JP3825537B2 - Treatment method for wastewater containing As - Google Patents

Treatment method for wastewater containing As Download PDF

Info

Publication number
JP3825537B2
JP3825537B2 JP20785797A JP20785797A JP3825537B2 JP 3825537 B2 JP3825537 B2 JP 3825537B2 JP 20785797 A JP20785797 A JP 20785797A JP 20785797 A JP20785797 A JP 20785797A JP 3825537 B2 JP3825537 B2 JP 3825537B2
Authority
JP
Japan
Prior art keywords
wastewater
concentration
starch
iron
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20785797A
Other languages
Japanese (ja)
Other versions
JPH1147764A (en
Inventor
洋 井上
嘉彦 星川
光弘 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP20785797A priority Critical patent/JP3825537B2/en
Publication of JPH1147764A publication Critical patent/JPH1147764A/en
Application granted granted Critical
Publication of JP3825537B2 publication Critical patent/JP3825537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、各種工場から排水されるAs(砒素)を含有する排水の処理方法に関し、さらに詳しくは処理後の排水のAs含有量を0.1mg/L(リットル)程度の基準値以下になるまで除去することを特徴とするAs含有排水の処理方法に関する。
【0002】
従来、排水中のAs除去法として、消石灰、生石灰等の中和法によって沈殿物として除去する方法や、あるいは特公昭55−37955号公報「有害金属を含む排水の処理方法」に開示するように、As含有排水を銅製錬工程から発生する溶錬からみ等とともに浮遊選鉱処理を行う方法等が知られている。
【0003】
しかしながら、上記中和法は、反応によって生ずる中和澱物の量が多く、その二次処理が困難なことや中和剤費用が高くつくこと等の欠点がある。さらに上記特公昭55−37955号に記載する処理方法は、As以外の有害金属も高濃度に含有する場合には有効であるが、それ以外の場合はコスト高となる処理方法である。
【0004】
さらに、鉄分の存在下において反応除去させる処理法としては、特開昭59−162897号公報に開示するように第2鉄イオンと反応させ砒酸鉄として沈殿除去する方法や、あるいは特開昭52−120547号公報に開示するように、磁性粒子を分散させた抽出溶剤と被処理水を超音波を用いて混合し、次いで磁気分離する方法、または特開昭54−41270号公報に開示するように、第1鉄塩の存在下で排水のpHをアルカリ性に調節し、空気等の混入でフェライト化反応を行わせる方法が知られている。
【0005】
しかしながら、一般に市販の硫酸第2鉄溶液を使用する方法は試薬代等のコストが高いので、排水中の第1鉄イオンを酸化剤の添加やバクテリア等で第2鉄に酸化する方法も提案されているが、単に硫酸第2鉄溶液の添加による処理方法では等量比で砒素1に対して第2鉄が約30〜50倍位の割合で反応させなければならない上、反応時間も長時間要するという欠点があった。
【0006】
本出願人は先に、上記硫酸第2鉄溶液の消費量を従来の使用量の1/10程度に少なくすると共に、短時間で処理できる方法としてフェライト微粒子の存在下で硫酸第2鉄を添加すると短時間で砒素の沈殿物を除去することができることを見いだし、特公平1−28633号として提案し、低濃度のAs含有排水の処理方法としては相当な成果を得ることができた。
【0007】
【発明が解決しようとする課題】
しかしながら、上記処理方法は、低濃度のAs含有被処理液を処理する場合には、最終的にAs濃度を0.1mg/L以下に処理することができるが、処理原液がAsを高濃度に含む場合には応用が難しいという問題点があった。
【0008】
本発明は、Asを高濃度に含むAs含有排水を比較的簡易な処理により、平成6年2月に施行された「排水基準を定める総理府令」に沿うAs濃度0.1mg/L以下にすることを可能にするAs含有排水の処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の課題を解決するために、請求項1の発明は、As含有排水の処理方法であって、前記As含有排水に、該排水の酸化還元電位が120mV以下になるようにその添加量を制御しつつ硫化剤を添加する第一工程と、第一工程で得られたものに、鉄澱物と中和剤とを添加して中和処理を行った後、第一の処理水と澱物とに固液分離する第二工程と、第二工程で得られた第一の処理水へ、さらに中和剤を添加しAs含有物を沈澱除去して第二の処理水を得る第三工程と、を有することを特徴とするAs含有排水の処理方法である。
【0010】
請求項2の発明は、
前記第二工程における鉄澱物の添加は、pH3以上でAsを鉄共沈させるものであることを特徴とする請求項1に記載のAs含有排水の処理方法である。
【0011】
請求項3の発明は、
前記第1工程における硫化剤は、硫化水素、硫化ソーダであることを特徴とする請求項1又は2に記載のAs含有排水の処理方法である。
【0012】
【発明の実施の形態】
図1は本発明の実施の形態にかかるAs含有排水の処理方法のフローチャートを示す図である。以下、図1を参照にしながら、本発明の実施の形態を説明する。
【0013】
本発明の実施の形態における被処理水は、図1に示したように、銅電解工場において銅電解澱物を脱銅浸出して得られる脱銅電解浸出液に脱銅電解処理を施して銅を回収した後の脱銅電解尾液と、硫酸工場排水とを混合したものである。これらの排水中には、Asが大略2〜10g/L前後という高濃度に含有されている場合もある。
【0014】
脱銅電解尾液は、クッションタンクに滞留された後、コーンタンクに導かれ、ここで、硫酸工場排水と混合される。コーンタンクにおいては、脱銅電解尾液と硫酸工場排水とが混合されて硫酸沈澱物が除かれ、オーバーフロー水が処理水として硫化処理槽に導かれる。
【0015】
硫化処理槽においては、酸化還元電位(ORP)を測定しながら、処理水に硫化水素ガスを吹き込み、このORP値が所定の値以下になるように、硫化水素ガスの吹き込み量を調整する(第一工程)。
【0016】
ORP値は250mV以下、好ましくは150mV以下になるように硫化水素ガスを吹き込むことが必要であるが、このときの硫化処理槽内のpHは1以下となっている。
【0017】
本発明の実施の形態において、酸化還元電位を100〜50mVにしたところ、処理後のAs濃度が2mg/L(原液硫酸工場排水As濃度5570mg/L)まで除去されていることが確認されたが、従来法の砒酸鉄法単独では、原液硫酸工場排水As濃度4580mg/Lの液を処理するのに、Fe/As比を2.5以上となるように硫酸第2鉄を添加してもせいぜい10mg/L位しか除去できなかった。
【0018】
さらに、この第一工程では、硫化処理槽におけるアンダーフロー水を循環ポンプ等を用いて吸い上げて硫化処理槽の上部に流入させて繰り返しを行うと共に、撹拌機等を用いて十分に撹拌することによって反応率を向上させることが重要である。
【0019】
次に、第一工程を経た処理水を中和糟に導き、鉄澱物と中和剤としての炭酸カルシウム(炭カル)とを添加し、重金属の澱物を生成させ、固液分離を行った(第二工程)。この場合、炭カル中和により中和糟内のpHを4.0になるように調整したほか、なお、ここでは、鉄澱物として、自熔炉煙灰を湿式製錬処理して分離した鉄澱物を添加することによって酸化第二鉄が5g/L添加されるようにして液中のAsや他の重金属と反応させて澱物として分離した。
【0020】
