JP2008043872A - Method for judging end point of formation reaction of precipitated sulfide - Google Patents

Method for judging end point of formation reaction of precipitated sulfide Download PDF

Info

Publication number
JP2008043872A
JP2008043872A JP2006221367A JP2006221367A JP2008043872A JP 2008043872 A JP2008043872 A JP 2008043872A JP 2006221367 A JP2006221367 A JP 2006221367A JP 2006221367 A JP2006221367 A JP 2006221367A JP 2008043872 A JP2008043872 A JP 2008043872A
Authority
JP
Japan
Prior art keywords
end point
reaction
sulfide
orp
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006221367A
Other languages
Japanese (ja)
Inventor
Yasushi Isshiki
靖志 一色
Hidekazu Aoki
英和 青木
Koji Sakamoto
孝司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006221367A priority Critical patent/JP2008043872A/en
Publication of JP2008043872A publication Critical patent/JP2008043872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for judging an end point of a formation reaction of precipitated sulfide, in which the end point of the formation reaction, which is not judged sufficiently only by measuring an ORP (an oxidation-reduction potential), can be judged correctly at a step of separating a heavy metal as precipitated sulfide of the heavy metal and recovering the separated sulfide. <P>SOLUTION: When the end point of such the formation reaction that the heavy metal is precipitated as its sulfide by using a sulfurizing agent to the extent of the objective concentration of the heavy metal is judged, the ORP is measured and simultaneously the concentration of hydrogen sulfide (H<SB>2</SB>S) gas in the upper part of a reaction tank is measured. Since hydrogen sulfide is generated suddenly at the end point of the formation reaction and thereafter in the formation reaction of precipitated sulfide, the end point of the formation reaction is judged by combining the concentration of hydrogen sulfide gas with the conventional ORP. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、硫化沈殿生成による重金属の分離回収工程において、硫化剤を使用して重金属を沈殿させる硫化沈殿生成の反応終点の判定方法に関する。   The present invention relates to a method for determining a reaction end point of a sulfurized precipitate formation in which a heavy metal is precipitated using a sulfurizing agent in a step of separating and recovering heavy metal by sulfide precipitate generation.

従来から、水硫化ソーダ、硫化ナトリウム、硫化水素などの硫化剤により、重金属を沈殿させる硫化沈殿生成は、湿式製錬や廃水処理において広く用いられている技術である。例えば、特開2004−105833号公報には、廃水中の重金属を硫化剤により沈澱除去する際に、処理液のORP(酸化還元電位)をORPセンサーにより連続測定し、得られたORP値に基づいて硫化剤を適量添加する方法が記載されている。   Conventionally, the formation of sulfide precipitates in which heavy metals are precipitated by a sulfurizing agent such as sodium hydrosulfide, sodium sulfide, and hydrogen sulfide has been widely used in hydrometallurgy and wastewater treatment. For example, in Japanese Patent Application Laid-Open No. 2004-105833, when heavy metals in wastewater are removed by precipitation with a sulfiding agent, the ORP (oxidation-reduction potential) of the treatment liquid is continuously measured by an ORP sensor, and based on the obtained ORP value. A method of adding an appropriate amount of a sulfurizing agent is described.

しかし、上記した水硫化ソーダ、硫化ナトリウム、硫化水素などの硫化剤を使用して重金属を沈殿させる硫化沈澱反応は、処理水のpHの変化によって金属イオンの形態及び硫黄成分の形態が変化するなど非常に複雑であるため、目標濃度まで重金属を沈殿させる反応の終点を正確に判定することが難しかった。   However, in the sulfidation-precipitation reaction in which heavy metals are precipitated using a sulfiding agent such as sodium hydrosulfide, sodium sulfide, hydrogen sulfide, etc., the form of metal ions and the form of sulfur components change depending on the pH of the treated water. Due to the complexity, it was difficult to accurately determine the end point of the reaction that causes heavy metals to precipitate to the target concentration.

