JPS6324405B2 - - Google Patents

Info

Publication number
JPS6324405B2
JPS6324405B2 JP59142578A JP14257884A JPS6324405B2 JP S6324405 B2 JPS6324405 B2 JP S6324405B2 JP 59142578 A JP59142578 A JP 59142578A JP 14257884 A JP14257884 A JP 14257884A JP S6324405 B2 JPS6324405 B2 JP S6324405B2
Authority
JP
Japan
Prior art keywords
sulfur
elemental sulfur
liquid
iron
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59142578A
Other languages
Japanese (ja)
Other versions
JPS6121721A (en
Inventor
Kenichi Shono
Mitsuho Kimura
Hiromi Magota
Juichi Shiratori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP59142578A priority Critical patent/JPS6121721A/en
Publication of JPS6121721A publication Critical patent/JPS6121721A/en
Publication of JPS6324405B2 publication Critical patent/JPS6324405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 (イ) 技術分野 本発明はガス中のH2Sの処理方法に関するもの
で、更に詳しくは鉄酸化バクテリアを用いて硫酸
第1鉄溶液から硫酸第2鉄溶液を生成せしめ、該
硫酸第2鉄溶液によりH2Sを吸収して還元再生さ
れた硫酸第1鉄溶液は再び鉄酸化バクテリアによ
り酸化して硫酸第2鉄としてH2Sの吸収に繰返し
使用し、上記吸収反応により生成した吸収液中の
微細なS0分は別に添加した単体硫黄と接触させる
ことによつて単体硫黄として固定回収する極めて
安価なH2Sの処理方法を提供するものである。
[Detailed Description of the Invention] (a) Technical Field The present invention relates to a method for treating H 2 S in gas, and more specifically to a method for producing a ferric sulfate solution from a ferrous sulfate solution using iron-oxidizing bacteria. The ferrous sulfate solution, which has been reduced and regenerated by absorbing H 2 S with the ferric sulfate solution, is oxidized again by iron-oxidizing bacteria and used repeatedly to absorb H 2 S as ferric sulfate. This provides an extremely inexpensive H 2 S processing method in which the fine S 0 fraction in the absorption liquid produced by the absorption reaction is fixed and recovered as elemental sulfur by contacting it with elemental sulfur added separately.

(ロ) 背景技術 ガス中のH2Sを除去する方法としては、苛性ソ
ーダによる吸収法や硫酸第2鉄による吸収法等が
知られているが、硫酸第2鉄による方法は極めて
コスト高であるためにほとんど用いられておら
ず、一般に苛性ソーダによる方法が用いられてい
る。しかし、この苛性ソーダ法もかなりのコスト
を要し理想的な処理法とは言えない。
(b) Background technology As methods for removing H 2 S from gas, absorption methods using caustic soda and absorption methods using ferric sulfate are known, but methods using ferric sulfate are extremely expensive. Therefore, it is rarely used, and a method using caustic soda is generally used. However, this caustic soda method also requires considerable cost and cannot be called an ideal treatment method.

(ハ) 発明の開示 本発明は苛性ソーダ法よりも安価にH2Sを処理
することができ、しかもS分は単体硫黄として回
収できる方法を提供するものである。
(C) Disclosure of the Invention The present invention provides a method that can process H 2 S at a lower cost than the caustic soda method and can recover the S content as elemental sulfur.

本出願人は先に特開昭59−46117号公報におい
て、鉄酸化バクテリアを用いて硫酸第1鉄を硫酸
第2鉄に酸化し、該硫酸第2鉄溶液を吸収液とし
てガス中のH2Sを吸収し、該吸収後液を浮選する
ことによつて単体硫黄を分離する方法を提案した
が、更にコストを安くかつ簡便に処理する方法を
鋭意研究し、本願処理方法を見出したものであ
る。以下詳述する。
The present applicant previously reported in Japanese Patent Application Laid-Open No. 59-46117 that oxidizes ferrous sulfate to ferric sulfate using iron-oxidizing bacteria, and uses the ferric sulfate solution as an absorbing liquid to absorb H 2 in the gas. We have proposed a method of separating elemental sulfur by absorbing S and flotating the absorbed liquid, but we have conducted extensive research on methods to process it at a lower cost and more easily, and have discovered the processing method of the present invention. It is. The details will be explained below.

