JPH0228391B2 - KOJOHAIEKITONODATSUHISHORIHO - Google Patents

KOJOHAIEKITONODATSUHISHORIHO

Info

Publication number
JPH0228391B2
JPH0228391B2 JP11516287A JP11516287A JPH0228391B2 JP H0228391 B2 JPH0228391 B2 JP H0228391B2 JP 11516287 A JP11516287 A JP 11516287A JP 11516287 A JP11516287 A JP 11516287A JP H0228391 B2 JPH0228391 B2 JP H0228391B2
Authority
JP
Japan
Prior art keywords
arsenic
iron
waste liquid
precipitate
ferrous sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11516287A
Other languages
Japanese (ja)
Other versions
JPS63278593A (en
Inventor
Tsuyoshi Shiomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KOEI KK
Original Assignee
DOWA KOEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KOEI KK filed Critical DOWA KOEI KK
Priority to JP11516287A priority Critical patent/JPH0228391B2/en
Publication of JPS63278593A publication Critical patent/JPS63278593A/en
Publication of JPH0228391B2 publication Critical patent/JPH0228391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、少なくとも砒素と硫酸第1鉄を含
む工場等の廃液中から上記砒素を効率的に除去し
て無砒素鉄澱物を回収し、廃液中の有用金属を有
効に利用できるようにした脱砒処理法に関する。 〔従来の技術及びその問題点〕 鉱山や製練の排水または工場廃液等には、硫酸
第1鉄を主体としたものが多く、これらの廃水処
理に当たつて生ずる多量の鉄澱物中には、多くの
有用金属が含有されているところから、これらを
回収して有効利用を図ることが強く望まれてい
る。 しかしながら、一般に、この種鉄澱物中には可
成りの砒素が含まれている場合が多く、有用金属
の回収には該砒素を分離除去する必要がある。 而して、上記砒素を分離するに当たつて従来
は、砒素と硫酸第1鉄を含む工場等の廃液を脱砒
中和槽に導入し、予め該溶液のPHが6程度になる
ように相当量の炭酸カルシウム(以下「炭カル」
と略称する)を加えつゝ曝気して、その第1鉄イ
オンの一部を酸化させて第2鉄イオンにすること
により、これが上記炭カルと反応して生成する鉄
澱物中に砒素を吸着・共沈させるようにしたもの
である(特許第1281102号参照)。 ところで、この種硫酸第1鉄を含む廃液中に、
鉄以外にアルミニウム、銅、亜鉛等の有用金属が
含まれている場合、上記PH条件下での曝気中和手
段では、これらの各金属類も砒素と共沈してしま
うため、その回収が不可能となる他、いきおい沈
澱物量も多くなつて、その堆積場所の確保に困難
を来す等、種々の問題点が見られたものである。 又、PH3以下の低PH下で鉄酸化バクテリアを利
用して第1鉄イオンを酸化する方法も一部で開発
されているが、砒素の除去効率が相対的に低く、
特に多量の砒素を含有する廃液処理には不向きな
面が見受けられたものであつた。 〔問題点を解決するための手段〕 そこで本発明者は、工場廃液等に含まれる鉄以
外のアルミニウム、銅、亜鉛等の有用金属類がPH
4付近(以下「中PH」という)では砒素と共沈し
難い事実、並びに廃液中の砒素As3+が酸化され
てAs5+となつた場合、第2鉄イオンと吸着・共
沈し易い点などに着目し、鋭意、実験研究の結
果、上記硫酸第1鉄を含む廃液中に炭カルを添加
するに当たり、中和槽内の廃液のPHが常に4〜
4.5の中PHを維持するように設定し、該廃液を曝
気すると同時に別途鉄酸化バクテリアが吸着した
塩基性硫酸鉄を加えることによつて、上述した
種々の問題点を一挙に解消したものである。 〔作用〕 叙上の技術的手段に係る本発明は、含砒鉄澱物
中に他の有用金属が混在することを確実に抑制す
る一方、曝気と鉄酸化バクテリアによつて廃液中
の第1鉄イオンと砒素の酸化を効率的に行うとい
う作用を奏するものである。 〔実施例〕 以下、本発明方法を図面に示す実施例に従つて
更に具体的に述べると、脱砒中和槽1に砒素及び
硫酸第1鉄を含む廃液2を流送した後、当初は別
途培養された所定量の鉄酸化バクテリアを投入す
ると共に、圧気3による曝気と制御バルブ4′を
介してパイプ流送に適する濃度の炭カル乳4を供
給可能としたものである。 但し、上記炭カル乳の供給量はPHメーター5と
連動する上記制御バルブ4′によつて脱砒中和槽
1内の廃液2のPHが常時4程度に維持されるよう
に自動調整する。 このようにして酸化と中和が進行した処理液6
は、回収槽7に送られて含砒鉄澱物8を沈降分離
する一方、その上澄水9は次工程に流送されて、
該上澄水に含有される有用金属が分離回収される
のである。 而して、上記含砒鉄澱物8中には、鉄酸化バク
テリアが濃縮状態で吸着しているから、該澱物8
の一部を上記中和槽1に還流させ、残量はダム等
に放流廃棄するものである。 尚、上述の還流して利用される上記鉄澱物8
は、これに吸着する鉄酸化バクテリアによる中和
槽内での第1鉄イオンの過度の酸化を防止するた
め、調整バルブ10を設けてその系内還流量を適
宜調整するものである。 次に本発明の実験例として20/minの鉱山排
水に対し、0.25m3/m2/minの圧気によつて曝気
すると共に、炭カル乳を供給してPH4の中PH下で
鉄酸化バクテリアを加えて第1鉄イオンを酸化し
た場合の脱砒処理結果を第1表に示す。
[Industrial Application Field] This invention efficiently removes arsenic from waste liquid from factories, etc., which contains at least arsenic and ferrous sulfate, recovers arsenic-free iron precipitate, and removes useful metals from the waste liquid. This invention relates to a method for removing arsenic that can be used effectively. [Conventional technology and its problems] Mine and smelting wastewater or factory wastewater are mainly composed of ferrous sulfate, and a large amount of iron precipitate is generated during the treatment of these wastewaters. Because it contains many useful metals, there is a strong desire to recover and effectively utilize these metals. However, generally, this type of iron precipitate often contains a considerable amount of arsenic, and it is necessary to separate and remove the arsenic in order to recover useful metals. In order to separate the above arsenic, conventionally, waste liquid from factories containing arsenic and ferrous sulfate is introduced into a dearsenic neutralization tank, and the pH of the solution is adjusted to about 6 in advance. A considerable amount of calcium carbonate (hereinafter referred to as "charcoal")