次に、前記中和槽で澱物を分離した処理水に、前記自熔炉煙灰を湿式製錬処理して分離した沈澱物のうちの砒酸鉄澱物を合流させた後、ポンプタンクに導いてこれを湿式脱鉄工程排水として、中和処理場に導き、中和剤として、消石灰を添加してpHを10.5前後に調整し、中和澱物を濾過分離した(第三工程)。
【0021】
次に、中和澱物を濾過分離した処理水を清澄池に導き、As含有物を沈澱除去しそのうわずみを放流水とした。こうして得られた処理水中のAs濃度は新排水基準をクリアする0.1mg/L以下の数値であった。
【0022】
上述の実施の形態は、各種の検討及び試験結果に基づくもののであるが、以下にその一部の試験例を説明する。
【0023】
(試験例1)
Asを5570mg/L含有する硫酸工場排水を被処理水として、容量3リットルの糟に導き硫化水素を吹き込みながら酸化還元電位によりORP値を制御しながら液中のAs濃度の除去変化を試験した。
【0024】
図2は試験例1におけるORP値とAs濃度との関係を示すグラフである。図2に示されるように、ORP値が250mV以上ではほとんどAs濃度に変化は見られないが、250mV以下になるとAs濃度が急激に下がり始め、特に100mVでは数mg/Lまで下がることが判明した。さらにORP値をー50mVにするとAs濃度は0.01mg/Lまで除去できたが、硫化水素の吹き込み量との兼ね合いから見ればORP値は250mV以下、好ましくは150mV以下に制御して、別の安価な処理法と組み合わせることによりコスト的により安価で、かつ新排水基準値のAs濃度0.1mg/L以下にすることが出来ることがわかった。
【0025】
(比較試験例1)
Asを4580mg/L含有する硫酸工場排水を被処理水として、容量3リットルの糟に導き中和剤として炭カルを用いてpHを4.5に調整し、鉄源として硫酸第二鉄を添加しながらFe/As(mol)比として2以上なるように第二鉄を増やし、砒酸鉄澱物として除去した。
【0026】
図3は比較試験例1におけるFe/As比とAs濃度との関係を示すグラフである。図3に示されるように、Fe/As比が2.5以上になってもAsを10〜13mg/Lまでは除去できるが、それ以下にすることはほとんど不可能であることが判明した。従ってこの砒酸鉄法では、新排水基準値のAs濃度0.1mg/L以下にするということは難しいことがわかった。
【0027】
次に、より具体的な一実施例について説明すると、As濃度2.9/L含有のA銅電解工場排水とAs濃度6.2g/L含有のB硫酸工場排水とを容量34m3 の硫化処理槽に導き、硫化水素を吹き込みながら酸化還元電位でORP値を120mVに制御した。この時の液中のpH値は1.0であり、糟内の液を底部より抜き出して上部から液を繰り返し巡回させて、反応効率を上げた(第一工程)。
【0028】
得られた第一工程水を容量34m3 の中和糟に導き、中和剤として炭カルを添加すると共に鉄材として鉄澱物をやや過剰気味に添加し、反応させた(第二工程)。
【0029】
次いで、得られた第二工程水を中和糟に導き、中和剤として消石灰を添加してpHを10.5に調整し、生成した中和澱物を固液分離した後のAs濃度を分析したところ0.06mg/Lであり、新排水基準値を十分に満足するものであった。
【0030】
【発明の効果】
以上詳述したように、本発明は、処理水たるAs含有排水に、該排水の酸化還元電位が250mV以下になるようにその添加量を制御しつつ硫化剤を添加する第一工程と、該第一工程で得られた液に鉄澱物と中和剤とを添加して中和処理をする第二工程と、該第二工程で得られた液にさらに中和剤を添加する第三工程とを有するもので、これにより、処理水のAs含有濃度を、新排水基準値のAs濃度0.1mg/L以下にすることを可能としたものである。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかるAs含有排水の処理方法のフローチャートを示す図である。
【図2】図2は試験例1におけるORP値とAs濃度との関係を示すグラフである。
【図3】図3は比較試験例1におけるFe/As比とAs濃度との関係を示すグラフである。
[0001]
[Industrial application fields]
The present invention relates to a method for treating wastewater containing As (arsenic) discharged from various factories, and more specifically, the As content of wastewater after treatment is below a reference value of about 0.1 mg / L (liter). It is related with the processing method of the wastewater containing As characterized by removing until.
[0002]
Conventionally, as an As removal method in wastewater, as disclosed in a method of removing as a precipitate by a neutralization method of slaked lime, quick lime, or the like, or Japanese Patent Publication No. 55-37955 “Method of treating wastewater containing hazardous metals” In addition, a method of performing a flotation process, etc. along with smelting of As-containing wastewater generated from a copper smelting process is known.
[0003]
However, the neutralization method has disadvantages such that the amount of neutralized starch produced by the reaction is large, the secondary treatment is difficult, and the cost of the neutralizing agent is high. Furthermore, the treatment method described in the above Japanese Patent Publication No. 55-37955 is effective when a harmful metal other than As is contained in a high concentration, but in other cases, the treatment method is expensive.
[0004]
Further, as a treatment method for reaction removal in the presence of iron, as disclosed in JP-A-59-162897, it can be reacted with ferric ions to precipitate and remove as iron arsenate, or JP-A-52-52 As disclosed in Japanese Patent No. 120547, a method in which an extraction solvent in which magnetic particles are dispersed and water to be treated are mixed using ultrasonic waves and then magnetically separated, or as disclosed in Japanese Patent Laid-Open No. 54-41270. A method is known in which the pH of waste water is adjusted to alkaline in the presence of ferrous salt and the ferritization reaction is performed by mixing air or the like.