本発明法では、まず第1工程として酸化槽に硫
酸第1鉄を含む硫酸酸性の溶液を導いて鉄酸化バ
クテリア(以下、単にバクテリアという)の種菌
を少量加え、空気を吹込んでバクテリアを増殖さ
せ、同時に硫酸第1鉄を硫酸第2鉄に酸化処理す
る。
In the method of the present invention, the first step is to introduce a sulfuric acid acidic solution containing ferrous sulfate into an oxidation tank, add a small amount of inoculum of iron oxidizing bacteria (hereinafter simply referred to as bacteria), and then blow air to grow the bacteria. At the same time, ferrous sulfate is oxidized to ferric sulfate.

この場合、硫酸第1鉄含有液として非鉄金属鉱
山排水や製錬排水、工場排水等を使用することが
でき、Fe2+濃度は1〜50g/位の範囲であれ
ばバクテリアにより充分に酸化される。
In this case, non-ferrous metal mine wastewater, smelting wastewater, factory wastewater, etc. can be used as the ferrous sulfate-containing liquid, and if the Fe 2+ concentration is in the range of 1 to 50 g / , it will be sufficiently oxidized by bacteria. Ru.

PHは酸化槽内で沈殿を起さずかつ酸化効率を考
慮しつつ必要により硫酸を添加して3.0以下にす
る。
The pH is adjusted to 3.0 or less by adding sulfuric acid if necessary, while taking into consideration oxidation efficiency and without causing precipitation in the oxidation tank.

なお、製錬排水のように液中に上記バクテリア
やその栄養源を含まない場合には、バクテリアを
増殖させる必要から、栄養剤(N、P、K塩等)
を添加するとよい。
In addition, in cases where the liquid does not contain the above-mentioned bacteria or their nutritional sources, such as smelting wastewater, nutrients (N, P, K salts, etc.) are required to propagate the bacteria.
It is recommended to add

さらに、増殖されたバクテリアを逃がさずに捕
集しておくために、キヤルヤ剤として耐酸性多孔
質物質粒子を添加して酸化槽の菌体濃度を高めて
おくとよい。そして、この耐酸性多孔質物質粒子
は分離槽で分離した後、酸化槽で繰返し使用する
ようにする。
Furthermore, in order to collect the grown bacteria without letting them escape, it is preferable to add acid-resistant porous material particles as a carrier agent to increase the bacterial cell concentration in the oxidation tank. After the acid-resistant porous material particles are separated in a separation tank, they are repeatedly used in an oxidation tank.

ここに、耐酸性多孔質物質粒子とは鉄酸化バク
テリアが着床して可及的多数の菌が生息できる表
面積の大きな多孔質物質を意味し、液中において
撹拌により容易に流動し、かつ静置状態において
は容易に沈降する性質を有するものである。本発
明者等はこのような特性を有する粒子としてゼオ
ライト、活性炭、フラー土等もあるが、珪藻土が
特に優れていることを確認している。
Here, acid-resistant porous material particles refer to porous materials with a large surface area on which iron-oxidizing bacteria can settle and inhabit as many bacteria as possible. It has the property of easily settling when left standing. The present inventors have confirmed that although there are zeolite, activated carbon, Fuller's earth, etc. as particles having such characteristics, diatomaceous earth is particularly excellent.

なお、上記耐酸性多孔質物質の代りに吸収反応
時のPHを上昇させて該吸収液中の硫酸第2鉄を加
水分解させ、生成する鉄殿物をキヤリヤ剤として
使用することもできる。
In addition, instead of using the above-mentioned acid-resistant porous material, it is also possible to increase the pH during the absorption reaction and hydrolyze the ferric sulfate in the absorption liquid, and use the produced iron precipitate as a carrier agent.