) is added and aerated to oxidize a portion of the ferrous ions to ferric ions, which react with the carbonaceous carbon to produce arsenic in the iron precipitate. It is designed to adsorb and co-precipitate (see Patent No. 1281102). By the way, in the waste liquid containing this type of ferrous sulfate,
If useful metals such as aluminum, copper, and zinc are included in addition to iron, the above-mentioned aeration neutralization method under the PH conditions will cause these metals to co-precipitate with arsenic, making it impossible to recover them. In addition to this, various problems have been observed, such as the increasing amount of precipitate, making it difficult to secure a place to deposit it. Additionally, some methods have been developed to oxidize ferrous ions using iron-oxidizing bacteria under a low pH of 3 or less, but the arsenic removal efficiency is relatively low;
In particular, it was found that the method was unsuitable for treating waste liquid containing a large amount of arsenic. [Means for Solving the Problems] Therefore, the present inventor discovered that useful metals other than iron, such as aluminum, copper, and zinc, contained in factory waste liquid, etc.
4 (hereinafter referred to as "medium PH"), it is difficult to co-precipitate with arsenic, and when arsenic As 3+ in the waste liquid is oxidized to As 5+ , it is easy to adsorb and co-precipitate with ferric ions. As a result of intensive experimental research, we focused on these points and found that when adding charcoal to the waste liquid containing ferrous sulfate, the pH of the waste liquid in the neutralization tank was always 4 to 4.
The above-mentioned problems were solved all at once by setting a medium pH of 4.5, aerating the waste liquid, and simultaneously adding basic iron sulfate to which iron-oxidizing bacteria had been adsorbed. . [Operation] The present invention, which is based on the technical means described above, reliably suppresses the presence of other useful metals in the arsenic-containing precipitate, while at the same time suppressing the primary metals in the waste liquid by aeration and iron-oxidizing bacteria. It has the effect of efficiently oxidizing iron ions and arsenic. [Example] Hereinafter, the method of the present invention will be described in more detail according to an example shown in the drawings. In addition to charging a predetermined amount of iron-oxidizing bacteria that has been separately cultured, it is possible to supply charcoal milk 4 of a concentration suitable for pipe transportation through aeration with pressurized air 3 and a control valve 4'. However, the supply amount of the charcoal milk is automatically adjusted by the control valve 4' interlocked with the PH meter 5 so that the pH of the waste liquid 2 in the arsenization neutralization tank 1 is always maintained at about 4. Processing liquid 6 that has been oxidized and neutralized in this way
is sent to a recovery tank 7 to sediment and separate the arsenic-containing precipitate 8, while the supernatant water 9 is sent to the next step,
The useful metals contained in the supernatant water are separated and recovered. Therefore, since iron-oxidizing bacteria are adsorbed in a concentrated state in the arsenic-containing iron precipitate 8, the arsenic-containing precipitate 8
A portion of the water is returned to the neutralization tank 1, and the remaining amount is disposed of by discharging it into a dam or the like. In addition, the above-mentioned iron precipitate 8 which is refluxed and used
In order to prevent excessive oxidation of ferrous ions in the neutralization tank due to iron-oxidizing bacteria adsorbed thereto, a regulating valve 10 is provided to appropriately adjust the amount of reflux within the system. Next, as an experimental example of the present invention, mine drainage at 20/min was aerated with pressurized air at 0.25 m 3 /m 2 /min, and charcoal milk was supplied to incubate iron oxidizing bacteria under a medium pH of 4. Table 1 shows the results of arsenization treatment when ferrous ions were oxidized by adding .

