砒素濃度に対して10倍以上となる
ように塩化第二鉄を添加する必要がある。そのた
め、金属スラツジが多量に発生する欠点があり、
この種の廃水の処理における課題であつた。
本発明は、前記従来技術の欠点を解消し、簡単
な操作で砒素を効率よく除去できるとともに、第
二鉄塩の添加量を節約し、発生スラツジ量を低減
できる廃水の浄化処理方法を提供することを課題
とする。
〔課題を解決するための手段〕
本発明は、廃水を第二鉄塩で処理する前に、PH
3〜5に調整することによつて廃水中のガリウム
を水酸化ガリウムとし、砒素を共沈させ、これを
除去することによつて前記の課題を解決したもの
である。
すなわち、本発明による、ガリウム及び砒素を
含む廃水の浄化処理方法は、ガリウム及び砒素を
含む廃水をPH3〜5に調整し、次いで、固液分離
後、処理水に第二鉄塩を添加し、アルカリ剤を添
加してPH6〜8に調整し、固液分離することを特
徴とする。
本発明方法により、ガリウム及び砒素を含む廃
水をPH3〜5に調整した後、固液分離することに
より砒素は約70%以上除去される。これは、PH3
〜5に調整することにより廃水中に溶存していた
ガリウム等の金属が水酸化物となり、これが凝集
剤として作用し、砒素を共沈させるためと考えら
れる。
本発明方法においては、この固液分離後の廃水
に第二鉄塩を添加する。ここで使用しうる第二鉄
塩としては、塩化第二鉄、硫酸第二鉄等が挙げら
れる。第二鉄塩は、Fe/Asの比が2〜6、好ま
しくは4〜5となるように添加すればよい。
このように第二鉄塩を添加した後、充分に攪拌
し、次いで、アルカリ剤、例えば水酸化ナトリウ
ム、水酸化カリウム等を添加してPH6〜8に調整
する。これにより、先に添加した第二鉄塩が水酸
化第二鉄を形成し、これが凝集剤として作用し、
砒素を共沈させる。この際生成する沈殿を固液分
離することにより得られる処理水の砒素濃度は、
極めて低く、容易に規制値以下にすることができ
る。
固液分離に当たつて、凝集効果をさらに向上さ
せるため、必要に応じて常用の高分子凝集剤を添
加してもよい。
〔実施例〕
次に、実施例により本発明を説明するが、本発
明はこれに限定されるものではない。
実施例 1
Ga濃度147mg/、As濃度175mg/を含むPH
8.60の廃水を試料とした。この試料に硫酸を添加
してPH3に調整した後、5分間攪拌した。30分静
置後、得られた上澄水に塩化第二鉄を第1表に示
すようにFe添加量を変化させて加え、かきまぜ
装置で100rpmで5分間攪拌した。次に、水酸化
ナトリウムを添加してPH7に調整した後、
100rpmで5分間、40rpmで10分間攪拌し、30分
静置後、得られた上澄水のAs濃度を測定し、結
果を第1表に示す。
比較例 1
廃水を始めにPH3に調整しない以外は、実施例
1と同じ操作を行い、得られた上澄水のAs濃度
を測定し、結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for purifying wastewater containing gallium and arsenic, such as polishing wastewater discharged from semiconductor manufacturing factories and the like. [Prior Art] Wastewater containing gallium and arsenic is discharged from semiconductor manufacturing factories and the like. Among these, arsenic in particular is a hazardous substance whose emission is strictly regulated. In addition, if the discharge destination is agricultural water,
Since other salts must also be removed, closed systems that do not allow wastewater to exit the system are increasingly being used. Conventionally, to treat this type of wastewater, ferric chloride is added to the wastewater, the pH is then adjusted to near neutrality to produce iron hydroxide, arsenic is removed by coprecipitation, and then treatment is performed. Evaporative treatment of water is employed to remove salts and organic contaminants as necessary. [Problem to be Solved by the Invention] However, in the above method, in order to reduce the arsenic content in the treated water to below the environmental standard of 0.05 mg/min, the Fe concentration in the wastewater may vary slightly depending on the arsenic concentration in the raw water. It is necessary to add ferric chloride so that the concentration of arsenic contained is 10 times or more. Therefore, there is a drawback that a large amount of metal sludge is generated.
This was a problem in the treatment of this type of wastewater. The present invention eliminates the drawbacks of the prior art and provides a wastewater purification method that can efficiently remove arsenic with simple operations, save the amount of ferric salt added, and reduce the amount of sludge generated. That is the issue. [Means for Solving the Problems] The present invention provides a method for treating wastewater with ferric salt before treating wastewater with ferric salt.