次に、酸化槽でバクテリア酸化された硫酸第2
鉄溶液を吸収液としてH2Sを吸収する。(第2工
程) 吸収法としては、硫酸第2鉄溶液を満たした槽
底からH2Sを散気しても、また該液を上方からス
プレーする方法であつてもよい。なお、本願実施
例では小規模テストのためアスピレーターを用い
たが、これに限定されるものではない。
Next, the second sulfuric acid is oxidized by bacteria in an oxidation tank.
H 2 S is absorbed using iron solution as an absorption liquid. (Second Step) As the absorption method, H 2 S may be diffused from the bottom of the tank filled with the ferric sulfate solution, or the solution may be sprayed from above. Note that although an aspirator was used in the embodiment of the present application for a small-scale test, the present invention is not limited to this.

吸収工程では、次の反応が生じる。 In the absorption process, the following reactions occur.

Fe2(SO43+H2S→ 2FeSO4+H2SO4+S0 これにより、H2Sは酸化されてS0を生成すると
共に、硫酸第1鉄溶液が再生される。
Fe 2 (SO 4 ) 3 +H 2 S→2FeSO 4 +H 2 SO 4 +S 0 As a result, H 2 S is oxidized to produce S 0 and the ferrous sulfate solution is regenerated.

この反応後液には微細なコロイド状の硫黄が存
在するために、黄白色の硫黄乳となつており、こ
れを直接上記バクテリア酸化槽に戻すと酸化槽内
に硫黄が蓄積して硫黄雰囲気となり、バクテリア
の中には該硫黄を酸化するものも存在するので、
鉄酸化能力が減少する要因となる。
Because fine colloidal sulfur is present in this post-reaction liquid, it becomes yellowish-white sulfur milk.If this is directly returned to the bacteria oxidation tank, sulfur will accumulate in the oxidation tank, creating a sulfur atmosphere. , some bacteria oxidize the sulfur,
This causes a decrease in iron oxidation ability.

そこで、本発明法では第3工程として、この反
応後液に単体硫黄スラリーを添加することによ
り、生成したコロイド状硫黄を凝集させ、沈降分
離性の良い単体硫黄として分離回収し、その分離
後液を第1工程の酸化槽に繰返す。上記単体硫黄
スラリーとしては100〜150g/、好ましくは
110〜130g/のスラリー濃度のものがよく、そ
の添加量としては反応後液に対して対液比で10〜
30%、好ましくは15〜25%の割合で添加し、撹拌
した後に充分に沈殿熟成させて沈降性のよい単体
硫黄として分離回収すると共に、その一部は上記
単体硫黄スラリー用として繰返し使用する。
Therefore, in the method of the present invention, as the third step, an elemental sulfur slurry is added to this post-reaction liquid to agglomerate the generated colloidal sulfur and separate and recover it as elemental sulfur with good sedimentation separation properties. is repeated in the oxidation tank of the first step. The above elemental sulfur slurry is 100 to 150 g/preferably
A slurry with a concentration of 110 to 130 g/ml is best, and the amount added is 10 to 130 g per liquid after reaction.
It is added at a ratio of 30%, preferably 15 to 25%, stirred, and then sufficiently precipitated and aged to separate and recover elemental sulfur with good sedimentation properties, and a portion of it is repeatedly used as the elemental sulfur slurry.

なお、スラリー濃度が100g/以下では対液
比が大となりすぎて装置的に問題があり、また
150g/以上ではスラリー自体の取扱いが困難
となるため、100〜150g/好ましくは110〜130
g/程度がよい。従つて、対液比もスラリー濃
度に関連して10〜30%、好ましくは15〜25%の割
合がよいのである。
In addition, if the slurry concentration is less than 100 g/L, the ratio to liquid will be too large, causing equipment problems, and
If the slurry is more than 150g/handling, it becomes difficult to handle, so 100-150g/preferably 110-130g/
g/degree is good. Therefore, the liquid-to-liquid ratio is preferably 10 to 30%, preferably 15 to 25%, in relation to the slurry concentration.

