JPS61274724A - Treatment of malodor - Google Patents

Treatment of malodor

Info

Publication number
JPS61274724A
JPS61274724A JP60118185A JP11818585A JPS61274724A JP S61274724 A JPS61274724 A JP S61274724A JP 60118185 A JP60118185 A JP 60118185A JP 11818585 A JP11818585 A JP 11818585A JP S61274724 A JPS61274724 A JP S61274724A
Authority
JP
Japan
Prior art keywords
solution
tank
oxidizing
iron
ferrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60118185A
Other languages
Japanese (ja)
Inventor
Hiromi Magota
孫田 裕美
Juichi Shiratori
白鳥 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP60118185A priority Critical patent/JPS61274724A/en
Publication of JPS61274724A publication Critical patent/JPS61274724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To inexpensively deodorize a malodor without requiring large scale equipment, by using the ferric sulfate solution obtained by oxidizing a ferrous sulfate solution by iron oxidizing bacteria as an absorbing solution to absorb ammonia being a malodor source. CONSTITUTION:A FeSO4 solution acidified by sulfuric acid is flowed in an oxidizing tank 1 in which iron oxidizing bacteria cultured in a ferrous sulfate- containing solution such as waste water from non-ferrous metal mine and acid resistance porous particles such as diatomaceous earth as a carrier were received and a nutrient such as ammonium phosphate is added to said FeSO4 solution and air is blown therein to oxidize the same to a Fe2(SO4)3 solution. The Fe2(SO4)3 solution overflowed from the oxidizing tank 1 is introduced into a second iron supply tank 3 through a separation tank 2. Next, the Fe2(SO4)3 solution is guided to the aspirator 4 of an absorbing process and single gas or a gaseous mixture of NH3, SOx or H2S coming to a malodor generation source is sent into the aspirator 4 to be absorbed. The FeSO4 solution generated by absorptive reaction is returned to the oxidizing tank 1. A necessary amount of the ferrous salt becoming deficient by reaction is added to the oxidizing tank 1.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は悪臭発生ガスであるアンモニア、硫黄化合物、
硫化水素等を吸収分離する方法に関するもので、更に詳
しくは鉄酸化バクテリアを用いて硫酸化第1鉄溶液から
硫酸第2鉄溶液を生成せしめ、該硫酸第2鉄溶液により
悪臭発生ガスを吸収し、その際還元生成される硫酸第1
鉄含有溶液をそのまま、あるいは硫酸第1鉄塩を添加し
て、再びバクテリア酸化して硫酸第2鉄溶液として上記
悪臭発生ガスの吸収に繰返し使用する悪臭の処理法を提
供するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field The present invention relates to ammonia, a sulfur compound, which is a malodor-generating gas,
This relates to a method for absorbing and separating hydrogen sulfide, etc., and more specifically, it involves producing a ferric sulfate solution from a ferrous sulfate solution using iron oxidizing bacteria, and absorbing gases that generate a bad odor using the ferric sulfate solution. , the first sulfuric acid produced by reduction
The present invention provides a method for treating malodors in which an iron-containing solution is used as it is or by adding a ferrous sulfate salt, and then subjected to bacterial oxidation and then used repeatedly as a ferric sulfate solution to absorb the aforementioned malodor-generating gas.

(ロ)背景技術 現在、悪臭を脱臭する方法としては、高濃度。(b) Background technology Currently, the only way to deodorize bad odors is to use high-concentration methods.

中濃度の臭気に対しては燃焼脱臭法(直燃、触媒燃焼)
、薬液洗浄脱臭法(アルカリ溶液9次亜塩素酸ソーダ等
の酸化剤等)、物理吸着剤(活性炭、ゼオライト等)あ
るいは化学吸着剤(イオン交換樹脂、酸性吸着剤、アル
カリ性吸着剤等)の使用による方法、生物脱臭法(土壌
脱臭法、活性汚泥法等)、オゾン法等種々の方法が提供
されている。
Combustion deodorization method (direct combustion, catalytic combustion) for medium concentration odors
, chemical cleaning deodorization method (oxidizing agent such as alkaline solution 9 sodium hypochlorite, etc.), use of physical adsorbent (activated carbon, zeolite, etc.) or chemical adsorbent (ion exchange resin, acidic adsorbent, alkaline adsorbent, etc.) Various methods have been provided, such as a biological deodorization method (soil deodorization method, activated sludge method, etc.), an ozone method, etc.