[0005]
However, in general, a method using a commercially available ferric sulfate solution has a high cost such as reagent costs. Therefore, a method of oxidizing ferrous ions in waste water to ferric iron by adding an oxidizing agent or bacteria is also proposed. However, in the treatment method simply by adding a ferric sulfate solution, ferric iron must be reacted with arsenic 1 at an equivalent ratio of about 30 to 50 times, and the reaction time is also long. There was a drawback that it took.
[0006]
The applicant previously reduced the consumption of the ferric sulfate solution to about 1/10 of the conventional usage and added ferric sulfate in the presence of ferrite fine particles as a method that can be processed in a short time. Then, it was found that the arsenic precipitate could be removed in a short time, and it was proposed as Japanese Patent Publication No. 1-28633, and a considerable result was obtained as a method for treating low concentration As-containing wastewater.
[0007]
[Problems to be solved by the invention]
However, in the above processing method, when processing an As-containing liquid having a low concentration, the As concentration can be finally reduced to 0.1 mg / L or less, but the processing stock solution has a high concentration of As. When it contains, there was a problem that application was difficult.
[0008]
In the present invention, As-containing wastewater containing As at a high concentration is reduced to an As concentration of 0.1 mg / L or less in accordance with the “Prime Ministerial Ordinance for Establishing Wastewater Standards” enforced in February 1994, by relatively simple treatment. It aims at providing the processing method of wastewater containing As which makes it possible.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is a method for treating As-containing wastewater, and the amount of addition to the As-containing wastewater is controlled so that the oxidation-reduction potential of the wastewater is 120 mV or less. First, after adding the iron starch and the neutralizing agent to the product obtained in the first step and adding the sulfurizing agent to the product obtained in the first step , the first treated water and the starch a second step and, the first to the treated water, the third step of obtaining a second processed water by further neutralizing agent is added as inclusions precipitate removal obtained in the second step of bets to solid-liquid separation And a method for treating As-containing wastewater.
[0010]
The invention of claim 2
The method for treating an As-containing wastewater according to claim 1, wherein the addition of the iron starch in the second step is to coprecipitate As at a pH of 3 or more.
[0011]
The invention of claim 3
The method for treating As-containing wastewater according to claim 1 or 2, wherein the sulfiding agent in the first step is hydrogen sulfide or sodium sulfide.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1: is a figure which shows the flowchart of the processing method of As containing waste_water | drain concerning embodiment of this invention. Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0013]
As shown in FIG. 1, the water to be treated according to the embodiment of the present invention is obtained by subjecting a copper electrolysis leachate obtained by decoppering and leaching a copper electrolyzed starch to a copper electrolysis leachate to obtain copper. This is a mixture of the copper removal electrolytic tail solution after recovery and sulfuric acid factory effluent. In these wastewaters, As may be contained at a high concentration of about 2 to 10 g / L.
[0014]