このようにして、硫黄を除去した尾液は硫酸第
1鉄溶液であり、これを第1工程のバクテリア酸
化槽に繰返し、充分培養されて活性を得た状態と
なつているバクテリアにより再び硫酸第2鉄に酸
化され、H2Sの吸収に使用される。
The tailing liquid from which sulfur has been removed in this way is a ferrous sulfate solution, and this is repeated in the bacterial oxidation tank of the first step, and the bacteria that have been sufficiently cultured and activated are used to oxidize sulfuric acid again. It is oxidized to diiron and used for H 2 S absorption.

本願発明で用いたバクテリアは、公知の
「Thio bacillus Ferrooxidance」等であり、排
水泥を種菌として該処理液中の鉄酸化バクテリア
を第1鉄イオン等を高濃度に含有する液で培養さ
せたものである。
The bacteria used in the present invention are the well-known "Thio bacillus Ferrooxidance", etc., and the iron-oxidizing bacteria in the treated solution were cultured in a solution containing a high concentration of ferrous ions, etc. using wastewater mud as a seed bacteria. It is.

この方法によつて培養された鉄酸化バクテリア
の酸化能力は、通常の酸化能力に比較すると2〜
5倍の能力を有する(寄託番号 微工研菌寄第
7443号、微工研菌寄第7444号)ものである。
The oxidizing ability of iron-oxidizing bacteria cultured by this method is 2 to 2 compared to the normal oxidizing ability.
It has five times the capacity (Deposit number:
No. 7443, Microtechnical Research Institute No. 7444).

以下、本発明法の一実施例を添付図面を参照し
て説明する。
An embodiment of the method of the present invention will be described below with reference to the accompanying drawings.

(ニ) 実施例 K鉱山排水処理場で培養した鉄酸化バクテリア
20とパルプ濃度15%の珪藻土を入れた容量500
の酸化槽1に硫酸を加えてPH2.0に調整した
FeSO4(Fe2+濃度5〜20g/)溶液を2/分
の速度で連続的に流入せしめ、さらに栄養剤とし
てリン酸アンモニウムを槽1内で50mg/となる
ように添加し、エアブローを80/分で行なつ
た。
(d) Example Iron-oxidizing bacteria cultured at the K mine wastewater treatment plant
20 and diatomaceous earth with a pulp concentration of 15%, capacity 500
Sulfuric acid was added to oxidation tank 1 to adjust the pH to 2.0.
A FeSO 4 (Fe 2+ concentration of 5 to 20 g/min) solution was continuously flowed in at a rate of 2/min, and ammonium phosphate was added as a nutrient at a concentration of 50 mg/min in tank 1. / minute.

酸化槽1からのオーバーフロー液を容量300
の分離槽2に導いた後、容量400の第2鉄供給
槽3に導入した。該オーバーフロー液はほぼ完全
に酸化されたFe2(SO43溶液である。
The overflow liquid from oxidation tank 1 has a capacity of 300
After being introduced into a separation tank 2, the iron was introduced into a ferric supply tank 3 having a capacity of 400. The overflow liquid is an almost completely oxidized Fe 2 (SO 4 ) 3 solution.

次いで、該硫酸第2鉄溶液を2/分の流量で
吸収工程のアスピレーターに導くと共に、約75%
濃度のH2Sガスを4/分の割合で送入して吸収
させた。吸収後のガスを北川式検知管で検査した
ところ、S分は検出されなかつた。
Next, the ferric sulfate solution is introduced into the aspirator of the absorption process at a flow rate of 2/min, and about 75%
Concentrated H 2 S gas was introduced and absorbed at a rate of 4/min. When the absorbed gas was tested using a Kitagawa detector tube, no S content was detected.

次に、該吸収後液を容量170の凝集槽6に導
入し、単体硫黄スラリー約120g/を対液比で
20%の割合で添加し、撹拌機で撹拌した。
Next, the absorbed liquid is introduced into a flocculation tank 6 with a capacity of 170, and about 120 g of elemental sulfur slurry is added to the liquid ratio.
It was added at a rate of 20% and stirred with a stirrer.

次いで、該処理液を容量170の沈降槽7に導
いて沈殿熟成させ、固液分離して、オーバーフロ
ー液は容量300のクツシヨンタンク9に導いた
後、容量300の第1鉄供給槽に導入し、該第1
鉄溶液を酸化槽に繰返した。
Next, the treated liquid is led to a sedimentation tank 7 with a capacity of 170, where it is allowed to settle and ripen, separated into solid and liquid, and the overflow liquid is led into a cushion tank 9 with a capacity of 300, and then introduced into a ferrous iron supply tank with a capacity of 300. and the first
The iron solution was repeated into the oxidation bath.

一方、アンダーフローからは硫黄回収槽8にお
いて単体硫黄スラリーを回収し、一部を凝集槽に
繰返すと共に、残部は単体硫黄として回収した。
On the other hand, elemental sulfur slurry was recovered from the underflow in the sulfur recovery tank 8, a part of which was recycled to the flocculation tank, and the remainder was recovered as elemental sulfur.

(ホ) 発明の効果 本発明法は以上のようにH2Sの処理に安価な硫
酸第2鉄を繰返し使用するものであり、苛性ソー
ダ法より3分の1以下のコストで処理できる上、
本出願人が先に提案した浮選による単体硫黄分離
法に比較しても浮選剤等を使用しない分だけ大幅
なコストダウンとなる利点を有する。
(E) Effects of the Invention As described above, the method of the present invention repeatedly uses inexpensive ferric sulfate to treat H 2 S, and can be treated at less than one third of the cost of the caustic soda method.
Compared to the elemental sulfur separation method by flotation proposed earlier by the present applicant, this method has the advantage of significantly reducing costs because no flotation agent is used.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明法の一例を示すフローシートであ
る。 符号説明 1…酸化槽、2…分離槽、3…第2
鉄供給槽、4…アスピレーター、5…吸収槽、6
…凝集槽、7…沈降槽、8…硫黄回収槽、9…ク
ツシヨンタンク、10…第1鉄供給槽。
The figure is a flow sheet showing an example of the method of the present invention. Description of symbols 1...Oxidation tank, 2...Separation tank, 3...Second
Iron supply tank, 4... Aspirator, 5... Absorption tank, 6
... flocculation tank, 7... settling tank, 8... sulfur recovery tank, 9... cushion tank, 10... ferrous iron supply tank.

Claims (1)

【特許請求の範囲】 1 硫酸第1鉄溶液を鉄酸化バクテリアにより硫
酸第2鉄に酸化する第1工程と、第1工程で得ら
れた硫酸第2鉄溶液を吸収液としてガス中のH2S
と接触させ吸収する第2工程と、第2工程で生成
したコロイド状硫黄を沈降分離する第3工程とか
らなるH2Sの処理方法において、上記第2工程の
接触反応により生成する微細なコロイド状硫黄を
含む溶液に100〜150g/好ましくは110〜130
g/の単体硫黄スラリーを対液比で10〜30%好
ましくは15〜25%の割合で添加し熟成せしめて沈
降分離性の良い単体硫黄として分離回収すると共
に、この単体硫黄の一部を上記単体硫黄スラリー
用として繰返し使用することを特徴とするガス中
のH2Sの処理方法。 2 前記鉄酸化バクテリアは、微工研寄第7443号
及び同第7444号の高酸化能力を有するチオバチル
スフエロオキシダンスである特許請求の範囲第1
項記載のガス中のH2Sの処理方法。
[Claims] 1. A first step in which a ferrous sulfate solution is oxidized to ferric sulfate by iron-oxidizing bacteria, and the ferric sulfate solution obtained in the first step is used as an absorbing liquid to absorb H 2 in the gas. S
In the H 2 S treatment method, which consists of a second step of contacting and absorbing the colloidal sulfur, and a third step of separating the colloidal sulfur produced in the second step by sedimentation, the fine colloids produced by the contact reaction in the second step are 100-150g/preferably 110-130g in a solution containing sulfur
g/g of elemental sulfur slurry is added at a ratio of 10 to 30%, preferably 15 to 25% relative to the liquid, and aged to separate and recover elemental sulfur with good sedimentation separation properties, and a part of this elemental sulfur is A method for treating H 2 S in gas, which is characterized by repeated use as a slurry of elemental sulfur. 2. Claim 1, wherein the iron-oxidizing bacteria is Thiobacillus ferrooxidans having a high oxidizing ability as disclosed in FAIKEN JOIN No. 7443 and No. 7444.
A method for treating H 2 S in a gas as described in .
JP59142578A 1984-07-10 1984-07-10 Treatment of h2s in gas Granted JPS6121721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59142578A JPS6121721A (en) 1984-07-10 1984-07-10 Treatment of h2s in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59142578A JPS6121721A (en) 1984-07-10 1984-07-10 Treatment of h2s in gas

Publications (2)

Publication Number Publication Date
JPS6121721A JPS6121721A (en) 1986-01-30
JPS6324405B2 true JPS6324405B2 (en) 1988-05-20

Family

ID=15318568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59142578A Granted JPS6121721A (en) 1984-07-10 1984-07-10 Treatment of h2s in gas

Country Status (1)

Country Link
JP (1) JPS6121721A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4931262A (en) * 1987-03-03 1990-06-05 Dowa Mining Co., Ltd. Method of treating H2 S containing gases
JPH01184024A (en) * 1988-01-15 1989-07-21 Dowa Mining Co Ltd Method for removing h2s contained in gas
KR100301959B1 (en) * 1999-05-15 2001-10-29 윤덕용 Apparatus and Method for Treatment of Gases Containing Hydrogen Sulfide
KR20020060295A (en) * 2001-01-10 2002-07-18 조경숙 Method for Removing Gases Containing Hydrogen Sulfide Using Aqueous Catalysts of Fe-chelates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152488A (en) * 1982-03-05 1983-09-10 Sumitomo Jukikai Envirotec Kk Removal of hydrogen sulfide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152488A (en) * 1982-03-05 1983-09-10 Sumitomo Jukikai Envirotec Kk Removal of hydrogen sulfide

Also Published As

Publication number Publication date
JPS6121721A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
US2829964A (en) Cyclic leaching process employing iron oxidizing bacteria
Peters et al. Evaluation of recent treatment techniques for removal of heavy metals from industrial wastewaters
US4200523A (en) Process for removing sulfate ions from aqueous streams
AU719886B2 (en) Process for the treatment of water containing heavy metal ions
US4752332A (en) Treating manganese-containing ores with a metal sulfide
EP0417185B1 (en) A process for removing nitrogen compounds from raw water
RO108674B1 (en) Waters treatment processes which contain sulphur compounds
HUT77892A (en) Anaeorobic method for removing of sulfur compounds from waste waters
JPH1147764A (en) Treatment of arsenic-containing waste water
JPS6324405B2 (en)
AU2012201341B2 (en) Process of treatment for oxidizing an acidic solution containing an iodide ion and an iron (II) ion
JPS63278593A (en) Method for removing arsenic from industrial waste liquid or the like
JPH0128633B2 (en)
JPS6121691B2 (en)
EP0280750A1 (en) Method and apparatus for treating H2S containing gases
JPS6225439B2 (en)
JPH0523812B2 (en)
CN1584072A (en) Pressurizer self-catalytic selective leaching-out method for ferric zinc sulfide refining mine
JPH0218129B2 (en)
JPS61274724A (en) Treatment of malodor
JPH0523813B2 (en)
JPH09308891A (en) Removal of selenium oxide in water
JPS5840191A (en) Removal of arsenic from arsenic-contg. ferrous sulfate solution
RU2336341C1 (en) Method of heap bacterial leaching of sulphide containing products
RU2339709C1 (en) Method for heap bacterial leaching of sulphide-bearing ore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term