JPH0523812B2 - - Google Patents

Info

Publication number
JPH0523812B2
JPH0523812B2 JP63006594A JP659488A JPH0523812B2 JP H0523812 B2 JPH0523812 B2 JP H0523812B2 JP 63006594 A JP63006594 A JP 63006594A JP 659488 A JP659488 A JP 659488A JP H0523812 B2 JPH0523812 B2 JP H0523812B2
Authority
JP
Japan
Prior art keywords
liquid
absorption
tank
gas
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63006594A
Other languages
Japanese (ja)
Other versions
JPH01184024A (en
Inventor
Hiromi Magota
Juichi Shiratori
Chihiro Inoe
Eiji Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP63006594A priority Critical patent/JPH01184024A/en
Publication of JPH01184024A publication Critical patent/JPH01184024A/en
Publication of JPH0523812B2 publication Critical patent/JPH0523812B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガス中のH2Sを除去して硫黄を回収す
る方法に関する。更に詳しくは鉄酸化バクテリア
を酸化槽内で生育させて硫酸第1鉄溶液から酸化
生成せしめた硫酸第2鉄溶液をH2Sの吸収液とし
て使用すると共に、特に低温時の脱硫効率を改善
するための触媒として有効な銅イオンの存在効果
を利用し、吸収液中に導入されるS分を単体硫黄
S0として分離回収することを特徴とする改良され
たH2Sガス除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing H 2 S from gas and recovering sulfur. More specifically, a ferric sulfate solution produced by growing iron-oxidizing bacteria in an oxidation tank and oxidizing it from a ferrous sulfate solution is used as an H 2 S absorption liquid, and the desulfurization efficiency is improved especially at low temperatures. By utilizing the effect of the presence of copper ions, which are effective as catalysts for
This invention relates to an improved H 2 S gas removal method characterized by separating and recovering S 0 .

(従来方法) ガス中のH2Sを除去する目的に鉄酸化バクテリ
アを使用する技術は、以下に述べるように公知で
ある。すなわち、特開昭58−152488号「硫化水素
の除去方法」、特開昭61−21721号「ガス中のH2S
の処理方法」及び特公昭61−21691号「ガス中の
H2Sの処理方法」には鉄酸化バクテリアを用いて
硫酸第1鉄溶液を硫酸第2鉄溶液に酸化し、次い
で該硫酸第2鉄溶液にガス中のH2Sを吸収させ
て、生成する単体硫黄をS0として分離回収すると
共に、吸収反応により再生する硫酸第1鉄溶液を
酸化槽に繰り返して鉄酸化バクテリアにより再び
硫酸第2鉄溶液となすことによりガス中のH2Sを
除去するための連続処理方法が開示されている。
(Conventional Method) The technique of using iron-oxidizing bacteria for the purpose of removing H 2 S from gas is known as described below. Namely, JP-A-58-152488 ``Method for removing hydrogen sulfide'', JP-A 61-21721 `` H2S in gas
``Method for the treatment of
H 2 S treatment method uses iron-oxidizing bacteria to oxidize a ferrous sulfate solution to a ferric sulfate solution, and then allows the ferric sulfate solution to absorb H 2 S in the gas to generate At the same time, the ferrous sulfate solution that is regenerated by absorption reaction is transferred to the oxidation tank and converted into a ferric sulfate solution by iron-oxidizing bacteria, thereby removing H 2 S from the gas. A continuous processing method is disclosed.

(発明が解決しようとする問題点) しかしながら上記方法は、鉄酸化バクテリアで
硫酸第1鉄を常温で酸化することができる特徴を
もつているが、酸化生成した硫酸第2鉄溶液と
H2Sの反応は、温度が低くなると脱硫率が著しく
下がるという欠点を有していた。
(Problems to be Solved by the Invention) However, although the above method has the feature that ferrous sulfate can be oxidized at room temperature using iron-oxidizing bacteria, the oxidized ferric sulfate solution
The H 2 S reaction had the disadvantage that the desulfurization rate decreased significantly as the temperature decreased.

