JPH0228390B2 - RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO - Google Patents

RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO

Info

Publication number
JPH0228390B2
JPH0228390B2 JP11516187A JP11516187A JPH0228390B2 JP H0228390 B2 JPH0228390 B2 JP H0228390B2 JP 11516187 A JP11516187 A JP 11516187A JP 11516187 A JP11516187 A JP 11516187A JP H0228390 B2 JPH0228390 B2 JP H0228390B2
Authority
JP
Japan
Prior art keywords
iron
tank
oxidation
wastewater
ferrous sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11516187A
Other languages
Japanese (ja)
Other versions
JPS63278592A (en
Inventor
Tsuyoshi Shiomi
Katsutake Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOWA KOEI KK
Original Assignee
DOWA KOEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOWA KOEI KK filed Critical DOWA KOEI KK
Priority to JP11516187A priority Critical patent/JPH0228390B2/en
Publication of JPS63278592A publication Critical patent/JPS63278592A/en
Publication of JPH0228390B2 publication Critical patent/JPH0228390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、鉱山廃水や工業廃水等のように、
硫酸第1鉄を含有する廃水の処理並びに該廃水に
含まれる鉄その他の金属資源の有効利用を目的と
して、硫酸第1鉄のバクテリア酸化と炭酸カルシ
ウム中和を同時に行うことにより、効率良く廃水
が処理出来るようにした硫酸第1鉄を含む廃水の
処理方法に関する。 〔従来の技術及びその問題点〕 従来、硫酸第1鉄溶液の酸化、中和処理は、PH
2.5程度の廃水を鉄酸化バクテリアによつて一旦
酸化して硫酸第2鉄とした後、これに炭酸カルシ
ウムを注入して中和させ、鉄澱物を沈降、分離す
るようにしたものであるから、現在に至るまでこ
の種の廃水処理における酸化工程と中和工程とは
別々に行なうものという既成観念が支配的であつ
た。 即ち、従来の硫酸第1鉄溶液の処理工程を第2
図について説明すると、バクテリア酸化槽a内の
廃水bを曝気して得られたバクテリア泥を含む酸
化水cをバクテリア泥回収槽dを経て中和槽eに
誘導した上、該中和槽eにおいて炭酸カルシウム
乳fを供給しつゝ曝気を行い、その中和水gを更
に別途沈澱槽h内に通過させることにより、鉄澱
物iを分離するようにしたものであつたから、設
備全体が大型化して設備費、操業費が高騰し、ま
た広い設置面積を要する等の問題点が見られたも
のであつた。 〔問題点を解決するための手段〕 そこで本発明者は、硫酸第1鉄を含む廃水を効
率良く処理することを目的として鋭意、実験・研
究を重ねた結果、バクテリア酸化で生成した
Fe3+はPHが3.7以上で完全に中和沈澱し、又炭酸
カルシウム中和雰囲気での鉄酸化バクテリアはPH
5.0以下で活発に活動、増殖する点に着目して、
酸化槽内のPHを一定範囲に維持しておくことによ
り、酸化工程と中和工程を別々に行わなくとも、
同一工程で可能となることを究明し、従来の廃水
処理効率を著しく向上させることに成功したもの
である。 即ち本発明は、酸化中和槽内の硫酸第1鉄を含
有する廃水を、鉄酸化バクテリアが吸着、濃縮さ
れた鉄澱物によつて酸化すると同時に、該酸化中
和槽内に炭酸カルシウムを加えPH3.7〜5.0にまで
中和して、鉄澱物を沈降、分離するようにしたも
のである。 〔作用〕 本発明の方法は、酸化槽内のPHを3.7〜5.0の間
に維持することによつて、鉄酸化バクテリアの活
動と増殖を保ち、第1鉄イオンの酸化と鉄の中和
が同時に行えるという格別の作用を奏するもので
ある。 〔実施例〕 以下、その構成を第1図に示す実施例に従つて
更に具体的に述べると、酸化中和槽1に硫酸第1
鉄を含む廃水2を供給し、該槽内に送風管3より
空気を送出して曝気撹拌しつゝ、鉄酸化バクテリ
アの吸着した鉄澱物4を補給してFe2+→Fe3+
酸化を行う。これと同時に、上記酸化中和槽1に
パイプ流送に適する濃度の炭酸カルシウム乳5を
供給しながら、PHメーター6で槽内PHを検出し、
予め設定された検出値に対応してバルブ7を自動
的に開閉させることにより、槽内PHを3.7〜5.0に
維持するものである。 而して、上記槽内において酸化、中和された鉄
澱物が混在した中和水8は沈降槽9に誘導され、
該槽9内で鉄澱物を沈降分離し、その上澄液は放
流水10として廃棄するものである。 更にこの場合、沈降した鉄澱物の大部分は、バ
クテリア担体として上記酸化中和槽1に還流さ
せ、残部は鉄資源として利用または棄却するもの
とする。 尚、上記鉄澱物内に銅や亜鉛などの金属が含有
されている場合には、次工程に送つて含有有価物
の回収を行うものであり、また上澄液についても
必要に応じて同様に処理することも自由である。 次に、本発明の方法に基づく実験結果を第1表
に示す。
[Industrial Application Field] This invention is applicable to wastewater such as mine wastewater, industrial wastewater, etc.
For the purpose of treating wastewater containing ferrous sulfate and effectively utilizing iron and other metal resources contained in the wastewater, wastewater can be efficiently treated by simultaneously performing bacterial oxidation of ferrous sulfate and neutralization of calcium carbonate. The present invention relates to a method for treating wastewater containing ferrous sulfate. [Prior art and its problems] Conventionally, the oxidation and neutralization treatment of ferrous sulfate solution was performed using PH
After oxidizing wastewater of approximately 2.5% by iron oxidizing bacteria to produce ferric sulfate, calcium carbonate is injected into this to neutralize it, and the iron precipitate is precipitated and separated. Until now, the preconceived notion that the oxidation process and neutralization process in this type of wastewater treatment are performed separately has been dominant. In other words, the conventional ferrous sulfate solution treatment step has been replaced with a second one.
To explain the diagram, oxidized water c containing bacterial mud obtained by aerating waste water b in a bacterial oxidation tank a is guided to a neutralization tank e through a bacterial mud recovery tank d, and then in the neutralization tank e. Since the iron precipitate i was separated by aeration while feeding calcium carbonate milk f and passing the neutralized water g through a separate settling tank h, the entire equipment was large. This led to problems such as increased equipment costs and operating costs, and the need for a large installation area. [Means for solving the problem] Therefore, the inventor of the present invention conducted extensive experiments and research with the aim of efficiently treating wastewater containing ferrous sulfate.
Fe 3+ is completely neutralized and precipitated when the pH is 3.7 or higher, and iron oxidizing bacteria in a calcium carbonate neutralizing atmosphere are
Focusing on the fact that it is active and proliferates below 5.0,
By maintaining the pH in the oxidation tank within a certain range, the oxidation process and neutralization process can be performed without having to perform them separately.
They investigated what could be done in the same process and succeeded in significantly improving the efficiency of conventional wastewater treatment. That is, the present invention oxidizes wastewater containing ferrous sulfate in an oxidation-neutralization tank by iron precipitate adsorbed and concentrated by iron-oxidizing bacteria, and at the same time, calcium carbonate is added to the oxidation-neutralization tank. In addition, the pH is neutralized to 3.7 to 5.0, and iron precipitates are precipitated and separated. [Function] The method of the present invention maintains the PH in the oxidation tank between 3.7 and 5.0 to maintain the activity and proliferation of iron-oxidizing bacteria, thereby preventing the oxidation of ferrous ions and the neutralization of iron. It has a special effect of being able to perform both at the same time. [Example] Hereinafter, the configuration will be described in more detail according to the example shown in FIG.
Wastewater 2 containing iron is supplied, and air is sent into the tank from the blast pipe 3 to aerate and stir the tank, and the iron precipitate 4 adsorbed by iron-oxidizing bacteria is replenished to convert Fe 2+ →Fe 3+ . Perform oxidation. At the same time, while supplying calcium carbonate milk 5 at a concentration suitable for pipe delivery to the oxidation neutralization tank 1, the PH in the tank is detected with a PH meter 6,
By automatically opening and closing the valve 7 in accordance with a preset detection value, the pH in the tank is maintained at 3.7 to 5.0. The neutralized water 8 mixed with iron precipitate that has been oxidized and neutralized in the tank is guided to the settling tank 9,
The iron precipitate is separated by sedimentation in the tank 9, and the supernatant liquid is disposed of as effluent water 10. Furthermore, in this case, most of the settled iron precipitate is returned to the oxidation neutralization tank 1 as a bacterial carrier, and the remainder is used as an iron resource or discarded. If the iron precipitate contains metals such as copper or zinc, it is sent to the next process to recover the contained valuables, and the supernatant liquid is also treated in the same manner as necessary. You are also free to process it. Next, Table 1 shows experimental results based on the method of the present invention.

【表】 又、上記本発明方法に対する比較例として従来
の方法による実験結果を第2表に示す。
Table 2 also shows experimental results using a conventional method as a comparative example for the method of the present invention.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上述べた通り本発明方法は、硫酸第1鉄を含
む廃液処理において、活性バクテリアによる酸化
と炭酸カルシウム中和を同一工程で処理する事に
より、放流水中の鉄の回収効率を高め、従来の方
法における酸化中和槽の統合、並びにバクテリア
汚泥回収槽と鉄澱物分離槽とが兼用できるから、
従前に比して設備全体の大幅な小型化が計られ、
運転費、設備費及び設置面積等を著しく節減し得
るという優れた利点を有するものである。
As described above, the method of the present invention improves the efficiency of recovering iron in effluent water by treating oxidation by active bacteria and neutralization of calcium carbonate in the same process in the treatment of wastewater containing ferrous sulfate. The integration of the oxidation neutralization tank in
The entire equipment has been significantly downsized compared to before.
This has the excellent advantage of significantly reducing operating costs, equipment costs, installation area, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に使用される廃水処
理設備の断面図、第2図は従来の方法に使用され
る廃水処理設備の断面図である。 尚、図中1……酸化中和槽、2……廃水、3…
…送風管、4……鉄澱物、5……炭酸カルシウム
乳、6……PHメーター、7……バルブ、8……中
和水、9……沈降槽、10……放流水。
FIG. 1 is a sectional view of wastewater treatment equipment used in carrying out the method of the present invention, and FIG. 2 is a sectional view of wastewater treatment equipment used in the conventional method. In the figure, 1... oxidation neutralization tank, 2... waste water, 3...
...Blow pipe, 4...Iron sediment, 5...Calcium carbonate milk, 6...PH meter, 7...Valve, 8...Neutralized water, 9...Sedimentation tank, 10...Discharge water.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化中和槽1内の硫酸第1鉄を含有する廃水
2を、鉄酸化バクテリアが吸着、濃縮された鉄澱
物4を補給しつゝ酸化すると同時に、上記酸化中
和槽内に炭酸カルシウムを加え、該槽内のPHを
3.7〜5.0の間に維持して中和し、鉄澱物を沈降、
分離するようにした硫酸第1鉄を含む廃水の処理
方法。
1 The wastewater 2 containing ferrous sulfate in the oxidation neutralization tank 1 is oxidized while supplementing iron precipitate 4 adsorbed and concentrated by iron oxidizing bacteria, and at the same time calcium carbonate is added to the oxidation neutralization tank 1. and adjust the pH in the tank.
Maintain between 3.7 and 5.0 to neutralize and settle iron precipitates,
A method for treating wastewater containing ferrous sulfate by separating it.
JP11516187A 1987-05-12 1987-05-12 RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO Expired - Lifetime JPH0228390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11516187A JPH0228390B2 (en) 1987-05-12 1987-05-12 RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11516187A JPH0228390B2 (en) 1987-05-12 1987-05-12 RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO

Publications (2)

Publication Number Publication Date
JPS63278592A JPS63278592A (en) 1988-11-16
JPH0228390B2 true JPH0228390B2 (en) 1990-06-22

Family

ID=14655842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11516187A Expired - Lifetime JPH0228390B2 (en) 1987-05-12 1987-05-12 RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO

Country Status (1)

Country Link
JP (1) JPH0228390B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19907002C2 (en) * 1999-02-18 2003-03-06 Ufz Leipzighalle Gmbh Process for the microbial remediation of sulfuric mining lakes
EA009324B1 (en) * 2002-10-10 2007-12-28 Галина Аркадьевна Бабаджанова Method of iron hydroxides and oxides recovery
JP4520963B2 (en) * 2006-06-29 2010-08-11 Dowaテクノエンジ株式会社 Bacterial oxidation method of ferrous ions contained in low pH wastewater
JP4790655B2 (en) * 2007-04-20 2011-10-12 新日本製鐵株式会社 Method for recovering iron from waste liquid
JP2017177026A (en) * 2016-03-31 2017-10-05 株式会社システック pH CONTROLLING METHOD AND pH CONTROLLING EQUIPMENT

Also Published As

Publication number Publication date
JPS63278592A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
US3617559A (en) Neutralization of ferrous iron-containing acid wastes
US4294703A (en) Hydrogen peroxide treatment of effluent
US5051191A (en) Method to detoxify sewage sludge
CN101314818B (en) Golden shifting process of biological oxidation-torrefaction-cyanidation
US5093007A (en) Process for removal of inorganic and cyanide contaminants from wastewater
BR9814827A (en) Process for removing dismal water from refinery process and resulting from tailings water
MY128901A (en) A method for treating sludge from wastewater treatment
ES8506546A1 (en) Apparatus for the treatment of water by precipitation, separation, thickening and sludge recirculation.
US4606829A (en) Removal of complexed zinc-cyanide from wastewater with improved sludge stability
JPH1147764A (en) Treatment of arsenic-containing waste water
US5326439A (en) In-situ chromate reduction and heavy metal immobilization
GB1434594A (en) Method and apparatus for the treatment of effluents containing in particular heavy metals
JPH0228390B2 (en) RYUSANDAI1TETSUOFUKUMUHAISUINOSHORIHOHO
WO2001085618A1 (en) Method for treating wastewater with powders of slag generated from steel making process
US4543189A (en) Removal of complexed zinc-cyanide from wastewater
JPH0228391B2 (en) KOJOHAIEKITONODATSUHISHORIHO
PL322042A1 (en) Method of purifying metals containing solutions
JPS59209700A (en) Treatment of conc. waste water containing heavy metal using iron-oxidizing bacteria
JPH02102787A (en) Treatment of waste pickling liquid
SU704912A1 (en) Method of waste water purification from chromium
JPH0389998A (en) Method for removing phosphorus
JPH0824894A (en) Biochemical treatment of steel mill drainage
JPH07289805A (en) Treatment of waste water containing arsenic
RU1773879C (en) Method of purifying sewage of six-valent chrome
JP6162068B2 (en) Waste water treatment apparatus and waste water treatment method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term