これらの処理方法の中で、ガス中の悪臭を除去する方法
としては、燃焼脱臭法や薬液洗浄法が一般に用いられる
が、コスト的に高い欠点を有しているのが現状である。
Among these treatment methods, combustion deodorization methods and chemical cleaning methods are generally used to remove bad odors from gas, but at present they have the drawback of high cost.

(ハ)発明の開示 本発明はガス中の悪臭生成原因であるアンモニア、硫黄
酸化物、硫化水素等を安価に処理することができる方法
を提供するものである。
(C) Disclosure of the Invention The present invention provides a method that can inexpensively process ammonia, sulfur oxides, hydrogen sulfide, etc. that are the causes of bad odor in gas.

即ち、本発明法では、まず第1工程として酸化槽に硫酸
第1鉄を含む硫酸酸性の溶液を導いて鉄酸化バクテリア
(以下、単にバクテリアという)の種菌を少量加え、空
気を吹込んでこのバクテリアを増殖させ、同時に硫酸第
1鉄を硫酸第2鉄に酸化処理する。
That is, in the method of the present invention, in the first step, an acidic sulfuric acid solution containing ferrous sulfate is introduced into an oxidation tank, a small amount of inoculum of iron oxidizing bacteria (hereinafter simply referred to as bacteria) is added, and air is blown into the tank to quench the bacteria. and simultaneously oxidize ferrous sulfate to ferric sulfate.

この場合、硫酸第1鉄含有液として非鉄金属鉱山排水や
製錬排水、工場排水等を使用することができ、Fe2+
濃度は1〜50g/1位の範囲であればバクテリアによ
り充分に酸化される。
In this case, nonferrous metal mine drainage, smelting drainage, factory drainage, etc. can be used as the ferrous sulfate-containing liquid, and Fe2+
If the concentration is in the range of 1 to 50 g/1, it will be sufficiently oxidized by bacteria.

PHは上記酸化槽内で沈殿を起さずかつ酸化効率を考慮
しつつ、必要により硫酸を添加して3.0以下にする。
The pH is adjusted to 3.0 or less by adding sulfuric acid if necessary, while taking into consideration oxidation efficiency and without causing precipitation in the oxidation tank.

なお、製錬排水のように液中に一ヒ記バクテリアやその
栄養源を含まない場合には、バクテリアを増殖させる必
要から、栄養剤(N、P、に塩等)を添加するとよい。
In addition, when the liquid does not contain the above-mentioned bacteria or their nutrient sources, such as smelting wastewater, it is preferable to add nutrients (salt to N, P, etc.) to make the bacteria grow.

さらに、増殖されたバクテリアを逃がさずに捕集してお
くために、キャリア剤として耐酸性多孔質物質粒子を添
加して酸化槽の菌体濃度を高めておくとよい。そして、
この耐酸性多孔質物質粒子は分離槽で分離した後、酸化
槽で繰返し使用するようにする。
Furthermore, in order to trap the grown bacteria without letting them escape, it is preferable to add acid-resistant porous material particles as a carrier agent to increase the bacterial cell concentration in the oxidation tank. and,
After the acid-resistant porous material particles are separated in a separation tank, they are repeatedly used in an oxidation tank.

ここに、耐酸性多孔質物質粒子とは鉄酸化バクテリアが
着床して可及的多数の菌が生息できる表面積の大きな多
孔質物質を意味し、液中において撹拌により容易に流動
し、かつ静置状態においては容易に沈降する性質を有す
る粒子としてゼオライト、活性炭、フラー土、アスベス
ト綿等もあるが、班藻土が特に優れていることを確認し
ている。
Here, acid-resistant porous material particles refer to porous materials with a large surface area on which iron-oxidizing bacteria can settle and inhabit as many bacteria as possible. Zeolite, activated carbon, Fuller's earth, asbestos cotton, and other particles have the property of easily settling under standing conditions, but it has been confirmed that diatomaceous earth is particularly excellent.

なお、−上記耐酸性多孔物質の代りに吸収反応時のPH
を上昇させて該吸収液中の硫酸第2鉄を加水分解させ、
生成する鉄殿物をキャリア剤として使用することもでき
る。
In addition, - instead of the above acid-resistant porous material, the PH during the absorption reaction
to hydrolyze ferric sulfate in the absorption liquid by increasing the
The produced iron precipitate can also be used as a carrier agent.