例えば、銅製錬のプラントなどの工場内から発生する廃液の場合、複数の重金属を含む液やpHの異なった液を処理するため、反応槽にpH計並びにORP計を設置して、常時監視しながら硫化沈殿反応を行い、反応の終点はORP計で測定した電位に基づいて判定される。しかし、スケーリングによる誤差の発生や電極の劣化などのため、ORPの測定値は通常一定とはならず、一定時間毎に電極の洗浄や簡易ビーカーテストによる硫化剤の過不足の確認が必要であった。   For example, in the case of waste liquid generated from a factory such as a copper smelting plant, a pH meter and an ORP meter are installed in the reaction tank and are constantly monitored in order to treat liquids containing multiple heavy metals and liquids with different pHs. The end point of the reaction is determined based on the potential measured with an ORP meter. However, due to the occurrence of errors due to scaling and electrode deterioration, the ORP measurement value is usually not constant, and it is necessary to confirm the excess or deficiency of the sulfurizing agent by electrode cleaning or simple beaker test at regular intervals. It was.

また、pHの低い液を処理する場合には、硫化水素(HS)の形態が安定となるため、僅かな電位の差により硫化剤を添加しすぎる事態を招きやすく、その結果として猛毒の硫化水素ガスが多量に発生する危険がある。そのため、反応槽には反応により発生したガスを吸引して除害する装置が設けられているが、設計濃度以上の硫化水素ガスが発生する可能性も十分に考えられる。尚、硫化水素の特定物質として許容濃度は10ppmである。
特開2004−105833号
In addition, when processing a solution having a low pH, since the form of hydrogen sulfide (H 2 S) is stable, it is easy to cause a situation in which a sulfurizing agent is excessively added due to a slight potential difference. There is a danger that hydrogen sulfide gas is generated in large quantities. For this reason, the reaction tank is provided with a device that sucks and removes the gas generated by the reaction, but it is also possible that hydrogen sulfide gas having a design concentration or higher may be generated. In addition, as a specific substance of hydrogen sulfide, an allowable concentration is 10 ppm.
JP 2004-105833 A

本発明は、上記した従来の事情に鑑み、硫化沈殿生成による重金属の分離回収工程において、ORP計による測定だけでは不十分であった反応の終点を正確に判定することができる、硫化沈殿生成の反応終点の判定方法を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention can accurately determine the end point of a reaction, which is not sufficient only by measurement with an ORP meter in the separation and recovery process of heavy metal by sulfide precipitation. An object is to provide a method for determining a reaction end point.

上記課題を達成するため、本発明者らは硫化沈澱反応の終点を正確に判定し得る方法について検討を重ねた結果、硫化沈澱反応の反応終点では急激な硫化水素の発生を伴うことを見いだし、本発明をなすに至ったものである。   In order to achieve the above-mentioned problem, the present inventors have repeatedly studied a method capable of accurately determining the end point of the sulfur precipitation reaction, and as a result, found that the reaction end point of the sulfur precipitation reaction is accompanied by rapid hydrogen sulfide generation. The present invention has been achieved.

即ち、本発明が提供する硫化沈殿生成の反応終点の判定方法は、硫化沈殿生成による重金属の分離回収工程において、硫化剤を使用して重金属を目標濃度まで沈殿させる反応の終点を判定する際に、ORPの測定と同時に、反応槽上部の硫化水素ガス濃度を測定することを特徴とするものである。   That is, the method for determining the reaction end point of sulfide precipitation formation provided by the present invention is a method for determining the end point of the reaction for precipitating heavy metal to a target concentration using a sulfurizing agent in the heavy metal separation and recovery step by sulfide precipitation formation. Simultaneously with the measurement of ORP, the hydrogen sulfide gas concentration in the upper part of the reaction vessel is measured.

また、上記本発明における硫化沈殿生成の反応終点の判定方法においては、前記ORP測定と硫化水素ガス濃度測定に基づいて硫化剤の添加量を制御し、重金属分離回収工程を連続自動運転することを特徴とする。   In the method for determining the reaction end point of sulfide precipitation formation in the present invention, the heavy metal separation and recovery process is continuously and automatically operated by controlling the addition amount of the sulfiding agent based on the ORP measurement and the hydrogen sulfide gas concentration measurement. Features.