3 to 5, the gallium in the wastewater is converted to gallium hydroxide, arsenic is co-precipitated, and this is removed, thereby solving the above problem. That is, the method for purifying wastewater containing gallium and arsenic according to the present invention adjusts the wastewater containing gallium and arsenic to pH 3 to 5, then, after solid-liquid separation, adds a ferric salt to the treated water, It is characterized by adding an alkaline agent to adjust the pH to 6 to 8 and performing solid-liquid separation. According to the method of the present invention, wastewater containing gallium and arsenic is adjusted to pH 3 to 5, and then subjected to solid-liquid separation, thereby removing about 70% or more of arsenic. This is PH3
It is thought that this is because metals such as gallium dissolved in the wastewater become hydroxide by adjusting the concentration to 5, which acts as a coagulant and co-precipitates arsenic. In the method of the present invention, a ferric salt is added to the wastewater after solid-liquid separation. Examples of ferric salts that can be used here include ferric chloride and ferric sulfate. The ferric salt may be added so that the Fe/As ratio is 2 to 6, preferably 4 to 5. After adding the ferric salt in this manner, the mixture is thoroughly stirred, and then an alkaline agent such as sodium hydroxide, potassium hydroxide, etc. is added to adjust the pH to 6 to 8. As a result, the ferric salt added earlier forms ferric hydroxide, which acts as a flocculant,
Co-precipitate arsenic. The arsenic concentration of the treated water obtained by solid-liquid separation of the precipitate generated at this time is:
It is extremely low and can be easily brought below the regulation value. In order to further improve the flocculation effect during solid-liquid separation, a commonly used polymer flocculant may be added as necessary. [Example] Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto. Example 1 PH containing Ga concentration 147mg/, As concentration 175mg/
8.60 wastewater was used as the sample. After adding sulfuric acid to this sample to adjust the pH to 3, the sample was stirred for 5 minutes. After standing still for 30 minutes, ferric chloride was added to the obtained supernatant water with varying amounts of Fe as shown in Table 1, and the mixture was stirred for 5 minutes at 100 rpm using a stirring device. Next, after adding sodium hydroxide and adjusting the pH to 7,
The mixture was stirred at 100 rpm for 5 minutes and at 40 rpm for 10 minutes, and after standing for 30 minutes, the As concentration of the obtained supernatant water was measured, and the results are shown in Table 1. Comparative Example 1 The same operation as in Example 1 was performed except that the wastewater was not initially adjusted to pH 3, and the As concentration of the obtained supernatant water was measured. The results are shown in Table 1.
【表】
上記の表から明らかなとおり、本発明によれば
PH3に調整後、固液分離することにより既に砒素
の約70%が除去され、Feの添加量を約1/2に低減
してAs濃度を0.03mg/以下にすることができ
た。
実施例 2
Ga濃度485mg/、As濃度434mg/を含む廃
水を硫酸によりPH3に調整した後、5分間攪拌
し、30分静置した。得られた上澄水中の砒素濃度
は128mg/となつていた。
この上澄水にFe添加量を変化させて加え、実
施例1と同様に操作し、得られた上澄水のAs濃
度を測定し、結果を第1図に示す。
比較例 2
廃水を始めにPH3に調整しない以外は、実施例
2と同じ操作を行い、得られた上澄水のAs濃度
を測定し、結果を第2図に示す。
実施例 3
Ga濃度200mg/、As濃度200mg/を含む廃
水を試料とした。この試料をPH4に調整した後、
5分間攪拌した。30分静置後、得られた上澄水に
塩化第二鉄をFe/As=1及び2になるように変
化させて加え、実施例1と同様に操作し、得られ
た上澄水のAs濃度を測定し、結果を第2表に示
す。
比較例 3
廃水を始めにPH3に調整しない以外は、実施例
3と同じ操作を行い、得られた上澄水のAs濃度
を測定し、結果を第2表に示す。[Table] As is clear from the above table, according to the present invention
After adjusting the pH to 3, about 70% of the arsenic was already removed by solid-liquid separation, and the amount of Fe added was reduced to about 1/2, making it possible to reduce the As concentration to 0.03 mg/or less. Example 2 Wastewater containing a Ga concentration of 485 mg/ and an As concentration of 434 mg/was adjusted to pH 3 with sulfuric acid, stirred for 5 minutes, and left to stand for 30 minutes. The arsenic concentration in the obtained supernatant water was 128 mg/. Varying amounts of Fe were added to this supernatant water, and the same procedure as in Example 1 was carried out, and the As concentration of the obtained supernatant water was measured. The results are shown in FIG. 1. Comparative Example 2 The same operation as in Example 2 was performed except that the wastewater was not initially adjusted to pH 3, and the As concentration in the resulting supernatant water was measured. The results are shown in FIG. Example 3 Wastewater containing a Ga concentration of 200 mg/ and an As concentration of 200 mg/was used as a sample. After adjusting this sample to PH4,
Stir for 5 minutes. After standing still for 30 minutes, ferric chloride was added to the obtained supernatant water while changing Fe/As = 1 and 2, and the same procedure as in Example 1 was carried out to adjust the As concentration of the obtained supernatant water. was measured and the results are shown in Table 2. Comparative Example 3 The same operation as in Example 3 was performed except that the wastewater was not initially adjusted to pH 3, and the As concentration of the resulting supernatant water was measured. The results are shown in Table 2.
〔発明の効果〕〔Effect of the invention〕
本発明方法によれば、第二鉄塩の添加量を著し
く低減して、簡単な操作で砒素を極めて微量まで
除去することができ、発生スラツジ量を著しく低
減することができる。
According to the method of the present invention, the amount of ferric salt added can be significantly reduced, arsenic can be removed to an extremely small amount with simple operations, and the amount of sludge generated can be significantly reduced.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は、実施例2における第二鉄塩の添加量
(Fe/As比)と処理水のAs濃度の関係を示すグ
ラフ、第2図は比較例2における第二鉄塩の添加
量(Fe/As比)と処理水のAs濃度の関係を示す
グラフである。
Figure 1 is a graph showing the relationship between the amount of ferric salt added (Fe/As ratio) and the As concentration of treated water in Example 2, and Figure 2 is the graph showing the amount of ferric salt added (Fe/As ratio) in Comparative Example 2. 2 is a graph showing the relationship between the Fe/As ratio) and the As concentration in treated water.