次に、酸化槽でバクテリア酸化された硫酸第2鉄溶液を
吸収液として、悪臭発生ガスを吸収する(第2工程)。
Next, the ferric sulfate solution that has been oxidized by bacteria in the oxidation tank is used as an absorption liquid to absorb the malodorous gas (second step).

吸収法としては、硫酸第2鉄溶液を満たした槽底から該
悪臭発生ガスを散気しても、またL方からスプレーする
方法であってもよい。なお、木実MMでは、対象ガスに
よってアスピレータ−アルいは吸収塔を使用したが、こ
れらに限定されるものではない。
As the absorption method, the malodor-generating gas may be diffused from the bottom of the tank filled with the ferric sulfate solution, or it may be sprayed from the L side. Incidentally, in Kizuna MM, an aspirator or an absorption tower is used depending on the target gas, but the method is not limited to these.

吸収工程における反応は、下記のように対象ガスによっ
て異なる。
The reaction in the absorption process differs depending on the target gas as described below.

l)アンモニアの場合 a ) NH,+ H20+NH,(OH)b ) 6
NH& (DH)2 +Fet、 (SOa ) a→
2 Fe(OH)a + 3 (NHa ) 2 SO
4となり、水酸化第2鉄と硫酸アンモニウムが生成する
l) In the case of ammoniaa) NH, + H20+NH, (OH)b) 6
NH& (DH)2 +Fet, (SOa) a→
2 Fe(OH)a + 3 (NHa) 2 SO
4, and ferric hydroxide and ammonium sulfate are produced.

2)硫黄化合物の場合 SO9,+Fe2 (SO4) 2 +2H20+2 
FeSO4+ 2 H2SO4 となり、硫酸第1鉄と硫酸が生成する。
2) For sulfur compounds SO9, +Fe2 (SO4) 2 +2H20+2
It becomes FeSO4+ 2 H2SO4, and ferrous sulfate and sulfuric acid are produced.

この場合、PH値が下がるので、炭酸カルシウムを添加
し、得られる石膏を遠心分離機にかけて系外へ抜き出し
て回収すると共に、反応により再生還元された硫酸第1
鉄は第1工程の酸化槽に繰返す。
In this case, the pH value decreases, so calcium carbonate is added, and the resulting gypsum is extracted from the system using a centrifuge and recovered.
The iron is repeated in the oxidation tank of the first step.

3)硫化水素の場合 H2S +Fe2 (SO,a ) a −2FaSO
,+)I 2SO,+ S 。
3) For hydrogen sulfide H2S +Fe2 (SO,a) a -2FaSO
,+)I2SO,+S.

となり、H2Sは酸化されてSOを生成すると共に、硫
酸第1鉄が再生される。
Thus, H2S is oxidized to produce SO and ferrous sulfate is regenerated.

この場合、反応抜液には微細なコロイド状の硫黄が存在
するために、黄白色の硫黄乳となる。このため、種硫黄
スラリーを添加することにより。
In this case, since fine colloidal sulfur is present in the reaction liquid, yellowish-white sulfur milk is produced. For this, by adding a seed sulfur slurry.

生成したコロイド状硫黄を凝集させ、沈降分離性の良い
単体硫黄として分離回収し、その分離後液を第1工程の
酸化槽に繰返す。
The produced colloidal sulfur is aggregated and separated and recovered as simple sulfur with good sedimentation and separability, and the separated liquid is repeated to the oxidation tank of the first step.

このようにして得られた硫酸第1鉄溶液をそのまま、あ
るいは硫酸第1鉄を添加した後、第1工程のバクテリア
酸化槽に繰返し、充分培養されて活性を得た状態となっ
ているバクテリアにより再び硫酸第2鉄に酸化され、こ
れらの悪臭発生ガスの吸収に使用される。
The ferrous sulfate solution obtained in this way, either as it is or after adding ferrous sulfate, is repeatedly transferred to the bacterial oxidation tank of the first step, and the bacteria that have been sufficiently cultured and have obtained activity are It is oxidized again to ferric sulfate and used to absorb these malodorous gases.

