JP2009254920A - Heavy metal treating agent and method of making heavy metal-contaminated matter harmless - Google Patents

Heavy metal treating agent and method of making heavy metal-contaminated matter harmless Download PDF

Info

Publication number
JP2009254920A
JP2009254920A JP2008103557A JP2008103557A JP2009254920A JP 2009254920 A JP2009254920 A JP 2009254920A JP 2008103557 A JP2008103557 A JP 2008103557A JP 2008103557 A JP2008103557 A JP 2008103557A JP 2009254920 A JP2009254920 A JP 2009254920A
Authority
JP
Japan
Prior art keywords
heavy metal
treating agent
metal treating
fly ash
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008103557A
Other languages
Japanese (ja)
Inventor
Setsuo Yoshida
節夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008103557A priority Critical patent/JP2009254920A/en
Publication of JP2009254920A publication Critical patent/JP2009254920A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heavy metal treating agent containing a novel manganese compound oxide having excellent heavy metal treating characteristics as an active ingredient and a method of making harmless waste, waste water and/or soil containing various types of heavy metals by using the heavy metal treating agent. <P>SOLUTION: The heavy metal treating agent utilizes a complex oxide comprising Ca and/or Mg and Mn in a (Ca and/or Mg)/Mn ratio of 0.1-0.8. The complex oxide is preferably in a layer crystal form. Most preferably, Ca and/or Mg is eluted from the complex oxide and the (Ca and/or Mg)/Mn ratio is made 0.1-0.3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、重金属を含有する固体廃棄物、例えば、ゴミ焼却場から排出される焼却灰及び飛灰、重金属に汚染された土壌、排水処理後に生じる汚泥、工場から排出される排水等に含有される鉛、カドミウム、銅、亜鉛、ニッケル、タリウム等の有害な重金属を簡便、かつ高効率で安定的に無害化することのできる重金属類処理剤、並びに重金属汚染物の無害化処理方法に関するものである。   The present invention is contained in solid waste containing heavy metals, for example, incineration ash and fly ash discharged from garbage incineration plants, soil contaminated with heavy metals, sludge generated after wastewater treatment, wastewater discharged from factories, etc. Heavy metal treatment agent that can detoxify harmful heavy metals such as lead, cadmium, copper, zinc, nickel, thallium, etc. easily, efficiently, and detoxify heavy metal contaminants is there.

マンガン酸化物は、重金属を吸着することが知られている。例えば二酸化マンガンは結晶構造的にα、β、γ、η、δ及びεのように分類され、これらを用いて廃水等に含まれる各種重金属を吸着し無害化処理する方法が知られている。   Manganese oxides are known to adsorb heavy metals. For example, manganese dioxide is classified into α, β, γ, η, δ, and ε in terms of crystal structure, and a method of using them to adsorb various heavy metals contained in waste water and the like and make them harmless is known.

例えば、ガンマ(γ)型二酸化マンガンまたはガンマ(γ)型二酸化マンガンを主成分とする粉末を他の金属イオンを含有した酸性溶液で混練、造粒し、これを加熱することにより得られるベータ(β)型二酸化マンガンを浄化用濾材として用いる方法が開示されている(特許文献1参照)。   For example, gamma (γ) -type manganese dioxide or powder containing gamma (γ) -type manganese dioxide as a main component is kneaded with an acidic solution containing other metal ions, granulated, and heated by beta ( A method using β) type manganese dioxide as a filter medium for purification is disclosed (see Patent Document 1).

また重金属を含む汚水に二酸化マンガンの粉末を加え、中性領域において攪拌処理することにより金属イオンを沈澱させて分離する重金属イオンの除去法が開示されている(特許文献2参照)。   In addition, a method for removing heavy metal ions is disclosed in which manganese dioxide powder is added to sewage water containing heavy metals and the metal ions are precipitated and separated by stirring in a neutral region (see Patent Document 2).

さらに、平均粒径:0.1〜5μmの主として球状の、しかも表面に無数の突起を有する比表面積(BET値)が50m2/g以上である活性化二酸化マンガンが吸着剤として優れていることが開示されている(特許文献3参照)。 Furthermore, activated manganese dioxide having an average particle size of 0.1 to 5 μm, which is mainly spherical and has a surface area with numerous protrusions and a specific surface area (BET value) of 50 m 2 / g or more is excellent as an adsorbent. Is disclosed (see Patent Document 3).