【表】 比較例 1 第2表は回分式試験により液中鉄濃度545mg/
、液中砒素濃度3.61mg/の鉱山排水6に予
め18gの炭カルを加え、毎分0.45m3/m2の圧気を
吹込んでPH6.0で曝気撹拌した従来の脱砒素法に
よる結果である。
[Table] Comparative Example 1 Table 2 shows the iron concentration in liquid of 545mg/
This is the result of a conventional arsenic removal method in which 18 g of charcoal was added in advance to mine drainage 6 with a liquid arsenic concentration of 3.61 mg/min, and air was aerated and stirred at pH 6.0 by blowing in pressure air at a rate of 0.45 m 3 /m 2 per minute. .

【表】 比較例 2 第3表は第1図に示す設備により、PH6程度で
化学的酸化による20/minの鉱山排水を0.4
m3/m2/minの圧気を送つて曝気酸化、脱砒中和
を行つた従来方法に基づく連続試験結果である。
[Table] Comparative Example 2 Table 3 shows that using the equipment shown in Figure 1, mine drainage at a rate of 20/min by chemical oxidation at a pH of about 6 was 0.4
These are continuous test results based on a conventional method in which air under pressure of m 3 /m 2 /min was sent for aeration oxidation, arsenic removal and neutralization.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明方法は、鉱山や製練の
排水または工場廃液をPH4〜4.5の中PHに維持し
た上、曝気と鉄酸化バクテリアを併用して第1鉄
イオンの酸化を経済的速度で行うことによつて、
脱砒処理時に砒素だけが容易に鉄澱物中に吸着・
共沈して除去されるものであるから、その処理液
から鉄以外のアルミニウム、銅、亜鉛等の有用金
属の回収も可能となるものである。 又、本発明によれば上記砒素はAs3+からAs5+
に酸化されて、鉄澱物に容易に吸着・共沈するこ
とから、砒素の除去効率が高められ、これに伴つ
て該脱砒処理に要する鉄分の消費量も必要最小限
に止められ、従来方法に比較して廃棄される澱物
量が著しく少量となる等、その経済的効果は多大
である。
As described above, the method of the present invention maintains mine or smelting wastewater or factory wastewater at a medium pH of 4 to 4.5, and uses a combination of aeration and iron-oxidizing bacteria to oxidize ferrous ions at an economical rate. By doing this,
During the arsenic removal process, only arsenic is easily adsorbed into the iron precipitate.
Since it is removed by coprecipitation, it is also possible to recover useful metals other than iron, such as aluminum, copper, and zinc, from the treatment solution. Further, according to the present invention, the arsenic is As 3+ to As 5+
Because it is easily adsorbed and co-precipitated with iron precipitates, the removal efficiency of arsenic is increased, and the consumption of iron required for the arsenic removal process is also kept to the minimum necessary, compared to conventional methods. The economic effects are significant, such as the amount of sludge discarded is significantly smaller than that of the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に使用した廃液処理
設備の一例を示す配置図である。 尚、図中1……脱砒中和槽、2……廃液、3…
…圧気、4……炭カル乳、5……PHメーター、6
……処理液、7……回収槽、8……含砒鉄澱物、
9……上澄水。
FIG. 1 is a layout diagram showing an example of waste liquid treatment equipment used in carrying out the method of the present invention. In addition, in the figure 1... arsenization neutralization tank, 2... waste liquid, 3...
...Pressure, 4...Charcoal milk, 5...PH meter, 6
...Treatment liquid, 7...Recovery tank, 8...Arsenic-containing precipitate,
9. Clear water.