本発明で用いるバクテリアは、公知のrThio−ba
cillus FerrooxidanceJ等であり
、排水泥を種菌として該処理泥中の鉄酸化バクテリアを
第1鉄イオン等を高濃度に含有する液で培養したもので
ある。
The bacteria used in the present invention are known rThio-ba
cillus Ferrooxidance J, etc., and the iron-oxidizing bacteria in the treated mud were cultured in a solution containing a high concentration of ferrous ions, etc., using wastewater mud as a seed.

この方法によって培養された鉄酸化バクテリアの酸化能
力は、通常の酸化能力に比較すると2〜5倍の能力を有
する(寄託番号 微工研菌寄第7443号、第7444
号、第7555号、第7556号)。
The oxidizing ability of the iron-oxidizing bacteria cultured by this method is 2 to 5 times higher than that of normal oxidizing ability (Deposit number: FEIKEN Bacteria No. 7443, No. 7444)
No. 7555, No. 7556).

以下、本発明法の実施例を添付図面を参照して説明する
Embodiments of the method of the present invention will be described below with reference to the accompanying drawings.

(ニ)実施例 実施例1 第1図に示すように、K鉱山排水処理場で培養した鉄酸
化バクテリア20文とパルプ濃度15%の班藻十を入れ
た容量500文の酸化槽lに、硫酸を加えてpH2,0
に調整したFe5D4  (Fez+濃度5濃度5〜2
0g語液を2見/分の速度で連続的に流入せしめ、さら
に栄養剤としてリン酸アンモニウムを槽内で50mg/
JLとなるように添加し、エアブロ−を80立/分で行
なった。
(d) Examples Example 1 As shown in Fig. 1, an oxidation tank 1 with a capacity of 500 tons was filled with 20 tons of iron oxidizing bacteria cultured at the K mine wastewater treatment plant and 100 tons of quartz algae with a pulp concentration of 15%. Add sulfuric acid to pH 2.0
Fe5D4 adjusted to (Fez + concentration 5 concentration 5 ~ 2
0g of liquid was continuously introduced at a rate of 2 times per minute, and ammonium phosphate was added as a nutrient at a rate of 50mg per minute.
JL and air blowing was performed at 80 v/min.

酸化槽1からのオーバーフロー液は容量300文の分離
槽2に導いた後、容量400文の第2鉄供給槽3に導入
した。該オーバーフロー液はほぼ完全に酸化されたFe
2 (so a ) 8溶液である。
The overflow liquid from the oxidation tank 1 was introduced into a separation tank 2 with a capacity of 300 liters, and then introduced into a ferric supply tank 3 with a capacity of 400 liters. The overflow liquid contains almost completely oxidized Fe.
2 (so a ) 8 solution.

次いで、該硫酸第2鉄溶液を2立/分の流量で吸収工程
の7スピレーター4に導くと共に、約1000 ppm
濃度のアンモニアガスを4KL/分の割合で送入して吸
収させた。吸収後のガスを北川式検知管で検査したとこ
ろ、アンモニアは検出されなかった。
Next, the ferric sulfate solution is introduced into the 7 spirator 4 of the absorption process at a flow rate of 2 cubic meters per minute, and about 1000 ppm
Concentrated ammonia gas was introduced at a rate of 4 KL/min and absorbed. When the absorbed gas was tested using a Kitagawa detector tube, no ammonia was detected.

この反応で発生した水酸化第2鉄は、定期的に酸化槽か
ら抜き出した。
The ferric hydroxide generated in this reaction was periodically extracted from the oxidation tank.

また生成した硫酸アンモニウムは、バクテリアの栄養剤
となり当初入れていたリン酸アンモニウムの添加量を減
じることができた。
In addition, the ammonium sulfate produced acts as a nutrient for bacteria, making it possible to reduce the amount of ammonium phosphate that was initially added.

反応により不足する第1鉄は、必要量を酸化槽lに添加
した。
The required amount of ferrous iron, which was insufficient due to the reaction, was added to the oxidation tank 1.

実施例2 第2図に示すように、実施例1と同様な条件で、約5%
濃度のI(2Sガスを4文/分の割合で送入して吸収さ
せた。
Example 2 As shown in Figure 2, under the same conditions as Example 1, about 5%
A concentration of I(2S) gas was introduced at a rate of 4 g/min and absorbed.

吸収後のガスを北川式検知管で検査したところ、3分は
検出されなかった。
When the absorbed gas was tested using a Kitagawa detector tube, it was not detected for 3 minutes.

次に、該吸収抜液を容量170文の凝集槽6に導入し、
種硫黄スラリー約120g/文を対液比2θ%の割合で
添加し、撹拌機で撹拌した。
Next, the absorbed liquid is introduced into a coagulation tank 6 with a capacity of 170 tons,
Approximately 120 g/liter of seed sulfur slurry was added at a ratio of 2θ% to the liquid and stirred with a stirrer.

次いで、該処理液を容量170文の沈降槽7に導いて沈
殿塾生させ、固液分離して、オーバーフロー液は容量3
00J1のクッションタンク9に導いた後、容量300
1の第1鉄供給槽10に導入し、該第1鉄溶液を酸化槽
lに繰返した。
Next, the treated liquid is led to a sedimentation tank 7 with a capacity of 170 tons to cause precipitation, solid-liquid separation is carried out, and the overflow liquid has a capacity of 3.
After leading to the cushion tank 9 of 00J1, the capacity is 300
The ferrous iron solution was introduced into the ferrous iron supply tank 10 of No. 1, and the ferrous iron solution was repeatedly introduced into the oxidation tank I.

一方、アンダーフローからは硫黄回収槽8において種硫
黄スラリーを回収し、一部を凝集槽に繰返すと共に、残
部は単体硫黄として回収した。
On the other hand, a seed sulfur slurry was recovered from the underflow in the sulfur recovery tank 8, a part of which was recycled to the flocculation tank, and the remainder was recovered as elemental sulfur.

実施例3 第3図に示すように、K鉱山排水処理場で培養した鉄酸
化バクテリア20文とバルブ濃度15%の班藻士を入れ
た容量500Qの酸化槽1に、硫酸を加えてpH2,0
に調整したFeSO4(Fe2十濃度20g/KL)溶
液を2文/分の流量で連続的に流入せしめ、さらに栄養
剤としてリン酸アンモニウムを酸化槽1内で50mg/
uとなるように添加し、エアーブローを80文/分で行
なった。
Example 3 As shown in Fig. 3, sulfuric acid was added to an oxidation tank 1 with a capacity of 500Q containing 20 bacteria of iron oxidizing bacteria cultured at the K mine wastewater treatment plant and a 15% bulb concentration of oxidation tank 1 to adjust the pH to 2. 0
FeSO4 (Fe20 concentration 20g/KL) solution adjusted to
The mixture was added so that the amount of air was blown at a rate of 80 blows/min.

酸化槽1からのオーバーフロー液を容量390文の大き
さの分離槽2に導いた後、容量3B5fLの大きさの第
2鉄供給槽3に導入した。該オーバーフロー液はほぼ完
全に酸化された硫酸第2鉄溶液である。
The overflow liquid from the oxidation tank 1 was introduced into a separation tank 2 with a capacity of 390 tons, and then introduced into a ferric iron supply tank 3 with a capacity of 3B5fL. The overflow liquid is a nearly completely oxidized ferric sulfate solution.

次いで、この硫酸第2鉄溶液を5交/分の流量で吸収工
程の2段の吸収塔12に導くと共に、502含有ガス(
so9:約0.05%)を200m”/Hrの割合で送
入して吸収した。
Next, this ferric sulfate solution is introduced into the second-stage absorption tower 12 in the absorption process at a flow rate of 5/min, and the 502-containing gas (
so9: about 0.05%) was introduced and absorbed at a rate of 200 m''/Hr.

吸収後のガスを分析したところ、S02ガスは検出され
なかった。
When the absorbed gas was analyzed, no S02 gas was detected.

次に、該吸収抜液を容量600J1の大きさの中和槽1
5に導入し、該液にpH値が約1.8になるよう炭カル
フィーダー13から約20%炭酸カルシウムを添加し、
撹拌後に容量940文の大きさの沈降槽7に導き、アン
ダフローは遠心分離機17にかけて石膏として回収した
Next, the absorbed liquid is transferred to a neutralization tank 1 with a capacity of 600J1.
5, and about 20% calcium carbonate is added from the charcoal feeder 13 so that the pH value becomes about 1.8,
After stirring, the mixture was introduced into a sedimentation tank 7 having a capacity of 940 tons, and the underflow was collected in a centrifugal separator 17 as gypsum.

一方、オーバーフロー液及び遠心分離された分離後液は
容量385文の大きさのiP液槽16に導き、その後バ
クテリア酸化槽lに繰返した。
On the other hand, the overflow liquid and the centrifuged separated liquid were introduced into an iP liquid tank 16 having a capacity of 385 cm, and then returned to the bacterial oxidation tank 1.

本実施例の諸条件を第1表に、またその結果を第2表に
示す。
The conditions of this example are shown in Table 1, and the results are shown in Table 2.

(以下余白) (ホ)本発明の効果 本発明法は以上のように悪臭発生源であるアンモニア、
硫黄化合物及び硫化水素等の単独ガス、あるいはこれら
混合ガスを鉄酸化バクテリアによって酸化された硫酸第
2鉄溶液に吸収させることにより処理する方法であり、
従来法に比較して安価で大型な設備を必要としない等、
コスト的にも大きな利点を有する。
(Left below) (E) Effects of the present invention As described above, the method of the present invention can reduce ammonia, which is a source of bad odor,
This is a method of treating single gases such as sulfur compounds and hydrogen sulfide, or a mixture of these gases by absorbing them into a ferric sulfate solution oxidized by iron-oxidizing bacteria.
Compared to conventional methods, it is cheaper and does not require large equipment, etc.
It also has a great cost advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアンモニアを、第2図は硫化水素を、第3図は
硫黄化合物を、それぞれ処理対象とする場合の本発明法
のフローシートである。 符号説明 l−酸化槽 2−分離槽 3−第2鉄供給槽4−アスピ
レータ−5−吸収槽 6−凝集槽 7−沈降槽 8−硫黄回収槽9−クッショ
ンタンク 1〇−第1鉄供給槽11−ブロワ−12−吸
収槽 13−炭カルフィダー 14−乳化槽 15−中和槽 16−5戸液槽 17−遠心分#機 特 許 出 願 人 同和鉱業株式会社旨
FIG. 1 is a flow sheet of the method of the present invention when ammonia is treated, FIG. 2 is hydrogen sulfide, and FIG. 3 is a sulfur compound. Symbol explanation 1 - Oxidation tank 2 - Separation tank 3 - Ferric supply tank 4 - Aspirator - 5 - Absorption tank 6 - Coagulation tank 7 - Sedimentation tank 8 - Sulfur recovery tank 9 - Cushion tank 10 - Ferrous iron supply tank 11-Blower-12-Absorption tank 13-Charcoal feeder 14-Emulsification tank 15-Neutralization tank 16-5 liquid tank 17-Centrifugal separation machine Patent Applicant: Dowa Mining Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)硫酸第1鉄溶液を鉄酸化バクテリアを用いて硫酸
第2鉄に酸化する第1工程と、第1工程で得られた硫酸
第2鉄溶液を吸収液として悪臭源のアンモニアガスを接
触吸収させる第2工程と、第2工程からのオーバーフロ
ー液に第1鉄塩を添加する第3工程とからなることを特
徴とする悪臭の処理方法。
(1) The first step is to oxidize the ferrous sulfate solution to ferric sulfate using iron-oxidizing bacteria, and the ferric sulfate solution obtained in the first step is used as an absorbing liquid to contact ammonia gas, which is a source of bad odor. A method for treating bad odors, comprising a second step of absorbing it, and a third step of adding a ferrous salt to the overflow liquid from the second step.
(2)硫酸第1鉄溶液を鉄酸化バクテリアを用いて硫酸
第2鉄に酸化し、得られた硫酸第2鉄溶液を吸収液とし
て悪臭発生ガスを接触吸収せしめ、これにより生成する
硫酸第1鉄溶液は第1工程に繰返すことを特徴とする悪
臭の処理方法。
(2) Ferrous sulfate solution is oxidized to ferric sulfate using iron-oxidizing bacteria, and the resulting ferric sulfate solution is used as an absorption liquid to contact and absorb the odor-generating gas, thereby producing ferrous sulfate. A method for treating bad odors, characterized in that the iron solution is repeated in the first step.
(3)前記悪臭発生ガスは、硫黄化合物又は硫化水素で
ある特許請求の範囲第2項記載の悪臭の処理方法。
(3) The method for treating malodors according to claim 2, wherein the malodor-generating gas is a sulfur compound or hydrogen sulfide.
JP60118185A 1985-05-31 1985-05-31 Treatment of malodor Pending JPS61274724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60118185A JPS61274724A (en) 1985-05-31 1985-05-31 Treatment of malodor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60118185A JPS61274724A (en) 1985-05-31 1985-05-31 Treatment of malodor