本発明によれば、ORP計による測定値と同時に、反応槽上部の硫化水素ガス濃度を測定することによって、硫化沈殿生成の反応終点を正確に判定することが可能となった。その結果、硫化剤の過剰添加による硫化剤コストの上昇を抑えると共に、有毒な硫化水素ガスの発生を最小限に抑制して、反応槽周辺の作業環境の悪化ないし危険を未然に防止することができる。   According to the present invention, by measuring the hydrogen sulfide gas concentration in the upper part of the reaction tank simultaneously with the measurement value by the ORP meter, it becomes possible to accurately determine the reaction end point of the sulfide precipitation generation. As a result, it is possible to prevent an increase in sulfiding agent cost due to excessive addition of the sulfiding agent and minimize the generation of toxic hydrogen sulfide gas, thereby preventing deterioration or danger of the working environment around the reaction vessel. it can.

本発明による硫化沈殿生成の反応終点の判定方法では、例えば図1に示すように、重金属を含有する処理原液と硫化剤を連続的に反応槽1に供給して、処理原液中の重金属と硫化剤による硫化沈殿反応を実施する。その際、反応槽1に設置したpH計とORP計によりpH及びORPを連続監視すると同時に、反応槽1の上部のガスを連続して吸引し、HS測定器2に導入して硫化水素ガス濃度を連続測定する。 In the method for determining the reaction end point of sulfide precipitation formation according to the present invention, for example, as shown in FIG. 1, a processing stock solution containing heavy metals and a sulfiding agent are continuously supplied to the reaction tank 1 to sulphide heavy metals and sulfides in the processing stock solutions. Carry out sulfidation precipitation reaction with an agent. At that time, pH and ORP are continuously monitored by a pH meter and an ORP meter installed in the reaction tank 1, and at the same time, gas at the top of the reaction tank 1 is continuously sucked and introduced into the H 2 S measuring instrument 2 and hydrogen sulfide. Continuously measure the gas concentration.

尚、硫化沈殿反応は従来と同様に実施することができ、硫化剤としては水硫化ソーダ、硫化ナトリウム、硫化水素など通常のものを用いることができる。硫化剤の添加調整は、水硫化ソーダや硫化ソーダなどの液体硫化剤の場合も、硫化水素ガスの場合も、同様にコントロール弁を制御することで容易に実施することができる。また、反応槽1からの排ガスは、定期的に又は連続して除害塔3に吸引供給し、有害成分を除去してから大気に放出される。   The sulfidation precipitation reaction can be carried out in the same manner as in the prior art, and as the sulfiding agent, usual ones such as sodium hydrosulfide, sodium sulfide and hydrogen sulfide can be used. The addition adjustment of the sulfiding agent can be easily performed by controlling the control valve in the same manner in the case of liquid sulfiding agent such as sodium hydrosulfide and sodium sulfide and hydrogen sulfide gas. Further, the exhaust gas from the reaction tank 1 is sucked and supplied to the detoxification tower 3 periodically or continuously to remove harmful components and then released into the atmosphere.

硫化沈澱反応におけるpHとORPについては、予めビーカーテストにより各種廃液について決定するが、通常は重金属の種類毎に沈殿の完結する電位が知られているので、この値から処理を開始し、且つビーカーテストと並行して実施することで連続運転を開始する。また、硫化水素ガス濃度の測定にあたっては、使用するHS測定器の測定レンジに合わせて、反応槽内のガスを希釈してサンプルガスとすることができる。 The pH and ORP in the sulfidation precipitation reaction are determined in advance for various waste liquids by a beaker test. Usually, since the potential at which precipitation is completed is known for each type of heavy metal, the treatment is started from this value, and the beaker is used. Start continuous operation by running in parallel with the test. Moreover, in measuring the hydrogen sulfide gas concentration, the gas in the reaction vessel can be diluted to be a sample gas in accordance with the measurement range of the H 2 S measuring instrument to be used.