The copper-free electrolytic tail solution is retained in the cushion tank and then led to the corn tank, where it is mixed with the sulfuric acid factory effluent. In the corn tank, the copper removal electrolytic tail liquor and the sulfuric acid factory effluent are mixed to remove the sulfuric acid precipitate, and the overflow water is guided to the sulfidation tank as treated water.
[0015]
In the sulfidation treatment tank, while measuring the oxidation-reduction potential (ORP), hydrogen sulfide gas is blown into the treated water, and the amount of hydrogen sulfide gas blown is adjusted so that the ORP value is not more than a predetermined value (No. 1). One step).
[0016]
It is necessary to blow in hydrogen sulfide gas so that the ORP value is 250 mV or less, preferably 150 mV or less. At this time, the pH in the sulfidation treatment tank is 1 or less.
[0017]
In the embodiment of the present invention, when the oxidation-reduction potential was set to 100 to 50 mV, it was confirmed that the As concentration after treatment was removed to 2 mg / L (raw sulfuric acid factory wastewater As concentration 5570 mg / L). In the conventional iron arsenate method alone, even when ferric sulfate is added so that the Fe / As ratio is 2.5 or more, the raw sulfuric acid factory wastewater As concentration is 4580 mg / L. Only about 10 mg / L could be removed.
[0018]
Furthermore, in this first step, underflow water in the sulfidation treatment tank is sucked up using a circulation pump or the like and is introduced into the upper part of the sulfidation treatment tank, and repeated, and sufficiently stirred using a stirrer or the like. It is important to improve the reaction rate.
[0019]
Next, the treated water that has passed through the first step is led to a neutralization pad, iron starch and calcium carbonate (carbon char) as a neutralizing agent are added, heavy metal starch is produced, and solid-liquid separation is performed. (Second step). In this case, the pH in the neutralization tank was adjusted to 4.0 by charcoal cal neutralization, and here, as iron starch, the iron starch separated by hydrometallurgical smelting ash The product was added as a starch by reacting with As and other heavy metals in the liquid so that 5 g / L of ferric oxide was added.
[0020]
Next, the treated water from which the starch has been separated in the neutralization tank is combined with the iron arsenate starch of the precipitate separated by wet smelting treatment of the smelter ash, and then led to the pump tank. This was introduced into a neutralization treatment plant as wet deironing process waste water, slaked lime was added as a neutralizing agent to adjust the pH to around 10.5, and the neutralized starch was separated by filtration (third step).
[0021]
Next, the treated water from which the neutralized starch was separated by filtration was guided to a clear pond, the As-containing material was removed by precipitation, and the swirl was used as discharge water. The As concentration in the treated water thus obtained was a numerical value of 0.1 mg / L or less that cleared the new drainage standard.
[0022]
The above-described embodiment is based on various examinations and test results, and some test examples will be described below.
[0023]
(Test Example 1)
Using sulfuric acid factory effluent containing 5570 mg / L of As as treated water, the removal change of the As concentration in the liquid was tested while controlling the ORP value with the oxidation-reduction potential while introducing hydrogen sulfide into a 3 liter tank.
[0024]