K、Na,H,Ca,Mg及びBaからなる群から選ばれる1つ又は2つ以上の陽イオンを含むα-二酸化マンガンを含有する重金属固定化剤が開示されている(特許文献4参照)。   A heavy metal immobilizing agent containing α-manganese dioxide containing one or more cations selected from the group consisting of K, Na, H, Ca, Mg and Ba is disclosed (see Patent Document 4). .

しかし、これらの方法で用いられているマンガン酸化物は、近年規制が強化されている水質汚濁防止方法や廃掃法に適用できる処理剤としては性能的には不十分であり、多量の酸化物を用いることが必要なため、実用的とは言えなかった。   However, the manganese oxides used in these methods are insufficient in terms of performance as treatment agents applicable to water pollution prevention methods and waste cleaning methods, which have been tightened in recent years. Since it was necessary to use, it was not practical.

特開昭61−120689号JP-A-61-120689 特開昭62−53789号JP-A-62-53789 特開平06−92639号JP 06-92639 A 特開平08−267053号Japanese Patent Application Laid-Open No. 08-267053 特開2001−79515JP 2001-79515 A

本発明は、少量のマンガン酸化物を用い、焼却飛灰、廃水等に含まれる重金属を環境基準以下に処理できる重金属処理剤及び無害化処理方法を提供するものである。   The present invention provides a heavy metal treating agent and a detoxifying treatment method that can treat heavy metals contained in incineration fly ash, waste water, etc. to environmental standards or less using a small amount of manganese oxide.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、重金属汚染物質の処理においてCa及び/又はMgとMnの複合酸化物が無害化処理に非常に有効であることを見出し、更に、Ca及び/又はMgを一部溶脱した複合酸化物では、その処理性能がさらに向上することを見出し、本発明を完成するに到ったものである。   As a result of intensive studies to solve the above problems, the present inventors have found that Ca and / or a composite oxide of Mg and Mn is very effective for detoxification in the treatment of heavy metal contaminants. Furthermore, it has been found that the processing performance of the composite oxide obtained by partially leaching Ca and / or Mg is further improved, and the present invention has been completed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の重金属処理剤は、Ax−Mn複合酸化物(但し、AはCa及び/又はMg)の表記において0.1≦x≦0.8であるCa及び/又はMgとMnの複合酸化物を含んでなるものである。   The heavy metal treating agent of the present invention is a composite oxide of Ca and / or Mg and Mn in which 0.1 ≦ x ≦ 0.8 in the notation of Ax-Mn composite oxide (where A is Ca and / or Mg). Is included.

本発明の重金属処理剤は、Ca及び/又はMgの一部を溶出して用いることにより特に重金属処理能を高めることができる。その場合、Ax−Mn複合酸化物(但し、AはCa及び/又はMg)の表記において0.1≦x<0.3であることが好ましい。   The heavy metal treating agent of the present invention can particularly enhance the heavy metal treating ability by eluting and using a part of Ca and / or Mg. In that case, it is preferable that 0.1 ≦ x <0.3 in the notation of Ax—Mn composite oxide (where A is Ca and / or Mg).

本発明の重金属処理剤の複合酸化物は、無定形層状、又は層状結晶構造を有することが好ましい。   The composite oxide of the heavy metal treating agent of the present invention preferably has an amorphous layered structure or a layered crystal structure.

本発明の重金属処理剤は、例えばA=Ca、x=0.5、化学式でCaMnの場合において面間隔が約2.4Å(面間隔約3.0ÅにあるCaCOの不純物ピークは除く)を示すもので、従来知のCaMn(ASTMカードの標準物質 面間隔は4.82、2.69、2.22及び2.05Å)とは異なる結晶性の層状結晶構造を有しているもので高い性能が得られた。 In the case of the heavy metal treating agent of the present invention, for example, in the case of A = Ca, x = 0.5, and the chemical formula CaMn 2 O 4 , the interplanar spacing is about 2.4 mm (the CaCO 3 impurity peak at the interplanar spacing about 3.0 mm It has a crystallized layered crystal structure different from the conventionally known CaMn 2 O 4 (the standard material of ASTM card is 4.82, 2.69, 2.22 and 2.05 mm). High performance was obtained.