例えば銅製錬工程などの廃水では、主にCu、As、Zn、Cdなどが含有重金属の主成分である。Cu、Asについては、Zn、Cdよりも高い電位において沈澱するので、硫化沈澱反応の終点判定の対象としては主にCdが選ばれる。また、pHによって硫化沈澱反応の終点となる電位は変わってくるため、通常は酸又はアルカリを用いて一定のpHとなるように制御する。   For example, in wastewater such as a copper smelting process, Cu, As, Zn, Cd, etc. are mainly the main components of the contained heavy metals. Since Cu and As are precipitated at a potential higher than that of Zn and Cd, Cd is mainly selected as a target for determining the end point of the sulfur precipitation reaction. In addition, since the potential at the end of the sulfidation reaction varies depending on the pH, the pH is usually controlled to be constant using an acid or alkali.

Cdについては、濃度が高いほど後の廃水処理工程での中和剤の使用量が増加するため、硫化沈澱工程において濃度を低くすることがコストの削減となる。通常、pHが2程度の廃液でのORPは−50mV程度であるが、硫酸濃度が100g/l程度以上の液などの場合には+50mV程度でCd残留濃度が最低となる。尚、Znについては、pHによって大きく沈澱率が異なるが、高濃度の液でも最終工程の排水処理において中和凝集沈澱法で容易に除去可能なため、硫化沈澱工程で完全に分離する必要はない。   For Cd, the higher the concentration is, the more the amount of neutralizing agent used in the later wastewater treatment process is increased. Therefore, lowering the concentration in the sulfidation precipitation process reduces the cost. Usually, the ORP in the waste liquid having a pH of about 2 is about -50 mV, but in the case of a liquid having a sulfuric acid concentration of about 100 g / l or more, the Cd residual concentration is lowest at about +50 mV. For Zn, the precipitation rate varies greatly depending on the pH, but even a high-concentration liquid can be easily removed by the neutralization coagulation precipitation method in the wastewater treatment of the final step, so it is not necessary to completely separate it in the sulfide precipitation step. .

上記硫化沈澱反応の終点は、反応槽上部の硫化水素ガス濃度の測定結果とORPの測定結果に基づいて判定する。通常の中性に近い処理原液の場合には、一定のpHに維持することで硫化沈澱反応を安定して実施することができるため、ORPが設定値に達し、且つ反応槽上部の硫化水素ガス濃度が設定濃度を越えたとき、反応の終点であると正確に判定することができる。   The end point of the sulfide precipitation reaction is determined based on the measurement result of the hydrogen sulfide gas concentration in the upper part of the reaction tank and the measurement result of the ORP. In the case of a normal processing stock solution close to neutrality, the sulfide precipitation reaction can be stably carried out by maintaining a constant pH, so that the ORP reaches the set value and the hydrogen sulfide gas at the top of the reaction vessel When the concentration exceeds the set concentration, it can be accurately determined that the reaction is the end point.

尚、何らかの原因でpHが低下した場合や、pHの低い処理原液の場合には、ORPのみでは終点判定が極めて難しいが、反応槽上部の硫化水素ガス濃度が設定濃度を越えたことをもって終点と判定し、硫化剤の添加量を少なくし又は停止する。このように制御することにより、過剰な硫化剤の添加を防止することができ、猛毒の硫化水素ガスが多量に発生する危険を未然に防ぐことができる。   In the case of a pH drop for some reason, or in the case of a processing stock solution having a low pH, it is extremely difficult to determine the end point by using ORP alone. However, when the hydrogen sulfide gas concentration in the upper part of the reaction tank exceeds the set concentration, the end point is determined. Determine and reduce or stop the addition of sulfurizing agent. By controlling in this way, it is possible to prevent the addition of an excessive sulfiding agent, and it is possible to prevent the risk that a large amount of highly toxic hydrogen sulfide gas is generated.