FIG. 2 is a graph showing the relationship between the ORP value and As concentration in Test Example 1. As shown in FIG. 2, it was found that almost no change was observed in the As concentration when the ORP value was 250 mV or more, but the As concentration began to drop sharply when the ORP value was 250 mV or less, and it decreased to several mg / L particularly at 100 mV. . Further, when the ORP value was set to −50 mV, the As concentration could be removed to 0.01 mg / L. However, in view of the balance with the amount of hydrogen sulfide blown, the ORP value was controlled to 250 mV or less, preferably 150 mV or less. It was found that by combining with an inexpensive treatment method, the As concentration of 0.1 mg / L or less of the new wastewater standard value can be reduced in terms of cost.
[0025]
(Comparative Test Example 1)
Use sulfuric acid factory effluent containing 4580mg / L of As as treated water, adjust to pH 4.5 using charcoal cal as neutralizer, lead to 3L capacity dredging, and add ferric sulfate as iron source However, ferric iron was increased so that the Fe / As (mol) ratio was 2 or more and removed as iron arsenate starch.
[0026]
FIG. 3 is a graph showing the relationship between the Fe / As ratio and the As concentration in Comparative Test Example 1. As shown in FIG. 3, it was found that even when the Fe / As ratio is 2.5 or more, As can be removed up to 10 to 13 mg / L, but it is almost impossible to make As below. Accordingly, it has been found that it is difficult for the iron arsenate method to make the As concentration 0.1 mg / L or less of the new drainage standard value.
[0027]
Next, a more specific example will be described. A copper electrolytic factory wastewater containing As concentration 2.9 / L and B sulfuric acid factory wastewater containing As concentration 6.2 g / L are subjected to sulfurization treatment with a capacity of 34 m 3 . The ORP value was controlled to 120 mV at the oxidation-reduction potential while introducing hydrogen sulfide into the tank. The pH value in the liquid at this time was 1.0, and the reaction efficiency was increased by extracting the liquid in the basket from the bottom and repeatedly circulating the liquid from the top (first step).
[0028]
The obtained 1st process water was led to the neutralization soot of 34 m < 3 > capacity | capacitance, while adding charcoal cal as a neutralizing agent, iron starch was added slightly excessively as an iron material, and was made to react (2nd process).
[0029]
Next, the obtained second step water is led to a neutralization pad, slaked lime is added as a neutralizing agent to adjust the pH to 10.5, and the concentration of As after solid-liquid separation of the produced neutralized starch is determined. As a result of analysis, it was 0.06 mg / L, which sufficiently satisfied the new wastewater standard value.
[0030]
【The invention's effect】
As described above in detail, the present invention includes a first step of adding a sulfiding agent to an As-containing wastewater that is treated water while controlling the addition amount so that the oxidation-reduction potential of the wastewater is 250 mV or less, A second step in which iron starch and a neutralizing agent are added to the liquid obtained in the first step for neutralization, and a third step in which a neutralizing agent is further added to the liquid obtained in the second step. In this way, the As concentration of treated water can be reduced to an As concentration of 0.1 mg / L or less as a new wastewater standard value.
[Brief description of the drawings]
FIG. 1 is a flowchart of an As-containing wastewater treatment method according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the ORP value and As concentration in Test Example 1;
FIG. 3 is a graph showing the relationship between Fe / As ratio and As concentration in Comparative Test Example 1;

