JPS6121691B2 - - Google Patents

Info

Publication number
JPS6121691B2
JPS6121691B2 JP57154887A JP15488782A JPS6121691B2 JP S6121691 B2 JPS6121691 B2 JP S6121691B2 JP 57154887 A JP57154887 A JP 57154887A JP 15488782 A JP15488782 A JP 15488782A JP S6121691 B2 JPS6121691 B2 JP S6121691B2
Authority
JP
Japan
Prior art keywords
bacteria
liquid
gas
sulfur
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57154887A
Other languages
Japanese (ja)
Other versions
JPS5946117A (en
Inventor
Hiromi Magota
Juichi Shiratori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP57154887A priority Critical patent/JPS5946117A/en
Publication of JPS5946117A publication Critical patent/JPS5946117A/en
Publication of JPS6121691B2 publication Critical patent/JPS6121691B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はガス中のH2Sの処理方法に関するもの
で、更に詳しくは鉄酸化バクテリアを用いて硫酸
第1鉄溶液から硫酸第2鉄を生成し、これを吸収
液としてガス中のH2Sを吸収し、吸収により再生
する硫酸第1鉄溶液は再び鉄酸化バクテリアによ
り酸化して硫酸第2鉄溶液としてH2Sの吸収に繰
返し使用し、吸収液中のS分は単体硫黄(So)
として固定回収する極めて安価なH2Sの処理方法
を提供するものである。 従来、ガス中のH2Sの除去には苛性ソーダによ
る吸収法や硫酸第2鉄による吸収法等が知られて
いるが、硫酸第2鉄による方法は極めてコスト高
となるためにはほとんど用いられておらず、一般
に苛性ソーダによる方法が用いられているが、こ
れもかなりのコストを要し理想的な処理方法とは
言えない。 本発明は苛性ソーダ法よりも安価にH2Sを処理
することができ、しかもS分はSoとして回収で
きる方法を提供するものである。 即ち、本発明は硫酸第1鉄溶液を鉄酸化バクテ
リアを用いて硫酸第2鉄に酸化する第1工程と、
第1工程で得られる硫酸第2鉄溶液を吸収液とし
てガス中のH2Sを吸収する第2工程と、第2工程
でのH2S吸収後液に浮選を行なつて単体硫黄を回
収すると共に尾液は第1工程に繰返す第3工程と
からなるものである。以下、本発明法を添付図面
のフローシートを参照しながら詳述する。 まず、酸化槽に硫酸第1鉄を含む硫酸酸性の溶
液を導いて鉄酸化バクテリア(以下単にバクテリ
アともいう)の種菌を少量加え、空気を吹込んで
バクテリアを増殖させ、同時に硫酸第1鉄を硫酸
第2鉄に酸化処理する(第1工程)。 この場合、硫酸第1鉄を多量に含む非鉄金属鉱
山排水や製錬排水、工場排水を使用するときは、
通常該バクテリアの増殖を阻害するような物質、
例えばF-,Cl-,Hg,Ag,As,S.S.等が存在し
ているので、これらをあらかじめ除去し又は希釈
しておく。 Fe2+濃度はバクテリアの酸化効率から8〜12
g/、PHは鉄分が酸化槽内で沈殿を起さずかつ
バクテリアの酸化効率を考慮し必要により硫酸を
添加して2.0以下とする。なお、製錬排水のよう
に液中に上記バクテリアその栄養源を含まない場
合には、バクテリアを増殖させる必要から栄養剤
(N,P,K等)を添加しておく。 さらに、増殖されたバクテリアを逃がさずに捕
集しておくため、キヤリヤ剤として耐酸性多孔物
質例えば珪藻土を添加して酸化槽内の菌体濃度を
高めておき、また酸化槽から硫酸第2鉄溶液と共
に溢流する該キヤリヤ剤もシツクナー等で捕集し
て槽内に返送するようにするとよい。 次に、酸化槽でバクテリア酸化された硫酸第2
鉄溶液を吸収液としてH2Sを吸収し、吸収後のガ
スは放出する(第2工程)。 吸収法としては、硫酸第2鉄溶液を満した槽底
からH2Sを散気しても、また該液を上方からスプ
レーする方法であつてもよい。 吸収工程では以下の反応が生じる。 Fe2(SO43+H2S →2FeO4+H2SO4+So これにより、硫酸第1鉄溶液が再生されるが、
この反応後液には微細なコロイド状の単体硫黄が
存在するために黄白色の硫黄乳となつており、こ
れを直接上記バクテリア酸化槽に戻すと酸化槽内
に硫黄が蓄積して硫黄雰囲気となり、バクテリア
が硫黄酸化バクテリアにその性質を変えてしま
い、さらに硫黄の沈降性が悪いので溢流に伴なう
バクテリアの流出等により鉄酸化能力が減少す
る。 そこで、本発明法では第3工程としてこの反応
後液を浮選にかけて単体硫黄を分離除去し、その
尾液を第1工程の酸化槽に繰返すのである。 浮選の際の条件付けとして第2工程の硫黄乳に
起泡剤を添加する。これにより不安定な硫黄コロ
イドが若干の凝集を起こし、さらにこれに陽イオ
ン捕集剤等の捕収剤を加えて撹拌を行なうと硫黄
は完全に凝集して液は清澄となる。これを浮選機
にかけて浮上分離を行なと硫黄はほぼ完全に除去
することができる。 このようにして硫黄を除去した清澄な浮選尾液
は硫酸第1鉄溶液であり、これを第1工程のバク
テリア酸化槽に戻し、充分培養されて活性を得た
状態となつているバクテリアにより再び硫酸第2
鉄に酸化され、H2Sの吸収に使用される。 なお、上記のように浮選を行なうということ
は、H2Sを吸収して還元性雰囲気となつた液を通
気撹拌により通常の状態にまで戻し、第1工程で
のバクテリア酸化を容易とする2次的効果もあ
る。 一方、浮選により分離された硫黄は前記のよう
に条件付けされているので、粘着性でフイルター
による脱水が困難であつたコロイド状硫黄が捕収
剤によつて表面を覆われており、粘着性及び過
性が改善されているので、フロスに吸着したこの
Soに凝集剤を加えて沈降させ、脱水、乾燥させ
ることにより簡単に固定することができる。 なお、本発明における工程中でロスした鉄分
(硫酸第1鉄)や珪藻土は第1工程のバクテリア
酸化槽に補充するようにする。 本発明法はは以上のように安価な硫酸第1鉄を
繰返し使用するものであり、従来法よりも低コス
ト(例えば苛性ソーダ法の1/3以下)でH2Sを
含む各種排ガスを処理することができ、しかも
H2S中のS分は単体硫黄として粉末状、フレーク
状、ペレツト状等いかなる形状でも回収できるな
ど種々の利点を有する。 実施例 M鉱山排水処理場で培養した鉄酸化バクテリア
20とパルプ濃度15%の珪藻土を入れた容量480
の酸化槽に硫酸を加えてPH1.8に調整した
FeSO4(Fe2+濃度10g/)溶液を4/分の
速度で連続的に流入し、さらに栄養剤としてリン
酸アンモニウムを槽内で50mg/となるよう連続
添加し、エアブローを1.3m3/分行なつた。 酸化槽からのオーバーフロー液を262容量の
コーンタンクに導きその溢流水を調べたところ、
ほとんど完全に酸化されたFe2(SO43溶液であ
つた。またコーンタンク内に沈殿したバクテリア
を含む珪藻土泥は酸化槽に戻し、実験を続けた結
果、酸化槽内の液は滞留時間約2時間で酸化が完
了し、同槽内での珪藻土のロスは50mg/程度で
あつた。 次に、上記Fe2(SO43溶液によるH2Sガスの吸
収実験を行なつた。実験はフラスコ内にH2Sガス
を充満させて定量ポンプで水により追い出し、1
のFe2(SO43溶液(10gFe/)をそれぞれ
入れた2個の吸収びんを連絡管で連通させ、ガス
はそれぞれ吸収びんの底部からガラスフイルター
で散気させるようにして2段で処理を行なつた。
2段目の吸収液びんの排出ガス中のH2S濃度を北
川式検知器で計測した結果を次表に示す。なお、
元ガスのH2S濃度は濃すぎて検知器で検出できな
いため、体積希釈しただけの推定値であり、また
表中「0分」とはH2Sを流し始めて安定状態とな
つたところ(開始後約5分)を0分とした。
The present invention relates to a method for treating H 2 S in gas. More specifically, the present invention relates to a method for treating H 2 S in gas. The ferrous sulfate solution that is regenerated by absorption is oxidized again by iron-oxidizing bacteria and used repeatedly to absorb H 2 S as a ferric sulfate solution.
This provides an extremely inexpensive method for treating H 2 S, which is fixed and recovered as H 2 S. Conventionally, absorption methods using caustic soda and absorption methods using ferric sulfate have been known to remove H 2 S from gas, but methods using ferric sulfate are rarely used because they are extremely costly. Generally, a method using caustic soda is used, but this also requires considerable cost and is not an ideal treatment method. The present invention provides a method in which H 2 S can be treated at a lower cost than the caustic soda method, and the S component can be recovered as So. That is, the present invention includes a first step of oxidizing a ferrous sulfate solution to ferric sulfate using iron-oxidizing bacteria;
The second step is to absorb H 2 S in the gas using the ferric sulfate solution obtained in the first step as an absorption liquid, and the liquid after the H 2 S absorption in the second step is subjected to flotation to remove elemental sulfur. The third step consists of collecting the tail liquid and repeating the first step. Hereinafter, the method of the present invention will be explained in detail with reference to the flow sheet of the accompanying drawings. First, a sulfuric acid acidic solution containing ferrous sulfate is introduced into an oxidation tank, a small amount of inoculum of iron oxidizing bacteria (hereinafter simply referred to as bacteria) is added, and air is blown into the tank to grow the bacteria. Oxidation treatment to ferric iron (first step). In this case, when using nonferrous metal mine wastewater, smelting wastewater, or factory wastewater containing large amounts of ferrous sulfate,
Substances that normally inhibit the growth of said bacteria;
For example, since F - , Cl - , Hg, Ag, As, SS, etc. are present, these are removed or diluted in advance. The Fe 2+ concentration is 8-12 based on the oxidation efficiency of bacteria.
g/, PH is set to 2.0 or less by adding sulfuric acid if necessary to prevent iron content from precipitating in the oxidation tank and considering the oxidation efficiency of bacteria. In addition, when the liquid does not contain the nutrients for the bacteria, such as smelting wastewater, nutrients (N, P, K, etc.) are added to make the bacteria grow. Furthermore, in order to collect the grown bacteria without escaping, an acid-resistant porous material such as diatomaceous earth is added as a carrier agent to increase the bacterial concentration in the oxidation tank, and ferric sulfate is removed from the oxidation tank. It is preferable that the carrier agent overflowing with the solution is also collected by a thickener or the like and returned to the tank. Next, the second sulfuric acid is oxidized by bacteria in an oxidation tank.
H 2 S is absorbed using an iron solution as an absorption liquid, and the absorbed gas is released (second step). The absorption method may be a method in which H 2 S is diffused from the bottom of a tank filled with a ferric sulfate solution, or a method in which the solution is sprayed from above. The following reactions occur in the absorption process. Fe 2 (SO 4 ) 3 +H 2 S →2FeO 4 +H 2 SO 4 +So This regenerates the ferrous sulfate solution, but
The reaction solution contains fine colloidal elemental sulfur, resulting in yellowish-white sulfur milk. If this is directly returned to the bacteria oxidation tank, sulfur will accumulate in the oxidation tank, creating a sulfur atmosphere. The properties of the bacteria change to sulfur-oxidizing bacteria, and since sulfur has poor sedimentation properties, the iron oxidizing ability decreases due to bacterial outflow due to overflow. Therefore, in the method of the present invention, in the third step, the post-reaction liquid is subjected to flotation to separate and remove elemental sulfur, and the tail liquid is repeated to the oxidation tank of the first step. A foaming agent is added to the sulfur milk in the second step for conditioning during flotation. As a result, the unstable sulfur colloid causes some aggregation, and when a scavenger such as a cation scavenger is added to this and stirred, the sulfur is completely agglomerated and the liquid becomes clear. By applying this to a flotation machine to perform flotation separation, sulfur can be almost completely removed. The clear flotation tail liquid from which sulfur has been removed in this way is a ferrous sulfate solution, which is returned to the bacterial oxidation tank in the first step, where it is oxidized by bacteria that have been sufficiently cultured and have become active. Sulfuric acid No. 2 again
Oxidized to iron and used for H2S absorption. Furthermore, performing flotation as described above means that the liquid, which has absorbed H 2 S and has become a reducing atmosphere, is returned to its normal state by aeration and stirring to facilitate bacterial oxidation in the first step. There are also secondary effects. On the other hand, since the sulfur separated by flotation is conditioned as described above, the colloidal sulfur, which is sticky and difficult to dehydrate using a filter, is covered with a scavenger and becomes sticky. This product adsorbed on the floss has been improved.
It can be easily fixed by adding a flocculant to So, allowing it to settle, then dehydrating and drying it. Note that the iron (ferrous sulfate) and diatomaceous earth lost during the process of the present invention are replenished into the bacterial oxidation tank in the first step. As described above, the method of the present invention repeatedly uses inexpensive ferrous sulfate, and can treat various exhaust gases containing H 2 S at a lower cost than conventional methods (for example, less than 1/3 of the cost of the caustic soda method). can be done, and
The S content in H 2 S has various advantages such as being able to be recovered as elemental sulfur in any form such as powder, flakes, pellets, etc. Example: Iron-oxidizing bacteria cultured at the M mine wastewater treatment plant
20 and diatomaceous earth with a pulp concentration of 15%, capacity 480
Sulfuric acid was added to the oxidation tank to adjust the pH to 1.8.
FeSO 4 (Fe 2+ concentration 10 g/min) solution was continuously flowed in at a rate of 4/min, ammonium phosphate was continuously added as a nutrient at a concentration of 50 mg/min in the tank, and air was blown at a rate of 1.3 m 3 /min. I went to work. When the overflow liquid from the oxidation tank was led to a 262-capacity cone tank, the overflow water was investigated.
It was an almost completely oxidized Fe 2 (SO 4 ) 3 solution. In addition, the diatomaceous earth mud containing bacteria precipitated in the cone tank was returned to the oxidation tank, and as a result of continuing the experiment, the oxidation of the liquid in the oxidation tank was completed in about 2 hours, and the loss of diatomaceous earth in the tank was reduced. The amount was around 50mg/. Next, an H 2 S gas absorption experiment using the Fe 2 (SO 4 ) 3 solution was conducted. The experiment was carried out by filling a flask with H 2 S gas and expelling it with water using a metering pump.
Two absorption bottles, each containing a Fe 2 (SO 4 ) 3 solution (10 gFe/), are connected through a connecting tube, and the gas is diffused from the bottom of each absorption bottle using a glass filter to process the gas in two stages. I did this.
The following table shows the results of measuring the H 2 S concentration in the exhaust gas from the second-stage absorption liquid bottle using a Kitagawa detector. In addition,
The H 2 S concentration of the original gas is too concentrated to be detected by a detector, so it is an estimated value obtained by simply diluting the volume. In addition, "0 minutes" in the table refers to the time when H 2 S has started flowing and a stable state has been reached ( 5 minutes after the start) was defined as 0 minutes.

【表】【table】

【表】 表より、H2Sの吸収率が非常に良いことが判
る。 上記H2S吸収液でSo濃度2.32g/のものは硫
黄コロイド状の乳液であり、この液2に起泡剤
としてDOW#250(商品名)又はユーミン(商品
名)0.01gと捕収剤としてデユオミン(商品名)
0.01gを添加し、10分間撹拌して条件付けを行な
い、液が清澄化してから容量1.8の京大式浮選
機にかけて3分間硫黄浮選を行なつた。 浮選尾液を調べたところ、So濃度は7ppmで
FeSO4の澄んだ溶液であり、バクテリア酸化槽に
繰返して充分使用できるものであつた。また、浮
選でのフロスに凝集剤としてアコフロツク(商品
名)0.005gを加えて沈降させ、フイルターで
過した。過は簡単で、吸引脱水後の水分は50%
であつた。これを温風乾燥して得られた粉末の品
位はS97.6%、Fe0.8%、その他1.6%であり、フ
レーク状又はペレツト状にも成形できるものであ
つた。
[Table] From the table, it can be seen that the absorption rate of H 2 S is very good. The above H 2 S absorption liquid with a So concentration of 2.32g/ is a sulfur colloidal emulsion, and this liquid 2 contains 0.01g of DOW#250 (trade name) or Yumin (trade name) as a foaming agent and a collecting agent. Duomin (product name)
0.01 g was added and stirred for 10 minutes to condition the solution. After the liquid was clarified, it was subjected to sulfur flotation for 3 minutes in a Kyoto University type flotation machine with a capacity of 1.8. When the flotation tail liquid was examined, the So concentration was 7ppm.
It was a clear solution of FeSO 4 and could be used repeatedly in the bacterial oxidation tank. In addition, 0.005 g of Acofloc (trade name) was added as a flocculant to the flotation floc, and the floc was sedimented and passed through a filter. It is easy to dehydrate, and the water content after suction dehydration is 50%.
It was hot. The quality of the powder obtained by drying it with hot air was 97.6% S, 0.8% Fe, and 1.6% other, and could be formed into flakes or pellets.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明法のフローシートである。 The figure is a flow sheet of the method of the present invention.

Claims (1)

【特許請求の範囲】 1 硫酸第1鉄溶液を鉄酸化バクテリア用いて硫
酸第2鉄に酸化する第1工程と、第1工程で得ら
れた硫酸第2鉄溶液を吸収液としてガス中のH2S
を吸収する第2工程と、第2工程の吸収後液に浮
選を行なつて単体硫黄を分離回収すると共に浮選
尾液は第1工程に繰返す第3工程とからなること
を特徴とするガス中のH2Sの処理方法。 2 前記バクテリアのキヤリヤ剤として珪藻土を
使用する特許請求の範囲第1項記載のガス中の
H2Sの処理方法。 3 前記第1工程における硫酸第1鉄溶液の
Fe2+濃度は8〜12g/であり、PHは2.0以下に
調整してなる特許請求の範囲第1項又は第2項記
載のガス中のH2Sの処理方法。
[Claims] 1. A first step of oxidizing a ferrous sulfate solution to ferric sulfate using iron-oxidizing bacteria, and using the ferric sulfate solution obtained in the first step as an absorbing liquid to remove H in the gas. 2S
and a third step in which the liquid after absorption in the second step is subjected to flotation to separate and recover elemental sulfur, and the flotation tail liquid is repeated in the first step. How to treat H 2 S in gas. 2. In the gas according to claim 1, in which diatomaceous earth is used as a carrier agent for the bacteria.
How to process H2S . 3 of the ferrous sulfate solution in the first step
3. The method for treating H 2 S in a gas according to claim 1 or 2, wherein the Fe 2+ concentration is 8 to 12 g/ and the pH is adjusted to 2.0 or less.
JP57154887A 1982-09-06 1982-09-06 Treatment of h2s in gas Granted JPS5946117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154887A JPS5946117A (en) 1982-09-06 1982-09-06 Treatment of h2s in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154887A JPS5946117A (en) 1982-09-06 1982-09-06 Treatment of h2s in gas

Publications (2)

Publication Number Publication Date
JPS5946117A JPS5946117A (en) 1984-03-15
JPS6121691B2 true JPS6121691B2 (en) 1986-05-28

Family

ID=15594124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154887A Granted JPS5946117A (en) 1982-09-06 1982-09-06 Treatment of h2s in gas

Country Status (1)

Country Link
JP (1) JPS5946117A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133121A (en) * 1984-12-03 1986-06-20 Dowa Mining Co Ltd Treatment of waste gas from chemical factory
JPS61274724A (en) * 1985-05-31 1986-12-04 Dowa Mining Co Ltd Treatment of malodor
JPS6257632A (en) * 1985-09-05 1987-03-13 Dowa Mining Co Ltd Treatment of odorous gas
JPS63315130A (en) * 1987-06-17 1988-12-22 Nittetsu Mining Co Ltd Method for removing malodor
JPH01184024A (en) * 1988-01-15 1989-07-21 Dowa Mining Co Ltd Method for removing h2s contained in gas
KR100301959B1 (en) * 1999-05-15 2001-10-29 윤덕용 Apparatus and Method for Treatment of Gases Containing Hydrogen Sulfide
KR20020060295A (en) * 2001-01-10 2002-07-18 조경숙 Method for Removing Gases Containing Hydrogen Sulfide Using Aqueous Catalysts of Fe-chelates
JP4116827B2 (en) 2002-06-20 2008-07-09 Ykk株式会社 Slide fastener stop

Also Published As

Publication number Publication date
JPS5946117A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
US3849537A (en) Method of purifying gases containing mercury vapour
CN104801262B (en) Preparation method and application of magnetic composite uranium adsorbent
RU2144510C1 (en) Anaerobic removal of sulfur compounds from sewage
JPS6121691B2 (en)
CN104445741B (en) A kind of processing method of oil field ternary combination flooding extraction sewage
CN106237844A (en) A kind of Complexing Iron doctor solution for wet desulphurization and preparation method thereof
CN116835734B (en) Desulfurization wastewater integrated efficient flocculation medicament and preparation method thereof
US4624790A (en) Reduction of metal content of treated effluents
CN106809939B (en) Method for keeping activity of removing ammonia nitrogen in surface water by catalytic oxidation of iron-manganese oxide
JPH0712477B2 (en) How to remove phosphorus in water
JPH0128633B2 (en)
CN115845924A (en) Catalyst for biogas desulfurization and preparation method and application thereof
CN214528419U (en) A desorption system for sulphide in landfill leachate
CN109607849A (en) A kind of processing method of the low ammonia nitrogen uranium-containing waste water of nitrate anion system
US4909945A (en) Method for increasing the size of elemental sulfur particles produced by a hydrogen sulfide removal process
JPS6324405B2 (en)
JPH0218129B2 (en)
JPH0523812B2 (en)
CA1246834A (en) Recovery of sulfur from sulfur froth
JP4567303B2 (en) Method for treating arsenic-containing sulfuric acid
KR910018564A (en) Method for manufacturing metallic mercury from dark red and apparatus for manufacturing thereof and its products
JPH01194930A (en) Removal of h2s in gas
CN113477232B (en) Water purifying agent for coking wastewater treatment and preparation method thereof
CN112337439B (en) Rare earth chelate and phosphorus adsorbent for adsorbing phosphorus element in wastewater
CN109553636A (en) A kind of method of organosiloxane mixed methylcyclosiloxane removal of impurities