銅製錬工程の廃水を処理原液とし、硫化剤として硫化水素ガスを用いて、重金属の硫化沈澱生成を実施した。尚、この処理原液において、主な重金属成分とその濃度は、Cuが0.5g/l、Asが0.5g/l、Znが0.8g/l、Cdが0.6g/lであり、HSO濃度は147g/lであって、pHは0であった。 Waste metal from the copper smelting process was used as a processing stock solution, and hydrogen sulfide gas was used as a sulfiding agent to generate sulfide precipitation of heavy metals. In this processing stock solution, the main heavy metal components and their concentrations are 0.5 g / l for Cu, 0.5 g / l for As, 0.8 g / l for Zn, and 0.6 g / l for Cd, The H 2 SO 4 concentration was 147 g / l and the pH was 0.

上記処理原液中の重金属の硫化沈澱反応において、ORPと残留Cd濃度を連続的に測定し、得られた結果を図2に示した。このORPと残留Cd濃度の関係を示す図2の結果から、ORPが+50mVにおいて残留Cd濃度は一定となり、硫化沈澱反応が完結していることが分る。   In the sulfidic precipitation reaction of heavy metals in the treatment stock solution, ORP and residual Cd concentrations were continuously measured, and the results obtained are shown in FIG. From the results of FIG. 2 showing the relationship between the ORP and the residual Cd concentration, it can be seen that when the ORP is +50 mV, the residual Cd concentration is constant and the sulfidation precipitation reaction is completed.

更に、上記硫化沈澱反応において、ORPの測定と同時に、反応槽内部のガスをサンプリングして硫化水素ガス濃度を測定し、得られた結果を図3に示した。このORPと硫化水素(HS)ガス濃度の関係を示す図3から、上記図2から反応の終点と認められるORP+50mVの電位は、HSガスが多量に発生し始める電位と同じであることが分る。 Further, in the above sulfidation precipitation reaction, the gas inside the reaction vessel was sampled and the hydrogen sulfide gas concentration was measured simultaneously with the ORP measurement, and the obtained results are shown in FIG. From FIG. 3 showing the relationship between the ORP and the hydrogen sulfide (H 2 S) gas concentration, the potential of ORP + 50 mV, recognized as the end point of the reaction from FIG. 2, is the same as the potential at which a large amount of H 2 S gas starts to be generated. I understand that.

硫化沈澱反応に用いる反応装置の模式図である。It is a schematic diagram of the reaction apparatus used for a sulfide precipitation reaction. ORPと残留Cd濃度の関係を示すグラフである。It is a graph which shows the relationship between ORP and residual Cd density | concentration. ORPとHSガス濃度の関係を示すグラフである。It is a graph showing the relationship between the ORP and H 2 S gas concentration.

符号の説明Explanation of symbols

1 反応槽
2 HS測定器
3 除害塔


1 reaction tank 2 H 2 S measuring instrument 3 abatement tower


Claims (2)

硫化沈殿生成による重金属の分離回収工程において、硫化剤を使用して重金属を目標濃度まで沈殿させる反応の終点を判定する際に、ORP測定と同時に、反応槽上部の硫化水素ガス濃度を測定することを特徴とする反応終点の判定方法。   Measure the hydrogen sulfide gas concentration at the top of the reaction tank at the same time as the ORP measurement when determining the end point of the reaction for precipitating heavy metals to the target concentration using a sulfurizing agent in the process of separating and recovering heavy metals by sulfide precipitation. A method for determining a reaction end point characterized by: 前記ORP測定と硫化水素ガス濃度測定に基づいて硫化剤の添加量を制御し、重金属分離回収工程を連続自動運転することを特徴とする、請求項1に記載の反応終点の判定方法。


2. The method for determining a reaction end point according to claim 1, wherein the heavy metal separation and recovery step is continuously and automatically operated by controlling an addition amount of a sulfiding agent based on the ORP measurement and the hydrogen sulfide gas concentration measurement.