Claims (3)

As含有排水の処理方法であって、
前記As含有排水に、該排水の酸化還元電位が120mV以下になるようにその添加量を制御しつつ硫化剤を添加する第一工程と、
第一工程で得られたものに、鉄澱物と中和剤とを添加して中和処理を行った後、第一の処理水と澱物とに固液分離する第二工程と
第二工程で得られた第一の処理水へ、さらに中和剤を添加しAs含有物を沈澱除去して第二の処理水を得る第三工程と、を有することを特徴とするAs含有排水の処理方法。
A method for treating As-containing wastewater ,
A first step of adding a sulfiding agent to the As-containing wastewater while controlling the addition amount so that the redox potential of the wastewater is 120 mV or less ;
The second step of solid-liquid separation into the first treated water and starch after adding the iron starch and neutralizing agent to the product obtained in the first step and performing neutralization treatment,
And a third step of adding a neutralizing agent to the first treated water obtained in the second step to precipitate and remove the As-containing material to obtain a second treated water. Wastewater treatment method.
前記第二工程における鉄澱物の添加は、pH3以上でAsを鉄共沈させるものであることを特徴とする請求項1に記載のAs含有排水の処理方法。  The method for treating an As-containing wastewater according to claim 1, wherein the addition of the iron starch in the second step is to coprecipitate As at a pH of 3 or more. 前記第1工程における硫化剤は、硫化水素、硫化ソーダであることを特徴とする請求項1又は2に記載のAs含有排水の処理方法。  The method for treating As-containing wastewater according to claim 1 or 2, wherein the sulfiding agent in the first step is hydrogen sulfide or sodium sulfide.
JP20785797A 1997-08-01 1997-08-01 Treatment method for wastewater containing As Expired - Fee Related JP3825537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20785797A JP3825537B2 (en) 1997-08-01 1997-08-01 Treatment method for wastewater containing As