従つて実操業において、冬期の低温時にも安定
した脱硫率を維持してH2Sを除去することのでき
るH2Sの除去方法を開発することが強く望まれて
いた。
Therefore, it has been strongly desired to develop a H 2 S removal method that can remove H 2 S while maintaining a stable desulfurization rate even at low temperatures in winter in actual operation.

(問題点を解決するための手段) 本発明は、上記問題の解決を目的として研究開
発されたものであり、酸化槽中で硫酸第1鉄溶液
の酸化反応を行う時に溶液中に銅イオンを存在せ
しめ、次いで吸収工程でガス中のH2Sの一部を銅
イオンと反応させてCuSを生成せしめることによ
り、硫酸第2鉄とH2Sとの反応によるS0の生成と
同時に液中にCuSを生成せしめ、後に酸化工程で
CuSを再び銅イオンに戻すことにより必要な銅イ
オンの供給源とすることを特徴とする改善された
H2Sの除去方法を提供するものである。
(Means for Solving the Problems) The present invention has been researched and developed for the purpose of solving the above problems, and includes copper ions in the solution when performing an oxidation reaction of a ferrous sulfate solution in an oxidation tank. Then, in the absorption process, a part of the H 2 S in the gas is reacted with copper ions to generate CuS, and at the same time S 0 is generated in the liquid by the reaction between ferric sulfate and H 2 S. to produce CuS, which is then oxidized in the oxidation process.
An improved product characterized by converting CuS back into copper ions and using it as a source of necessary copper ions.
A method for removing H 2 S is provided.

すなわち、本発明は鉄酸化バクテリアにより酸
化生成せしめた硫酸第2鉄及び硫酸銅の両者を含
む溶液によつてガス中のH2Sを吸収することを基
幹とする方法であつて、硫酸第1鉄溶液を硫酸第
2鉄溶液に酸化すると共に、後述の吸収工程で形
成されて液中に存在する硫化銅の硫酸銅への酸化
を同時に行う第1工程と、第1工程で形成される
単体硫黄S0を抜き出して分離回収する第2工程
と、第2工程で固液分離により得られた硫酸第2
鉄と硫酸銅の両者を含む溶液を吸収液として用い
てH2Sを含むガスと接触させ、ガス中のH2Sを吸
収する第3工程からなることを特徴とする。
That is, the present invention is a method based on absorbing H 2 S in gas with a solution containing both ferric sulfate and copper sulfate, which are oxidized by iron-oxidizing bacteria. A first step in which an iron solution is oxidized to a ferric sulfate solution and copper sulfide formed in the absorption step described later and present in the solution is simultaneously oxidized to copper sulfate; and a simple substance formed in the first step. The second step is to extract and separate and recover sulfur S0 , and the second sulfuric acid obtained by solid-liquid separation in the second step.
It is characterized by comprising a third step in which a solution containing both iron and copper sulfate is used as an absorption liquid and brought into contact with a gas containing H 2 S to absorb H 2 S in the gas.

本発明の方法でバクテリアの着床体として用い
ることのできる支持体としては、鉄酸化バクテリ
アを着床せしめ得る各種の耐酸性の多孔性物質が
使用できるが、これらの中でも珪藻土が特に好ま
しい支持体である。
As a support that can be used as a bacterial implant in the method of the present invention, various acid-resistant porous materials capable of implanting iron-oxidizing bacteria can be used, but among these, diatomaceous earth is a particularly preferred support. It is.

(作 用) 酸化工程における被処理液である含硫酸第1鉄
溶液としては、第1鉄オインを含む非鉄金属鉱山
排水や製錬排水、あるいは工場排水をそのままあ
るいは調整して使用することができる。もちろん
試薬を用いて調整することも可能である。Fe2+
濃度が1〜50g/の範囲であれば鉄酸化バクテ
リアにより充分酸化することができる。
(Function) As the ferrous sulfate-containing solution, which is the liquid to be treated in the oxidation process, non-ferrous metal mine wastewater, smelting wastewater, or factory wastewater containing ferrous ion can be used as is or after adjustment. . Of course, it is also possible to adjust using reagents. Fe2 +
If the concentration is in the range of 1 to 50 g/f, sufficient oxidation can be achieved by iron-oxidizing bacteria.

反応液のPHは、反応装置内で沈殿を生ぜず且つ
充分な酸化効率が得られるように決定する。必要
により前処理によつてPH=1.8以下にすることに
よつて、よい結果が得られることを確認してい
る。なお、製錬排水のように液中に上記鉄バクテ
リアや、その栄養源を含まないものを反応液とし
て使用する場合には、バクテリアを増殖させる必
要上N、P、Kなどの元素の塩類等を栄養源とし
て添加することが好ましい。
The pH of the reaction solution is determined so as not to cause precipitation in the reaction apparatus and to obtain sufficient oxidation efficiency. It has been confirmed that good results can be obtained by pre-treating the pH to 1.8 or less if necessary. In addition, when using a liquid such as smelting wastewater that does not contain the above-mentioned iron bacteria or their nutrient sources as a reaction liquid, salts of elements such as N, P, and K are used to increase the growth of bacteria. is preferably added as a nutrient source.

本発明の方法で用いることのできるバクテリア
は、公知のThiobacillus ferrocxidans等であり、
例えば排水泥を種菌として、該泥中の鉄酸化バク
テリアを、第1鉄イオン等を高濃度(例えば約30
g/)に含有する液で培養した後、特に酸化能
力の高いものだけを選択分離して得たものが特に
好ましいものの一例である。
Bacteria that can be used in the method of the present invention include known Thiobacillus ferrocxidans,
For example, by using wastewater mud as a starter, the iron-oxidizing bacteria in the mud can be stimulated with a high concentration of ferrous ions (for example, about 30%
A particularly preferable example is one obtained by culturing in a solution containing 1.5 g/g/) and then selectively separating only those with particularly high oxidizing ability.

この方法によつて選択分離して得られる鉄酸化
バクテリアの酸化能力は、排水泥中に存在する通
常の鉄酸化バクテリアに比較すると2〜5倍に達
する(寄託番号:微工研寄7444号、同7445号、同
7555号、同7556号)。
The oxidizing ability of the iron-oxidizing bacteria obtained by selective separation using this method is 2 to 5 times higher than that of the ordinary iron-oxidizing bacteria present in wastewater mud (Deposit number: Microtech Research Institute No. 7444, No. 7445, same
No. 7555, No. 7556).

又、酸化工程で添加する銅イオンは通常の場合
試薬(CuあるいはCuSO4)であるが、硫酸酸性
液でCuSO4の形態をとり得るものであれば良く、
その場合、銅イオン濃度として約5g/前後
(2〜10g/)のものが特に好ましい。
In addition, the copper ion added in the oxidation process is usually a reagent (Cu or CuSO 4 ), but it may be any one that can take the form of CuSO 4 in a sulfuric acid solution.
In that case, a copper ion concentration of approximately 5 g/(2 to 10 g/) is particularly preferred.

さらに、増殖されたバクテリアを逃さずに処理
液中に留保しておくためには、キヤリア剤として
粒状の耐酸性多孔質物質を添加して液中に懸濁浮
遊させ、これらにバクテリアを着床させ酸化槽の
菌体濃度を高水準に保つようにしておくとよい。
この耐酸性多孔質粒状物質は、一旦液から分離回
収した後、再び酸化槽に添加して繰り返し使用す
るようにすることが好ましい。
Furthermore, in order to retain the grown bacteria in the processing solution without escaping, granular acid-resistant porous materials are added as a carrier agent and suspended in the solution, and the bacteria are implanted on these. It is best to keep the bacterial cell concentration in the oxidation tank at a high level.
It is preferable that this acid-resistant porous granular material is once separated and recovered from the liquid and then added to the oxidation tank again for repeated use.

ここに、耐酸性多孔質粒状物質とは可及的多数
の鉄酸化バクテリアが着床生息できる表面積の大
きな多孔質物質であつて、液中において撹拌によ
り容易に流動し、且つ静止状態においては容易に
沈降する性質を有するものを意味している。本発
明者等はこのような特性を有する粒状物質として
ゼオライト、活性炭、フラー土等の使用も可能で
あるが、珪藻土が特に優れていることを確認し
た。
Here, the acid-resistant porous granular material is a porous material with a large surface area on which as many iron-oxidizing bacteria as possible can settle and live, and it can easily flow in a liquid by stirring, and can easily flow in a static state. It means something that has the property of settling. Although it is possible to use zeolite, activated carbon, Fuller's earth, etc. as a particulate material having such characteristics, the present inventors have confirmed that diatomaceous earth is particularly excellent.

なお、上記のごとき耐酸性多孔質粒状物質を使
用する代りに、吸収反応時の吸収液のPHを上昇さ
せて該吸収液中の硫酸第2鉄を加水分解させ、生
成する鉄澱物をキヤリアー剤として使用すること
もできる。これらの酸化槽で得られる硫酸第2鉄
と硫酸銅を含む溶液は、吸収工程に送液される。
In addition, instead of using the acid-resistant porous particulate material as described above, the pH of the absorption liquid during the absorption reaction is increased to hydrolyze the ferric sulfate in the absorption liquid, and the generated iron precipitate is used as a carrier. It can also be used as an agent. A solution containing ferric sulfate and copper sulfate obtained in these oxidation tanks is sent to an absorption process.

吸収法としては、上記吸収液を満たした槽の底
部からH2Sを含むガスを散気してもよいし、ある
いは吸収液を上方からスプレーして上昇あるいは
下降気流と接触させる方法でもよく、この場合の
液温は常温(好ましくは2〜30℃)であること
が、鉄酸化バクテリアの成育に特に好ましい。
As an absorption method, a gas containing H 2 S may be diffused from the bottom of the tank filled with the absorption liquid, or the absorption liquid may be sprayed from above and brought into contact with an ascending or descending air current. In this case, the liquid temperature is particularly preferably room temperature (preferably 2 to 30°C) for the growth of iron-oxidizing bacteria.

なお、本明細書中の実施例ではジエツトスクラ
バーを用いる場合を例示したが、吸収方式はこれ
に限定されるものではない。
In addition, although the case where a jet scrubber is used is illustrated in the Example in this specification, the absorption method is not limited to this.

吸収工程では、次の式で表される反応が行われ
るものと考えられる。
In the absorption process, it is thought that a reaction expressed by the following formula takes place.

Fe2(SO43+H2S →2FeSO4+H2SO4+S0 (1) CuSO4+H2S→CuS+H2SO4 (2) これらの反応により、H2S中のS分はほとんど
がS0として分離回収されるが、一部は(2)式に示さ
れる反応によりCuSとして液中に残る。
Fe 2 (SO 4 ) 3 +H 2 S →2FeSO 4 +H 2 SO 4 +S 0 (1) CuSO 4 +H 2 S→CuS+H 2 SO 4 (2) Through these reactions, most of the S content in H 2 S is It is separated and recovered as S 0 , but a portion remains in the liquid as CuS due to the reaction shown in equation (2).

これらの反応後液を、再び酸化槽に導き(1)式の
反応で再生した硫酸第1鉄溶液を、(3)式に示す反
応によつて再び硫酸第2鉄溶液に酸化する。酸化
されて生じた硫酸第2鉄は、(2)式の反応で生じた
CuSと(4)式に示す反応を行う。
These post-reaction liquids are again led to the oxidation tank, and the ferrous sulfate solution regenerated by the reaction of formula (1) is oxidized again to a ferric sulfate solution by the reaction of formula (3). The ferric sulfate produced by oxidation is produced by the reaction of equation (2).
Perform the reaction shown in equation (4) with CuS.

2FeSO4+H2SO4+O2 → Fe2(SC43+H2O (3) CuS+Fe2(SO43 →CuSO4+2FeSO4+S0 (4) 酸化工程において(4)式により生成した単体硫黄
S0を、吸収工程において(1)式の反応で生成した単
体硫黄S0と共に、分離槽より抜きだしフイルター
を通して、吸収液と単体硫黄とに分離した(第2
工程)。
2FeSO 4 +H 2 SO 4 +O 2 → Fe 2 (SC 4 ) 3 +H 2 O (3) CuS + Fe 2 (SO 4 ) 3 →CuSO 4 +2FeSO 4 +S 0 (4) Simple substance generated by equation (4) in the oxidation process sulfur
S 0 was extracted from the separation tank together with elemental sulfur S 0 produced by the reaction of formula (1) in the absorption process, and separated into absorption liquid and elemental sulfur through a filter (second
process).

単体硫黄の分離は上述の第2工程で主として行
うが、吸収工程で(1)式の反応により副生し吸収後
液中に残在するS0を、該液が酸化槽に導入される
前にさらに充分に除去してもよいことは当然であ
る。
The separation of elemental sulfur is mainly carried out in the second step mentioned above, but in the absorption step, S0 , which is produced by the reaction of equation (1) and remains in the liquid after absorption, is removed before the liquid is introduced into the oxidation tank. Of course, it is also possible to remove it more fully.

(実施例) K鉱山の排水処理場で培養した鉄酸化バクテリ
ア含有パルプ20と操業時のパルプ濃度が15%と
なる量の珪藻土とを入れた容量500の酸化槽1
に、硫酸を加えてPH2.0に調節したFeSO4(Fe濃度
5〜20g/)溶液を2/分の速度で連続的に
流入通過せしめ、さらに栄養剤としてのリン酸ア
ンモニウムをそれが槽1内で50mg/の濃度とな
る割合で添加し、空気量80/分の割合で槽1内
の液にエアーブローを行つた。
(Example) Oxidation tank 1 with a capacity of 500 containing iron-oxidizing bacteria-containing pulp 20 cultivated at the wastewater treatment plant of K mine and diatomaceous earth in an amount that makes the pulp concentration 15% during operation.
A FeSO 4 (Fe concentration 5 to 20 g/min) solution adjusted to pH 2.0 by adding sulfuric acid was continuously flowed through the tank at a rate of 2/min, and ammonium phosphate as a nutrient was added to tank 1. The liquid in tank 1 was added at a rate of 50 mg/min, and the liquid in tank 1 was blown with air at a rate of 80 mg/min.

さらに槽1内には、低温時における脱硫反応の
触媒作用をなす銅イオンを与えるため、 CuSO4を槽1内での銅イオン濃度が5g/と
なる割合で添加した。
Further, CuSO 4 was added to tank 1 at a rate such that the copper ion concentration in tank 1 was 5 g/min in order to provide copper ions that catalyzed the desulfurization reaction at low temperatures.

酸化槽で酸化されて生じた硫酸第2鉄溶液は、
上記硫酸銅をも含む溶液の状態で繰り返しポンプ
P1およびP2によりフイルタープレス3を通過さ
せられた後スクラバータンク4に送液される。次
いでこの液は、吸収液ポンプP3によりスクラバ
ー5に送液され、スクラバー内部でH2Sを吸収す
るために使用される。
The ferric sulfate solution produced by oxidation in the oxidation tank is
Pump repeatedly in the state of the solution containing copper sulfate.
The liquid is passed through a filter press 3 by P 1 and P 2 and then sent to a scrubber tank 4 . This liquid is then sent to the scrubber 5 by the absorption liquid pump P 3 and used to absorb H 2 S inside the scrubber.

本実施例では、H2S7000ppm、残り空気より成
るガスを6/分の流量で処理し、スクラバータ
ンク出口のガスのH2S濃度を北川式検知管で測定
したところ60ppmであつた。この時の吸収液組成
はT・Fe:31.0g/、Fe2+:0.5g/、
H2SO4:20.5g/、Cu:5.0g/であり、繰
り返し液量500c.c./分、液温20℃で、脱硫率は
99.1%であつた。
In this example, a gas consisting of 7000 ppm of H 2 S and remaining air was processed at a flow rate of 6/min, and the H 2 S concentration of the gas at the outlet of the scrubber tank was measured with a Kitagawa detector tube and found to be 60 ppm. The absorption liquid composition at this time was T・Fe: 31.0g/, Fe 2+ : 0.5g/,
H 2 SO 4 : 20.5 g/, Cu: 5.0 g/, repeated liquid volume 500 c.c./min, liquid temperature 20°C, desulfurization rate is
It was 99.1%.

次いで吸収反応により生成した単体硫黄S0及び
硫化銅CuS等を含有する硫酸第1鉄溶液を、スク
ラバータンク4の下方より抜き出してプレス3を
中にはさんだポンプP4およびP5で酸化槽1に送
り、ここで硫酸第1鉄溶液を再び硫酸第2鉄溶液
へと酸化した。酸化槽1では、吸収工程で生成し
た硫化銅と硫酸第2鉄溶液とが反応して、更に単
体硫黄S0を生成した。
Next, the ferrous sulfate solution containing elemental sulfur S 0 and copper sulfide CuS generated by the absorption reaction is extracted from the bottom of the scrubber tank 4 and pumped into the oxidation tank 1 by pumps P 4 and P 5 with the press 3 sandwiched therein. where the ferrous sulfate solution was oxidized back to ferric sulfate solution. In the oxidation tank 1, the copper sulfide produced in the absorption step and the ferric sulfate solution reacted to further produce elemental sulfur S 0 .

次いでこれらの単体硫黄S0を含有し、かつ硫酸
銅を含む硫酸第2鉄溶液を分離槽であるシツクナ
ー2に導入して沈降分離を行い、沈降泥の一部は
酸化槽に繰り返し、その他の部分はフイルタープ
レス3に送り、濾過分離した(第2工程)。
Next, a ferric sulfate solution containing elemental sulfur S 0 and copper sulfate is introduced into thickener 2, which is a separation tank, to perform sedimentation separation. A part of the settled mud is repeatedly sent to an oxidation tank, and other parts are The portion was sent to filter press 3 and filtered and separated (second step).

分離された澱物は、単体硫黄S0として回収する
と共に、濾液は吸収液の一部として再使用するた
めポンプP2でスクラバータンク1に送つた。
The separated precipitate was recovered as elemental sulfur S 0 and the filtrate was sent to the scrubber tank 1 by pump P 2 for reuse as part of the absorption liquid.

上述の酸化槽1における銅イオンの添加に関し
ては、吸収工程(第3工程)で生じた硫酸銅が吸
収後液に含まれて送液されてくる為、濃度が一定
の水準以下に下がつた時点で随時添加すればよい
ことを確認している。
Regarding the addition of copper ions in the above-mentioned oxidation tank 1, since the copper sulfate generated in the absorption process (third process) is included in the liquid after absorption and is sent, the concentration drops below a certain level. We have confirmed that it can be added at any time.

(参考例) 次に、温度別の脱硫率を銅イオン添加有無の各
場合について調べた結果を第2図に示す。
(Reference Example) Next, FIG. 2 shows the results of examining the desulfurization rate at different temperatures with and without addition of copper ions.

ガス組成、流量および吸収液の組成等の諸条件
を実施例1の場合と同じにし、吸収液の液温のみ
を第2図に示すように5℃、20℃、65℃、90℃に
調節して吸収試験を行つた。
The various conditions such as gas composition, flow rate, and absorption liquid composition were kept the same as in Example 1, and only the temperature of the absorption liquid was adjusted to 5°C, 20°C, 65°C, and 90°C as shown in Figure 2. An absorption test was conducted.

その結果、銅イオンを添加しない従来法による
場合は温度が下がる程脱硫率が低くなるが、一方
銅イオンを添加する本発明法の場合は、温度変化
にかかわりなくほぼ同じ脱硫率を示すことが理解
される。
As a result, when using the conventional method without adding copper ions, the desulfurization rate decreases as the temperature decreases, but on the other hand, when using the method of the present invention where copper ions are added, the desulfurization rate is almost the same regardless of temperature changes. be understood.

(発明の効果) 以上の説明から明らかであるように本発明法
は、低温時の冬期などにおいても脱硫効率を下げ
ることなく安定操業ができる方法であり、この為
従来法に比較しL/Gを小さくする事ができると
いう効果を有する。
(Effect of the invention) As is clear from the above explanation, the method of the present invention is a method that allows stable operation without reducing desulfurization efficiency even in winter at low temperatures. This has the effect of making it possible to make it smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の工程を示すフローシー
ト、第2図は、温度変化および銅イオン添加の有
無に対する脱硫率の変化を示すグラフである。 符号説明 1…酸化槽、2…分離槽、3…フイ
ルタープレス、4…スクラバータンク、5…スク
ラバー、P1〜P5…ポンプ。
FIG. 1 is a flow sheet showing the steps of the method of the present invention, and FIG. 2 is a graph showing changes in desulfurization rate with respect to temperature changes and presence or absence of copper ion addition. Explanation of symbols 1...Oxidation tank, 2...Separation tank, 3...Filter press, 4...Scrubber tank, 5...Scrubber, P1 to P5 ...Pump.

Claims (1)

【特許請求の範囲】 1 液中に懸濁浮遊させた支持体に着床せしめた
鉄酸化バクテリアにより、硫化銅を含む硫酸第1
鉄溶液を酸化させて銅イオンを2〜10g/含有
する硫酸第2鉄溶液を生成せしめる第1工程; 第1工程その他で副生する単体硫黄を溶液から
分離して回収する第2工程;及び 第2工程で単体硫黄を分離して得られた液温2
〜30℃の銅イオン含有硫酸第2鉄溶液を吸収液と
して用い、これをH2S含有ガスと接触させてガス
中のH2Sを吸収除去すると共に液中の銅イオンを
硫化銅にかえる第3工程; からなるガス中のH2Sの除去方法。 2 第3工程で副生する単体硫黄の吸収後液を第
1工程に送る前に、吸収後液から単体硫黄を分離
回収する工程をさらに含む特許請求の範囲第1項
に記載の方法。 3 前記支持体が耐酸性多孔物質である特許請求
の範囲第1項または第2項のいずれかに記載の方
法。
[Claims] 1. Ferrous sulfuric acid, which contains copper sulfide, is
A first step of oxidizing the iron solution to produce a ferric sulfate solution containing 2 to 10 g of copper ions; a second step of separating and recovering elemental sulfur produced as a by-product in the first step and other processes from the solution; and Liquid temperature 2 obtained by separating elemental sulfur in the second step
A ferric sulfate solution containing copper ions at ~30°C is used as an absorption liquid, and this is brought into contact with a gas containing H 2 S to absorb and remove H 2 S in the gas and convert the copper ions in the liquid into copper sulfide. A method for removing H 2 S in a gas, comprising: a third step; 2. The method according to claim 1, further comprising the step of separating and recovering elemental sulfur from the absorption liquid before sending the absorption liquid of elemental sulfur produced as a by-product in the third step to the first step. 3. The method according to claim 1 or 2, wherein the support is an acid-resistant porous material.
JP63006594A 1988-01-15 1988-01-15 Method for removing h2s contained in gas Granted JPH01184024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006594A JPH01184024A (en) 1988-01-15 1988-01-15 Method for removing h2s contained in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006594A JPH01184024A (en) 1988-01-15 1988-01-15 Method for removing h2s contained in gas

Publications (2)

Publication Number Publication Date
JPH01184024A JPH01184024A (en) 1989-07-21
JPH0523812B2 true JPH0523812B2 (en) 1993-04-05

Family

ID=11642661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006594A Granted JPH01184024A (en) 1988-01-15 1988-01-15 Method for removing h2s contained in gas

Country Status (1)

Country Link
JP (1) JPH01184024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935330A (en) * 2012-11-07 2013-02-20 西安建筑科技大学 Biological activated carbon (BAC) and method for removing H2S in oil storage tank in oil field by utilizing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100301959B1 (en) * 1999-05-15 2001-10-29 윤덕용 Apparatus and Method for Treatment of Gases Containing Hydrogen Sulfide
KR20020060295A (en) * 2001-01-10 2002-07-18 조경숙 Method for Removing Gases Containing Hydrogen Sulfide Using Aqueous Catalysts of Fe-chelates
CN101773783B (en) * 2010-03-17 2012-02-22 南京碳环生物质科技有限公司 Wet catalytic oxidative desulfurization method for biogas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135897A (en) * 1977-05-02 1978-11-27 Dowa Mining Co Method of h2s in gas
JPS5411091A (en) * 1977-06-29 1979-01-26 Mitsui Eng & Shipbuild Co Ltd Treating method for gas containing hydrogen sulfide type compounds
JPS5946117A (en) * 1982-09-06 1984-03-15 Dowa Mining Co Ltd Treatment of h2s in gas
JPS6121721A (en) * 1984-07-10 1986-01-30 Dowa Mining Co Ltd Treatment of h2s in gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135897A (en) * 1977-05-02 1978-11-27 Dowa Mining Co Method of h2s in gas
JPS5411091A (en) * 1977-06-29 1979-01-26 Mitsui Eng & Shipbuild Co Ltd Treating method for gas containing hydrogen sulfide type compounds
JPS5946117A (en) * 1982-09-06 1984-03-15 Dowa Mining Co Ltd Treatment of h2s in gas
JPS6121721A (en) * 1984-07-10 1986-01-30 Dowa Mining Co Ltd Treatment of h2s in gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935330A (en) * 2012-11-07 2013-02-20 西安建筑科技大学 Biological activated carbon (BAC) and method for removing H2S in oil storage tank in oil field by utilizing same
CN102935330B (en) * 2012-11-07 2014-05-28 西安建筑科技大学 Biological activated carbon (BAC) and method for removing H2S in oil storage tank in oil field by utilizing same

Also Published As

Publication number Publication date
JPH01184024A (en) 1989-07-21

Similar Documents

Publication Publication Date Title
US4206288A (en) Microbial desulfurization of coal
EP0477338B1 (en) Process for the treatment of water containing sulphur compounds
US4233274A (en) Method of extracting and recovering mercury from gases
AU719886B2 (en) Process for the treatment of water containing heavy metal ions
RU2144510C1 (en) Anaerobic removal of sulfur compounds from sewage
JP3825537B2 (en) Treatment method for wastewater containing As
AU2012357145B2 (en) Method for separating arsenic and heavy metals in an acidic washing solution
US4260494A (en) Method of purifying aqueous solutions of metal hydroxides
JPS6333920B2 (en)
JPH0523812B2 (en)
AU2012201341B2 (en) Process of treatment for oxidizing an acidic solution containing an iodide ion and an iron (II) ion
EP0280750B1 (en) Method and apparatus for treating h2s containing gases
JPS63278593A (en) Method for removing arsenic from industrial waste liquid or the like
JPS6121691B2 (en)
US6051518A (en) Microbial process and composition for the regeneration of catalysts
JPH0523813B2 (en)
US4185996A (en) Arsenic and sulfur elimination from cobaltiferous ores
CA1246834A (en) Recovery of sulfur from sulfur froth
JPS6324405B2 (en)
RU2337156C1 (en) Method of vat bacterial leaching of sulphide containing products
JP4567303B2 (en) Method for treating arsenic-containing sulfuric acid
US4333913A (en) Method of purifying aqueous solutions of metal hydroxides
JPH09308891A (en) Removal of selenium oxide in water
JPS61274724A (en) Treatment of malodor
EP0341222B1 (en) Process for the chemical-biological desulphurization of coal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 15