Claims (1)

【特許請求の範囲】[Claims] 1 砒素と硫酸第1鉄を含む工場等の廃液に鉄酸
化バクテリアを吸着した塩基性硫酸鉄を加え、更
にこの混合液(廃液)のPHが4.0〜4.5になるよう
に炭酸カルシウムを添加して曝気し、上記硫酸第
1鉄の一部および砒素の酸化と同時に中和を行う
ことによつて生成する鉄澱物に砒素を吸着・共沈
させることを特徴とした含砒素工場廃液等の脱砒
処理法。
1 Add basic iron sulfate that has adsorbed iron-oxidizing bacteria to waste liquid from factories that contains arsenic and ferrous sulfate, and then add calcium carbonate so that the pH of this mixed liquid (waste liquid) is 4.0 to 4.5. A method for removing arsenic-containing factory waste fluid, etc., which is characterized by adsorbing and co-precipitating arsenic into the iron precipitate produced by aeration and simultaneously oxidizing and neutralizing a part of the ferrous sulfate and arsenic. Arsenic treatment method.
JP11516287A 1987-05-12 1987-05-12 KOJOHAIEKITONODATSUHISHORIHO Expired - Lifetime JPH0228391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11516287A JPH0228391B2 (en) 1987-05-12 1987-05-12 KOJOHAIEKITONODATSUHISHORIHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11516287A JPH0228391B2 (en) 1987-05-12 1987-05-12 KOJOHAIEKITONODATSUHISHORIHO

Publications (2)

Publication Number Publication Date
JPS63278593A JPS63278593A (en) 1988-11-16
JPH0228391B2 true JPH0228391B2 (en) 1990-06-22

Family

ID=14655869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11516287A Expired - Lifetime JPH0228391B2 (en) 1987-05-12 1987-05-12 KOJOHAIEKITONODATSUHISHORIHO

Country Status (1)

Country Link
JP (1) JPH0228391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
JP2005000823A (en) * 2003-06-12 2005-01-06 Japan Science & Technology Agency Method for treating geothermal water

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2215685T3 (en) * 1999-06-22 2004-10-16 Paques Bio Systems B.V. ARSENIC IMMOBILIZATION PROCESS OF A DISPOSAL CONTAINER.
JP4520963B2 (en) * 2006-06-29 2010-08-11 Dowaテクノエンジ株式会社 Bacterial oxidation method of ferrous ions contained in low pH wastewater
JP5578730B2 (en) * 2011-02-17 2014-08-27 国立大学法人九州大学 Arsenic treatment method
JP5734225B2 (en) * 2012-03-01 2015-06-17 国立大学法人九州大学 Arsenic treatment method
JP6133561B2 (en) * 2012-08-29 2017-05-24 国立大学法人九州大学 Arsenic treatment method
CN106495215B (en) * 2016-11-02 2017-08-25 林子柯 A kind of method that magnesium arsenate is produced containing arsenic waste solution
CN106698821B (en) * 2016-12-20 2019-06-28 中南大学 A method of utilizing microbiological treatment waste water containing trivalent arsenic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
JP2005000823A (en) * 2003-06-12 2005-01-06 Japan Science & Technology Agency Method for treating geothermal water

Also Published As

Publication number Publication date
JPS63278593A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
US5051191A (en) Method to detoxify sewage sludge
CN103771650B (en) A kind for the treatment of process of coal gasification waste water
EP0793993B1 (en) Process for treating waste water of flue gas desulfurization
EA200000437A1 (en) METHOD FOR REMOVING SELENIUM FROM TECHNOLOGICAL WATER FLOWS AND DEVICE FOR ITS IMPLEMENTATION
EP0417185A1 (en) A process for removing nitrogen compounds from raw water.
JPH0228391B2 (en) KOJOHAIEKITONODATSUHISHORIHO
AU2006246174A2 (en) Method and device for removing contaminant trace species, especially arsenic, from water
JPH1147764A (en) Treatment of arsenic-containing waste water
EP0080981B1 (en) A method for producing an aqueous solution of high phosphorous content, recovering iron compounds constituting precipitating agents, and separating heavy metals in a sewage-water or raw-water purification plant
JPH09108690A (en) Treatment of phosphorus containing sewage
JP3843052B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JPH0994600A (en) Treatment of phosphorus-containing sewage
JPH10118664A (en) Treatment of waste water containing cyan compound and organic matter
RU2225366C2 (en) Transition biological-abiotic waste treatment
JPH0218129B2 (en)
JPH0228390B2 (en) RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO
JPH0576897A (en) Water purifying treatment method and apparatus
JP4647814B2 (en) Organic wastewater treatment equipment
JPS59209700A (en) Treatment of conc. waste water containing heavy metal using iron-oxidizing bacteria
JPH02116B2 (en)
JPH09155368A (en) Treatment process for flue gas desulfurization drain
JPS6324405B2 (en)
JPH0647114B2 (en) Wastewater purification method
JPS6274496A (en) Method for treating waste water
JPH10128388A (en) Method and apparatus for treating selenium-containing waste water

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term