同様にA=Mg、x=0.5の場合、面間隔が9.3、7.2、4.7及び3.5Åを有しており、従来のMgMn(ASTMカード標準物質 面間隔4.9、3.1、2.9、2.8及び2.5Å)とは結晶性の異なる層状結晶構造を有しているもので高い性能が得られた。 Similarly, when A = Mg and x = 0.5, the surface spacing is 9.3, 7.2, 4.7 and 3.5 mm, and the conventional MgMn 2 O 4 (ASTM card standard material surface The distances of 4.9, 3.1, 2.9, 2.8 and 2.5 cm) have a layered crystal structure with different crystallinity, and high performance was obtained.

AがCaの場合において、Caを溶出するとδ型の二酸化マンガンに類似した層状型となり、Mgの場合、バーネサイト(NaMn1427・9HO)の層状型となる。 In the case where A is Ca, when Ca is eluted, it becomes a layered type similar to δ-type manganese dioxide, and in the case of Mg, it becomes a layered type of birnessite (Na 4 Mn 14 O 27 · 9H 2 O).

本発明の重金属処理剤に用いるAx−Mn複合酸化物は、水溶性のマンガン化合物とCa及び/又はMgを含有する化合物を混合し、水酸化ナトリウム等のアルカリ水溶液で加水分解中和した後、酸化剤で酸化することにより得ることができる。   The Ax-Mn composite oxide used for the heavy metal treating agent of the present invention is obtained by mixing a water-soluble manganese compound and a compound containing Ca and / or Mg, and hydrolytically neutralizing with an aqueous alkali solution such as sodium hydroxide. It can be obtained by oxidizing with an oxidizing agent.

用いるマンガン化合物は限定されるのもではなく、水溶性であればいかなる化合物も適用できるが、経済性及び腐食から硫酸塩を用いるのが好ましい。   The manganese compound to be used is not limited, and any compound can be applied as long as it is water-soluble, but it is preferable to use a sulfate from the viewpoint of economy and corrosion.

Caを含有する化合物としては、硫酸塩、硝酸塩、塩酸塩、炭酸塩及び水酸化物を用いることができるが、無害化処理性能から硝酸塩又は水酸化物が好ましく、経済性より水酸化物が特に好ましい。   As the compound containing Ca, sulfates, nitrates, hydrochlorides, carbonates and hydroxides can be used, but nitrates or hydroxides are preferable from the viewpoint of detoxification treatment performance, and hydroxides are particularly preferable from the viewpoint of economy. preferable.

Mgを含有する化合物としては、硫酸塩、硝酸塩、塩酸塩、炭酸塩及び水酸化物を用いることができるが、硝酸塩、硫酸塩が好ましい。   As the compound containing Mg, sulfates, nitrates, hydrochlorides, carbonates and hydroxides can be used, but nitrates and sulfates are preferred.

加水分解中和に用いるアルカリ水溶液は、強アルカリを呈するものを用いることが好ましく、例えば水酸化ナトリウム、水酸化カリウム、アンモニア水等用いることができ、特に水酸化ナトリウムを用いることが好ましい。   As the alkaline aqueous solution used for hydrolysis neutralization, those exhibiting strong alkali are preferably used. For example, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be used, and sodium hydroxide is particularly preferably used.

Ca及び/又はMgの含有組成は、Mnに対して0.1モルから0.8モルの範囲で合成することが好ましく、特に0.3モルから0.8モルにすることが好ましい。それらを一部溶出して用いる場合、溶出後の組成比で0.1モルから0.3モルとして用いることが好ましい。   The composition of Ca and / or Mg is preferably synthesized in the range of 0.1 mol to 0.8 mol with respect to Mn, and particularly preferably 0.3 mol to 0.8 mol. When some of them are used after elution, it is preferable to use them in a composition ratio of 0.1 mol to 0.3 mol after elution.

Mnに対するCa及び/又はMgの組成比が最初から0.1モル未満の場合は、重金属類の無害化処理性能は低下する。また、0.8を超える場合も処理性能が低下し易い。   When the composition ratio of Ca and / or Mg to Mn is less than 0.1 mol from the beginning, the detoxification performance of heavy metals decreases. In addition, when it exceeds 0.8, the processing performance tends to be lowered.

Ca及び/又はMgの溶出は、酸化剤及び酸によりできるが、安価な酸を用いることが好ましい。   Ca and / or Mg can be eluted with an oxidizing agent and an acid, but it is preferable to use an inexpensive acid.

酸は、有機酸及び無機酸とも適用できるが、一般的な鉱酸である硫酸、塩酸、硝酸を用いることが好ましく、中でも硫酸が特に好ましい。また、酸濃度は特に限定されるものではない。   Although an organic acid and an inorganic acid can be applied as the acid, it is preferable to use common mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid, and sulfuric acid is particularly preferable. The acid concentration is not particularly limited.

本発明のAx−Mn複合酸化物は、焼却灰又は飛灰、土壌、地下水並びに廃水等、各種の重金属を含有する汚染物質に添加、混合することにより、重金属を処理することができる。添加する際には水を添加し、混練することが好ましい。   The Ax-Mn composite oxide of the present invention can treat heavy metals by adding to and mixing with pollutants containing various heavy metals such as incinerated ash or fly ash, soil, groundwater and wastewater. When adding, it is preferable to add water and knead.

ごみ焼却灰や飛灰中には、各種ごみに含まれていた重金属類が濃縮されている。特に飛灰や溶融飛灰において顕著であり、溶融飛灰の中にはパーセントオーダーで鉛のような重金属が含まれているものも数多く、無害化処理が必要とされる。飛灰や溶融飛灰は焼却炉の構造や運転方法の違いにより、アルカリ性飛灰、中性飛灰、アルカリ性溶融飛灰、中性溶融飛灰等の種類があり、また、焼却するごみの種類によって含まれる重金属類の種類と含有量は大きく異なっている。本発明の重金属処理剤はどのような種類の飛灰にも用いることができる。   Heavy metals contained in various types of garbage are concentrated in the waste incineration ash and fly ash. This is particularly noticeable in fly ash and molten fly ash, and many of the molten fly ash contain heavy metals such as lead in a percent order, and thus a detoxification treatment is required. Fly ash and molten fly ash are classified into alkaline fly ash, neutral fly ash, alkaline molten fly ash, neutral molten fly ash, etc., depending on the structure and operation method of the incinerator, and the type of garbage to be incinerated. The types and contents of heavy metals contained are greatly different. The heavy metal treating agent of the present invention can be used for any type of fly ash.

本発明の重金属処理剤は、重金属類を含んだ土壌の処理にも有効であり、重金属類を含んだ土壌に対して、当該重金属類処理剤を添加し混練することで無害化処理できる。この場合にも必要に応じて、さらに水を添加し、混練することが好ましい。   The heavy metal treating agent of the present invention is also effective for treating soil containing heavy metals, and can be rendered harmless by adding and kneading the heavy metal treating agent to soil containing heavy metals. Also in this case, it is preferable to add water and knead as necessary.

さらには、本発明の重金属処理剤は、重金属類を含んだ廃水の処理にも可能である。重金属を含んだ廃水に対して、重金属類処理剤を添加し混合する、或いは、カラム等に当該重金属類処理剤を充填し重金属で汚染された廃水を通水することで無害化が可能となる。   Furthermore, the heavy metal treating agent of the present invention can be used for treating wastewater containing heavy metals. Detoxification can be achieved by adding a heavy metal treatment agent to wastewater containing heavy metals, or by mixing the heavy metal treatment agent into a column or the like and passing wastewater contaminated with heavy metals. .

本発明の重金属処理剤の使用量は、汚染物質中の重金属含有量によっても異なるため一概に規定できないが、ごみ焼却灰や飛灰等、混合しにくい固形物系処理物に対しては0.1〜50wt%、好ましくは0.5〜30wt%添加して用いることが好ましい。特に均一に分散し易い水系処理物(排水、地下水)に対しては、0.01〜20wt%、好ましくは0.05〜10wt%を混合して用いることができる。   The amount of the heavy metal treating agent of the present invention varies depending on the heavy metal content in the pollutant and cannot be defined unconditionally. However, it is not suitable for solid-type treated products that are difficult to mix, such as incineration ash and fly ash. It is preferable to add 1 to 50 wt%, preferably 0.5 to 30 wt%. In particular, for water-based treated products (drainage, groundwater) that are easily dispersed uniformly, 0.01 to 20 wt%, preferably 0.05 to 10 wt% can be mixed and used.

また、本発明の効果を損なわない範囲で、他の助剤を添加して用いてもよい。   Moreover, you may add and use another adjuvant in the range which does not impair the effect of this invention.

本発明の重金属処理剤で処理が可能な重金属としては特にPb、Cd、Zn、Cu及びTlの処理が可能であるが、特に、Pb、Cuに対する性能が高く、少量の添加で高度の処理が可能となる。   The heavy metals that can be treated with the heavy metal treating agent of the present invention are particularly capable of treating Pb, Cd, Zn, Cu, and Tl. Particularly, the performance to Pb and Cu is high, and high-level treatment is possible with a small amount of addition. It becomes possible.

本発明の重金属類処理剤は、重金属汚染物質に対し少量の添加で高度の無害化処理ができ、処理後の重金属元素は完全に固定化されるため再溶出のない極めて安定な処理が可能となる。   The heavy metal treatment agent of the present invention can be highly detoxified by adding a small amount to heavy metal contaminants, and the heavy metal element after treatment is completely fixed, so that extremely stable treatment without re-elution is possible. Become.

以下本発明を実施例で説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例1
0.5mol/Lの硫酸マンガン(MnSO・5HO)に0.25mol/Lの水酸化カルシウム(Ca(OH))を分散させ、このスラリー液に1.5mol/Lの水酸化ナトリウム溶液(NaOH)を攪拌しながら添加した。その後、エアーポンプで500mL/minの空気を導入しつつ3日間熟成した。得られた生成物はろ過、水洗、乾燥した。
Example 1
0.25 mol / L calcium hydroxide (Ca (OH) 2 ) is dispersed in 0.5 mol / L manganese sulfate (MnSO 4 .5H 2 O), and 1.5 mol / L sodium hydroxide is dispersed in the slurry. Solution (NaOH) was added with stirring. Thereafter, the mixture was aged for 3 days while introducing 500 mL / min of air with an air pump. The resulting product was filtered, washed with water and dried.

得られた生成物を溶解させ、組成分析を行ったところCa/Mnモル比は0.48であった。また、生成物のXRD測定結果を図1に示す。   When the obtained product was dissolved and the composition analysis was conducted, the Ca / Mn molar ratio was 0.48. Moreover, the XRD measurement result of a product is shown in FIG.

実施例2
実施例1のCa(OH)の濃度を0.375mol/Lとして合成した以外は同様とした。
Example 2
The procedure was the same as in Example 1 except that the concentration of Ca (OH) 2 was 0.375 mol / L.

得られた生成物の組成分析を行ったところCa/Mnモル比は0.67であり、結晶性は実施例1と同様であった。   When the composition of the obtained product was analyzed, the Ca / Mn molar ratio was 0.67, and the crystallinity was the same as in Example 1.

実施例3
0.5mol/Lの硫酸マンガン(MnSO・5HO)に0.25mol/Lの硫酸マグネシウム(MgSO)を溶解させた水溶液に2.6mol/Lの水酸化ナトリウム溶液(NaOH)を攪拌しながら添加した。その後、エアーポンプで500mL/minの空気を導入しつつ3日間熟成した。得られた生成物はろ過、水洗、乾燥した。
Example 3
A 2.6 mol / L sodium hydroxide solution (NaOH) was stirred in an aqueous solution in which 0.25 mol / L magnesium sulfate (MgSO 4 ) was dissolved in 0.5 mol / L manganese sulfate (MnSO 4 .5H 2 O). While adding. Thereafter, the mixture was aged for 3 days while introducing 500 mL / min of air with an air pump. The resulting product was filtered, washed with water and dried.

得られた生成物を溶解させ、組成分析を行ったところMg/Mnモル比は0.45であった。また、生成物のXRD測定結果を図2に示す。   The obtained product was dissolved and subjected to composition analysis. As a result, the Mg / Mn molar ratio was 0.45. Moreover, the XRD measurement result of a product is shown in FIG.

実施例4
実施例1のCa(OH)の濃度を0.125mol/Lとして合成した以外は同様とした。
Example 4
The procedure was the same except that the concentration of Ca (OH) 2 in Example 1 was 0.125 mol / L.

得られた生成物の組成分析を行ったところCa/Mnモル比は0.23であった。   When the composition analysis of the obtained product was performed, the Ca / Mn molar ratio was 0.23.

(試験1)
実施例1、実施例2、実施例3、及び実施例4で得られた生成物を用いて、初期のPb濃度が10ppmでpH7の溶液500mLを30分間処理し、溶液中の残存Pb濃度を測定した。
(Test 1)
Using the products obtained in Example 1, Example 2, Example 3, and Example 4, 500 mL of a solution having an initial Pb concentration of 10 ppm and a pH of 7 was treated for 30 minutes, and the residual Pb concentration in the solution was determined. It was measured.

実施例1、実施例2及び実施例4の結果を図3に、実施例3の結果を図4に示す。実施例1〜3は、50〜80mgの処理剤添加で水質基準値の0.01mg/Lが達成されたが、実施例4では性能が若干低下した。   The results of Example 1, Example 2 and Example 4 are shown in FIG. 3, and the result of Example 3 is shown in FIG. In Examples 1 to 3, the water quality standard value of 0.01 mg / L was achieved by adding 50 to 80 mg of the treatment agent, but in Example 4, the performance was slightly reduced.

(試験2)
実施例1で得られた生成物を用いて、Pb、Cu、Cd、Zn及びTlの初期濃度が10ppmの溶液を試験1と同様の方法で処理した。
(Test 2)
Using the product obtained in Example 1, a solution having an initial concentration of 10 ppm of Pb, Cu, Cd, Zn and Tl was treated in the same manner as in Test 1.

結果を表1に示す。いずれの重金属元素も残存濃度は100mg添加で1/10以下に低減できた。   The results are shown in Table 1. The residual concentration of any heavy metal element could be reduced to 1/10 or less when 100 mg was added.

Figure 2009254920
Figure 2009254920

(試験3)
Pbの溶出濃度が31ppm、Cuが2ppmの中性飛灰に実施例1の生成物を添加して、環境庁告示13号試験に従い処理した。その結果を表2に示す。飛灰に対し25%添加で0.01mg/Lの処理が達成された。
(Test 3)
The product of Example 1 was added to neutral fly ash having an elution concentration of Pb of 31 ppm and Cu of 2 ppm, and treated in accordance with the Environmental Agency Notification No. 13 test. The results are shown in Table 2. A treatment of 0.01 mg / L was achieved with 25% addition to fly ash.

Figure 2009254920
Figure 2009254920

実施例5
実施例1で得られた生成物を1規定の硫酸、硝酸を用いて、また、実施例3の生成物を1規定の塩酸で3時間の浸漬処理を行った。
Example 5
The product obtained in Example 1 was immersed in 1N sulfuric acid and nitric acid, and the product in Example 3 was immersed in 1N hydrochloric acid for 3 hours.

酸処理後のそれぞれの粉体の組成分析を行ないCa/Mnモル比を測定したところ、実施例1の硫酸処理は0.28(0.48→0.28)、硝酸処理は0.12(0.48→0.12)、実施例3の塩酸処理は0.15(0.45→0.15)となった。また、実施例1の硫酸処理後のXRD測定の結果を図5に、実施例3の塩酸処理後のXRD測定結果を図6に示すが、いずれも層状型のパターンを示した。   When the composition analysis of each powder after acid treatment was performed and the Ca / Mn molar ratio was measured, the sulfuric acid treatment of Example 1 was 0.28 (0.48 → 0.28), and the nitric acid treatment was 0.12 ( 0.48 → 0.12), and the hydrochloric acid treatment of Example 3 was 0.15 (0.45 → 0.15). Moreover, the result of the XRD measurement after the sulfuric acid treatment of Example 1 is shown in FIG. 5, and the XRD measurement result after the hydrochloric acid treatment of Example 3 is shown in FIG. 6, and all showed a layered pattern.

比較例1
実施例1で得られた生成物を2規定の硫酸を用いて3日間浸漬して処理した。
酸処理後のCa/Mnモル比は0.06であった。
Comparative Example 1
The product obtained in Example 1 was treated by immersion for 3 days using 2N sulfuric acid.
The Ca / Mn molar ratio after acid treatment was 0.06.

(試験4)
実施例5の硫酸処理品及び比較例1の処理品を用いて、初期のPb濃度が10ppmでpH7の溶液500mLを30分間処理し、溶液中の残存Pb濃度を測定した。
(Test 4)
Using the sulfuric acid-treated product of Example 5 and the treated product of Comparative Example 1, 500 mL of a solution having an initial Pb concentration of 10 ppm and pH 7 was treated for 30 minutes, and the residual Pb concentration in the solution was measured.

結果を図7に示す。実施例5では少量の添加で高性能を示したが、x値が0.1未満の比較例1では性能が低かった。   The results are shown in FIG. In Example 5, high performance was exhibited with a small amount of addition, but in Comparative Example 1 having an x value of less than 0.1, the performance was low.

Ca−Mn複合酸化物のXRD測定図(実施例1)XRD measurement diagram of Ca-Mn composite oxide (Example 1) Mg−Mn複合酸化物のXRD測定図(実施例3)XRD measurement diagram of Mg-Mn composite oxide (Example 3) Ca−Mn複合酸化物を用いたPbの処理能力を示すグラフ(実施例1、実施例2、実施例4)The graph which shows the processing capability of Pb using Ca-Mn complex oxide (Example 1, Example 2, Example 4) Mg−Mn複合酸化物を用いたPbの処理能力を示すグラフ(実施例3)Graph showing the processing ability of Pb using Mg—Mn composite oxide (Example 3) Caを溶出させたCa−Mn複合酸化物のXRD測定図(実施例5)XRD measurement diagram of Ca-Mn composite oxide eluted with Ca (Example 5) Mgを溶出させたMg−Mn複合酸化物のXRD測定図(実施例5)Example of XRD measurement of Mg-Mn composite oxide eluted with Mg (Example 5) Caを溶出させたCa−Mn複合酸化物を用いたPbの処理能力を示すグラフ(実施例5、比較例1)The graph which shows the processing capability of Pb using the Ca-Mn complex oxide which eluted Ca (Example 5, Comparative example 1)

Claims (6)

Ax−Mn複合酸化物(但し、AはCa及び/又はMg、0.1≦x≦0.8)を含んでなる重金属処理剤。 A heavy metal treating agent comprising Ax-Mn composite oxide (where A is Ca and / or Mg, 0.1 ≦ x ≦ 0.8). 請求項1に記載の重金属処理剤から一部A成分を溶出して得られるAx―Mn複合酸化物(但し0.1≦x<0.3)を含んでなる重金属処理剤。 A heavy metal treating agent comprising an Ax-Mn composite oxide (provided that 0.1 ≦ x <0.3) obtained by partially eluting the A component from the heavy metal treating agent according to claim 1. 結晶構造が層状結晶構造である請求項1及至請求項2のいずれかに記載の重金属処理剤。 The heavy metal treating agent according to any one of claims 1 to 2, wherein the crystal structure is a layered crystal structure. 層状結晶構造がバーネサイト構造である請求項3に記載の重金属処理剤。 4. The heavy metal treating agent according to claim 3, wherein the layered crystal structure is a birnessite structure. 重金属類を含む焼却灰又は飛灰、土壌、地下水並びに廃水のいずれかに、請求項1及至請求項4のいずれかに記載の重金属類処理剤を添加する無害化処理方法。 The detoxification processing method which adds the heavy metal processing agent in any one of Claim 1 to Claim 4 to any one of the incineration ash or fly ash containing heavy metals, soil, groundwater, and wastewater. 重金属がPb、Cd、Zn、Cu及びTlの群より選択される1種以上である請求項5に記載の無害化処理方法。 The detoxification method according to claim 5, wherein the heavy metal is one or more selected from the group consisting of Pb, Cd, Zn, Cu and Tl.
JP2008103557A 2008-04-11 2008-04-11 Heavy metal treating agent and method of making heavy metal-contaminated matter harmless Pending JP2009254920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103557A JP2009254920A (en) 2008-04-11 2008-04-11 Heavy metal treating agent and method of making heavy metal-contaminated matter harmless

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103557A JP2009254920A (en) 2008-04-11 2008-04-11 Heavy metal treating agent and method of making heavy metal-contaminated matter harmless

Publications (1)

Publication Number Publication Date
JP2009254920A true JP2009254920A (en) 2009-11-05

Family

ID=41383062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103557A Pending JP2009254920A (en) 2008-04-11 2008-04-11 Heavy metal treating agent and method of making heavy metal-contaminated matter harmless

Country Status (1)

Country Link
JP (1) JP2009254920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055748A1 (en) 2009-11-06 2011-05-12 Necインフロンティア株式会社 Method of authentication at time of update of software embedded in information terminal, system for same and program for same
WO2014209655A1 (en) * 2013-06-24 2014-12-31 Uop Llc Manganese oxide-based and metallomanganese oxide-based ion-exchangers for removing mercury (+2) ions from liquid streams
WO2016152141A1 (en) * 2015-03-24 2016-09-29 クラリアント触媒株式会社 Agent for adsorption of ruthenium from aqueous solution and method for adsorption of ruthenium from aqueous solution
WO2019065392A1 (en) * 2017-09-29 2019-04-04 キヤノン株式会社 Silica aggregate, adsorbent, adsorption column, purification system, treating method of liquid, and method for producing silica aggregate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055748A1 (en) 2009-11-06 2011-05-12 Necインフロンティア株式会社 Method of authentication at time of update of software embedded in information terminal, system for same and program for same
WO2014209655A1 (en) * 2013-06-24 2014-12-31 Uop Llc Manganese oxide-based and metallomanganese oxide-based ion-exchangers for removing mercury (+2) ions from liquid streams
US9150436B2 (en) 2013-06-24 2015-10-06 Uop Llc Manganese oxide-based and metallomanganese oxide-based ion-exchangers for removing mercury (+2) ions from liquid streams
CN105324340A (en) * 2013-06-24 2016-02-10 环球油品公司 Manganese oxide-based and metallomanganese oxide-based ion-exchangers for removing mercury (+2) ions from liquid streams
GB2529969A (en) * 2013-06-24 2016-03-09 Uop Llc Manganese oxide-based and metallomanganese oxide-based ion-exchangers for removing mercury (+2) ions from liquid streams
CN107429315A (en) * 2015-03-24 2017-12-01 日商科莱恩触媒股份有限公司 The adsorption treatment method of ruthenium adsorbent in the aqueous solution and the ruthenium in the aqueous solution
WO2016152141A1 (en) * 2015-03-24 2016-09-29 クラリアント触媒株式会社 Agent for adsorption of ruthenium from aqueous solution and method for adsorption of ruthenium from aqueous solution
CN107429315B (en) * 2015-03-24 2019-07-16 日商科莱恩触媒股份有限公司 Ruthenium adsorbent in aqueous solution and application thereof, the method for removing ruthenium
US10449510B2 (en) 2015-03-24 2019-10-22 Clariant Catalysts (Japan) K.K. Agent for adsorption of ruthenium from aqueous solution and method for adsorption of ruthenium from aqueous solution
WO2019065392A1 (en) * 2017-09-29 2019-04-04 キヤノン株式会社 Silica aggregate, adsorbent, adsorption column, purification system, treating method of liquid, and method for producing silica aggregate
JP2019064908A (en) * 2017-09-29 2019-04-25 キヤノン株式会社 Silica aggregate, adsorbent, adsorption column, purification system, treatment method of liquid, and method for producing silica aggregate
JP7327919B2 (en) 2017-09-29 2023-08-16 キヤノン株式会社 Silica aggregates, adsorbents, adsorption columns, purification systems, methods of treating liquids, and methods of making silica aggregates
US11925918B2 (en) 2017-09-29 2024-03-12 Canon Kabushiki Kaisha Silica aggregate, adsorbent, adsorption column, cleaning system, method for treating liquid, and method for producing silica aggregate

Similar Documents

Publication Publication Date Title
US5130051A (en) Composition to encapsulate chromium, arsenic and other toxic metals in wastes
Chuah et al. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview
CN108358290B (en) Preparation method of iron-based arsenic passivation material, iron-based arsenic passivation material prepared by method and application of iron-based arsenic passivation material
KR20010052328A (en) Method for treating waters, soils, sediments and/or sludges
JP2006239583A (en) Sintered body for water purification, and production method
JP2008272590A (en) Heavy metal treating agent and stabilization treatment method of heavy metal contaminant using the same
JP2009254920A (en) Heavy metal treating agent and method of making heavy metal-contaminated matter harmless
JP2008264627A (en) Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like
JP5286698B2 (en) Hazardous element adsorbent
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP5032755B2 (en) Soil treatment material and soil purification method using the same
JP2009254932A (en) Heavy metal treating agent and method of treating heavy metal-contaminated matter using the agent
JP4541110B2 (en) Method of treating wastewater containing fluorine and nitrate nitrogen
JP3724062B2 (en) Waste treatment material and waste treatment method
JP5527688B2 (en) Hazardous waste treatment agent and treatment method using the same.
JP2007296408A (en) Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater
EP2133310A1 (en) Gypsum stabilisation method
JP5733944B2 (en) Heavy metal immobilizing agent and method for treating heavy metal contaminants using the same
JP3791789B2 (en) Combustion exhaust gas / drainage purification method and system
KR101661468B1 (en) Absorbent of acid substances and heavy metal, and the preparation thereof
JP2005103522A (en) Substance treating agent and substance treating method
JP3830878B2 (en) Water-soluble selenium removing agent and method for removing water-soluble selenium using the same
JP2005040762A (en) Molybdenum scavenger
JP5079255B2 (en) Soil improvement agent
JP2004216367A (en) Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same