JP2006221367A 2006-08-15 2006-08-15 Method for judging end point of formation reaction of precipitated sulfide Pending JP2008043872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221367A JP2008043872A (en) 2006-08-15 2006-08-15 Method for judging end point of formation reaction of precipitated sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221367A JP2008043872A (en) 2006-08-15 2006-08-15 Method for judging end point of formation reaction of precipitated sulfide

Publications (1)

Publication Number Publication Date
JP2008043872A true JP2008043872A (en) 2008-02-28

Family

ID=39178118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221367A Pending JP2008043872A (en) 2006-08-15 2006-08-15 Method for judging end point of formation reaction of precipitated sulfide

Country Status (1)

Country Link
JP (1) JP2008043872A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147764A (en) * 1997-08-01 1999-02-23 Dowa Mining Co Ltd Treatment of arsenic-containing waste water
WO2003020647A1 (en) * 2001-09-03 2003-03-13 Aquatech Corporation Method of treating heavy-metal-containing wastewater with sulfidizing agent and treatment apparatus
JP2003313617A (en) * 2002-02-25 2003-11-06 Sumitomo Metal Mining Co Ltd Control method for sulfidization reaction
JP2004105833A (en) * 2002-09-17 2004-04-08 Nagao Kk Wastewater treatment method and its apparatus
JP2005329355A (en) * 2004-05-21 2005-12-02 Nagao Kk Treatment method for thin arsenic-containing waste liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147764A (en) * 1997-08-01 1999-02-23 Dowa Mining Co Ltd Treatment of arsenic-containing waste water
WO2003020647A1 (en) * 2001-09-03 2003-03-13 Aquatech Corporation Method of treating heavy-metal-containing wastewater with sulfidizing agent and treatment apparatus
JP2003313617A (en) * 2002-02-25 2003-11-06 Sumitomo Metal Mining Co Ltd Control method for sulfidization reaction
JP2004105833A (en) * 2002-09-17 2004-04-08 Nagao Kk Wastewater treatment method and its apparatus
JP2005329355A (en) * 2004-05-21 2005-12-02 Nagao Kk Treatment method for thin arsenic-containing waste liquid

Similar Documents

Publication Publication Date Title
JP5728983B2 (en) Chemical injection control method for heavy metal scavengers
AU2017201329B2 (en) Method of treating industrial water
KR100301755B1 (en) Low Temperature Caustic Sulfide Wet Oxidation Method
JP6044160B2 (en) Method and apparatus for treating wastewater containing heavy metals
EA023142B1 (en) Method for producing a poorly soluble calcium-arsenic compound
SE420487B (en) PROCEDURE FOR CLEANING OF HEAVY METAL CONTAINING ACID WATER SOLUTION
US11242265B2 (en) Process for decontamination of hazardous sulfur compounds in oilfield produced waters
CA2412393C (en) Process for removing selenium and mercury from aqueous solutions
JP4905397B2 (en) Method and apparatus for treating fluorine-containing water
WO2015114805A1 (en) Method and device for treating heavy-metal-containing wastewater
JP6555182B2 (en) Wastewater treatment method
EA004577B1 (en) Method for removing mercury from gas
JP3945418B2 (en) Control method of sulfurization reaction
JP2008043872A (en) Method for judging end point of formation reaction of precipitated sulfide
WO2019225433A1 (en) Fluorine concentration measurement method, fluorine concentration measurement device, water treatment method, and water treatment device
JP2654149B2 (en) Method for continuously analyzing chloride ions present in water at the head of a hydrocarbon distillation column and an analyzer for performing the method
WO2014002926A1 (en) Device and method for biological desulfurization of biogas
JP6012075B2 (en) Selenium removal apparatus and removal method
JP6517570B2 (en) Heavy metal individual separation and recovery apparatus and heavy metal individual separation and recovery method
US20030173308A1 (en) Sulfidation reaction control method
CN115490315B (en) Method for removing heavy metals and/or arsenic in water body
WO2014028329A1 (en) Trihalomethane control in wet flue gas desulfurization
JP7318869B2 (en) Method for treating wastewater containing cyanide, automatic control system for agents for treating wastewater containing cyanide
JP6379777B2 (en) Method for treating hydrogen peroxide-containing water
RU2613401C1 (en) Method for back water preparation during flotation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921