Publications (1)

Publication Number Publication Date
JPS61274724A true JPS61274724A (en) 1986-12-04

Family

ID=14730250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60118185A Pending JPS61274724A (en) 1985-05-31 1985-05-31 Treatment of malodor

Country Status (1)

Country Link
JP (1) JPS61274724A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647249A (en) * 1992-07-28 1994-02-22 Dowa Mining Co Ltd Liquid deodorant and its production
KR100301959B1 (en) * 1999-05-15 2001-10-29 윤덕용 Apparatus and Method for Treatment of Gases Containing Hydrogen Sulfide
KR20020060295A (en) * 2001-01-10 2002-07-18 조경숙 Method for Removing Gases Containing Hydrogen Sulfide Using Aqueous Catalysts of Fe-chelates
CN113551358A (en) * 2021-07-28 2021-10-26 珠海格力电器股份有限公司 Ammonia-removing air purifier and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918557U (en) * 1972-05-19 1974-02-16
JPS58152488A (en) * 1982-03-05 1983-09-10 Sumitomo Jukikai Envirotec Kk Removal of hydrogen sulfide
JPS5946117A (en) * 1982-09-06 1984-03-15 Dowa Mining Co Ltd Treatment of h2s in gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918557U (en) * 1972-05-19 1974-02-16
JPS58152488A (en) * 1982-03-05 1983-09-10 Sumitomo Jukikai Envirotec Kk Removal of hydrogen sulfide
JPS5946117A (en) * 1982-09-06 1984-03-15 Dowa Mining Co Ltd Treatment of h2s in gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647249A (en) * 1992-07-28 1994-02-22 Dowa Mining Co Ltd Liquid deodorant and its production
KR100301959B1 (en) * 1999-05-15 2001-10-29 윤덕용 Apparatus and Method for Treatment of Gases Containing Hydrogen Sulfide
KR20020060295A (en) * 2001-01-10 2002-07-18 조경숙 Method for Removing Gases Containing Hydrogen Sulfide Using Aqueous Catalysts of Fe-chelates
CN113551358A (en) * 2021-07-28 2021-10-26 珠海格力电器股份有限公司 Ammonia-removing air purifier and control method thereof

Similar Documents

Publication Publication Date Title
CA2096660C (en) Process for the removal of sulphur compounds from gases
RU2178391C2 (en) Method of treating water containing heavy metal ions
RO108674B1 (en) Waters treatment processes which contain sulphur compounds
US3377271A (en) Process for the treatment of waste-containing waters
JP3283266B2 (en) Anaerobic removal of sulfur compounds from wastewater
HU202770B (en) Process for microbiologic transforming contaminations of sulfur content being in outgases
JPH0256957B2 (en)
CN111995155A (en) Method for recycling ammoniacal nitrogen-containing acidic wastewater
CN110745989B (en) Activated carbon flue gas purification acid-making wastewater zero-discharge process and system
JP3825537B2 (en) Treatment method for wastewater containing As
EP0487705A1 (en) Process for the removal of hydrogensulphide (h 2?s) from biogas.
JPS61274724A (en) Treatment of malodor
US4218431A (en) Removal of sulfide contaminants from carbonate waters with production of CO2 -free H2 S
JPH0218129B2 (en)
RO112271B1 (en) Sulphur compounds removing process from water
CN211770651U (en) Complex sewage treatment system for active carbon flue gas desulfurization and acid preparation
CN113105012A (en) Treatment device and method for desulfurization and decyanation waste liquid in coal chemical industry
JPH0739889A (en) Treatment of high concentration ammonia waste liquid
JPS6254530B2 (en)
JPS591398B2 (en) Method for biologically removing COD in wastewater caused by sulfur oxides
JPS6121721A (en) Treatment of h2s in gas
JPH01184024A (en) Method for removing h2s contained in gas
CN220276650U (en) Mineralized baking soda dry desulfurization ash containing CO 2 System for regenerating desulfurizing agent by gas
JPS61133121A (en) Treatment of waste gas from chemical factory
JPH01194930A (en) Removal of h2s in gas