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20785797A JP3825537B2 (en) 1997-08-01 1997-08-01 Treatment method for wastewater containing As

Publications (2)

Publication Number Publication Date
JPH1147764A JPH1147764A (en) 1999-02-23
JP3825537B2 true JP3825537B2 (en) 2006-09-27

Family

ID=16546692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20785797A Expired - Fee Related JP3825537B2 (en) 1997-08-01 1997-08-01 Treatment method for wastewater containing As

Country Status (1)

Country Link
JP (1) JP3825537B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428798A4 (en) 2001-09-03 2005-12-28 Aquatech Corp Method of treating heavy-metal-containing wastewater with sulfidizing agent and treatment apparatus
JP5136735B2 (en) * 2005-07-15 2013-02-06 征一 真鍋 Method for removing toxic substances in exudate from final disposal site for stable industrial waste
JP2008043872A (en) * 2006-08-15 2008-02-28 Sumitomo Metal Mining Co Ltd Method for judging end point of formation reaction of precipitated sulfide
JP5188296B2 (en) * 2007-07-13 2013-04-24 Dowaメタルマイン株式会社 Method for treating copper arsenic compound
JP2009242223A (en) 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating diarsenic trioxide
JP5188297B2 (en) 2007-07-13 2013-04-24 Dowaメタルマイン株式会社 Method for processing non-ferrous smelting intermediates containing arsenic
JP2009242935A (en) 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method for alkali-treating substance containing arsenic
JP5188298B2 (en) 2007-08-09 2013-04-24 Dowaメタルマイン株式会社 Method for processing non-ferrous smelting intermediates containing arsenic
JP4921529B2 (en) * 2009-07-29 2012-04-25 パンパシフィック・カッパー株式会社 Copper converter dust treatment method
JP5138737B2 (en) * 2010-06-29 2013-02-06 パンパシフィック・カッパー株式会社 Method for producing waste acid gypsum
JP6364716B2 (en) * 2013-07-18 2018-08-01 住友金属鉱山株式会社 Heavy metal removal method
CN104058515B (en) * 2014-05-08 2015-10-28 昆明有色冶金设计研究院股份公司 A kind of method of acid waste water system treatment of acidic wastewater
JP6743491B2 (en) * 2016-05-31 2020-08-19 住友金属鉱山株式会社 Waste acid treatment method
CN109621276A (en) * 2018-11-01 2019-04-16 昆明理工大学 A kind of method that richness iron copper ashes handles arsenic in nonferrous smelting waste acid

Also Published As

Publication number Publication date
JPH1147764A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
US5820966A (en) Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
JP3825537B2 (en) Treatment method for wastewater containing As
AU633908B2 (en) Process for reducing the level of soluble arsenic contaminants in an aqueous solution
CN101821202B (en) Method for treatment of arsenic-containing nonferrous smelting intermediate product
RU2058943C1 (en) Sewage slimes disinfection method
US8663478B2 (en) Method for treating water by advanced oxidation and ballasted flocculation, and corresponding treatment plant
JP4235094B2 (en) Metal mine drainage treatment method and valuable metal recovery method
US5102556A (en) Method for rendering ferric hydroxide sludges recyclable
CN101784488B (en) Method of treating nonferrous smelting intermediary product containing arsenic
JP2006212580A (en) Method for treating acid waste liquid containing iron and chromium
CN109368854A (en) A method of the low cost harmless treatment of spent acid containing arsenic
CA2006512A1 (en) Water treatment method
CN102730880A (en) Method for treating arsenic-containing wastewater with high acidity from zinc smelting
JP3254501B2 (en) Method for removing arsenic from acidic solution containing arsenic and iron
CN209797710U (en) Device for strengthening treatment of metallurgical thallium-containing wastewater
US5853573A (en) Groundwater total cyanide treatment apparatus
JPH01224091A (en) Treatment of waste containing cyanogen compound
JP2005125316A (en) Heavy metal-containing wastewater treatment method and its system
JP4670004B2 (en) Method for treating selenium-containing water
JPS63278593A (en) Method for removing arsenic from industrial waste liquid or the like
Rao et al. PROSPECT OF METAL RECOVERY/RECYCLE FROM ACID MINE DRAINAGE¹
RU2234544C1 (en) Method of reworking of auriferous arsenical ores and concentrates
RU2245380C1 (en) Method for reprocessing of metal sulfide-containing products
JP2020029589A (en) Odor-reducing method in wet refining method of nickel oxide ore
Figueroa et al. An improved process for precipitating cyanide ions from the barren solution at different PHs

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees