JP2009254932A - Heavy metal treating agent and method of treating heavy metal-contaminated matter using the agent - Google Patents
Heavy metal treating agent and method of treating heavy metal-contaminated matter using the agent Download PDFInfo
- Publication number
- JP2009254932A JP2009254932A JP2008104553A JP2008104553A JP2009254932A JP 2009254932 A JP2009254932 A JP 2009254932A JP 2008104553 A JP2008104553 A JP 2008104553A JP 2008104553 A JP2008104553 A JP 2008104553A JP 2009254932 A JP2009254932 A JP 2009254932A
- Authority
- JP
- Japan
- Prior art keywords
- heavy metal
- manganese dioxide
- agent
- treating
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Processing Of Solid Wastes (AREA)
- Water Treatment By Sorption (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、重金属を含有する固体廃棄物、例えば、ゴミ焼却場から排出される焼却灰、重金属に汚染された土壌、排水処理後に生じる汚泥、工場から排出される排水等に含有される鉛、カドミウム、銅、亜鉛、ニッケル、水銀、砒素、セレン及びタリウム等の有害な重金属を簡便、かつ高効率に処理できる重金属処理剤、並びに重金属汚染物の処理方法に関するものである。 The present invention is a solid waste containing heavy metal, for example, incinerated ash discharged from a garbage incineration plant, soil contaminated with heavy metal, sludge generated after wastewater treatment, lead contained in wastewater discharged from a factory, The present invention relates to a heavy metal treating agent capable of easily and efficiently treating harmful heavy metals such as cadmium, copper, zinc, nickel, mercury, arsenic, selenium and thallium, and a method for treating heavy metal contaminants.
二酸化マンガン酸化物は結晶構造的に大きくα、β、γ、η、δ及びεのように分類され、これらを用いて廃水等に含まれる各種重金属類を無害化処理することが知られている。特に、層構造のδ型二酸化マンガンは、イオン交換或いは吸着により重金属イオンを層間に固定化されるため効果的とされている。 Manganese dioxide oxides are largely classified in terms of crystal structure such as α, β, γ, η, δ, and ε, and it is known to use these to detoxify various heavy metals contained in wastewater. . In particular, δ-type manganese dioxide having a layer structure is effective because heavy metal ions are immobilized between layers by ion exchange or adsorption.
例えば、δ型二酸化マンガンを用いた重金属吸着特性は、アルカリ金属、アルカリ土類金属及び遷移金属等、カチオン性の元素に対する親和性があることが報告されている(非特許文献1参照)。さらに、アルカリ土類金属又は遷移金属イオンが存在する系でのリン酸塩の吸着特性も報告されている(非特許文献2参照)。更に、120℃〜400℃の温度範囲における重量減少が6重量%以上であるδ型二酸化マンガンを含んでなる重金属処理剤が報告されている(特許文献1参照)。 For example, heavy metal adsorption characteristics using δ-type manganese dioxide have been reported to have an affinity for cationic elements such as alkali metals, alkaline earth metals, and transition metals (see Non-Patent Document 1). Furthermore, the adsorption property of phosphate in a system in which an alkaline earth metal or transition metal ion is present has also been reported (see Non-Patent Document 2). Furthermore, a heavy metal treating agent containing δ-type manganese dioxide having a weight loss of 6% by weight or more in a temperature range of 120 ° C. to 400 ° C. has been reported (see Patent Document 1).
δ型二酸化マンガンは一般的には化学的に合成される。例えばMn2+の酸化或いはMn7+の還元(非特許文献1)により、過マンガン酸カリウムのアルカリ溶液中に塩化マンガンの水溶液を滴下して合成(非特許文献2)されている。 δ-type manganese dioxide is generally chemically synthesized. For example, it is synthesized by dropping an aqueous solution of manganese chloride into an alkaline solution of potassium permanganate by oxidation of Mn 2+ or reduction of Mn 7+ (Non-patent document 1).
しかし、従来の方法で合成されたδ型二酸化マンガンはある程度の重金属処理能力は有するが、近年、規制が強化された水質汚濁防止方法や廃掃法に適用できる処理剤としては性能が不十分であり、多量の薬剤が必要であった。 However, although δ-type manganese dioxide synthesized by the conventional method has a certain amount of heavy metal treatment capability, it has not been able to perform as a treatment agent applicable to water pollution prevention methods and waste cleaning methods, which have recently been tightened by regulations. A large amount of drug was required.
本発明は、重金属汚染物質を含む焼却灰、廃水等を環境基準以下に高度に処理できる重金属処理剤及び重金属汚染物質の処理方法を提供するものである。 The present invention provides a heavy metal treating agent and a method for treating heavy metal pollutants that can incinerate incinerated ash, waste water, and the like containing heavy metal pollutants to an environmental standard or higher.
本発明者らは、重金属処理性能に優れた二酸化マンガンについて鋭意検討した結果、40%KOH水溶液中でHg/HgO参照電極を基準とした電位が275mV以上であるδ型二酸化マンガンでは重金属処理能に特に優れることを見出し、本発明を完成させるに到ったものである。 As a result of intensive studies on manganese dioxide having excellent heavy metal treatment performance, the present inventors have found that δ-type manganese dioxide having a potential of 275 mV or more in a 40% KOH aqueous solution with reference to an Hg / HgO reference electrode has a heavy metal treatment ability. The inventors have found that the present invention is particularly excellent and have completed the present invention.
本発明のδ型二酸化マンガンを重金属処理剤として使用すれば、少ない吸着剤の量で重金属処理が可能である。また、薬剤使用量の低減により総廃棄物量の低減が可能となる。 If the δ-type manganese dioxide of the present invention is used as a heavy metal treating agent, it is possible to treat heavy metals with a small amount of adsorbent. In addition, the total amount of waste can be reduced by reducing the amount of medicine used.
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の重金属類処理剤であるδ型二酸化マンガンは、電位(vs.Hg/HgO.40%KOH、即ち、9規定(N)KOH)が275mV以上のものである。 The δ-type manganese dioxide, which is the heavy metal treating agent of the present invention, has a potential (vs. Hg / HgO. 40% KOH, that is, 9 N (N) KOH) of 275 mV or more.
本発明でいう電位は、電気化学の分野で一般的な水銀/酸化水銀電極を標準電極として測定されるものである。例えば、二酸化マンガン粉体2gとグラファイト0.6gを9N−KOHで混練した、9N−KOH中でHg/HgOを参照電極として測定することができる。 The potential as used in the present invention is measured using a mercury / mercury oxide electrode which is common in the field of electrochemistry as a standard electrode. For example, 2 g of manganese dioxide powder and 0.6 g of graphite can be kneaded with 9N-KOH, and Hg / HgO can be measured in 9N-KOH as a reference electrode.
電位が275mV未満の場合、重金属の処理性能、即ち吸着能力が低下する。電位は275V以上、特に280V以上、さらに290V以上であることが好ましい。 When the potential is less than 275 mV, the processing performance of heavy metal, that is, the adsorption capacity is lowered. The potential is preferably 275 V or higher, particularly 280 V or higher, and more preferably 290 V or higher.
本発明の重金属処理剤に用いる二酸化マンガンの結晶構造はδ型二酸化マンガンである。 The crystal structure of manganese dioxide used in the heavy metal treating agent of the present invention is δ-type manganese dioxide.
本発明の重金属処理剤に用いられる二酸化マンガンの製造法は例えば、過マンガン酸塩とMn2+塩を用いて製造することができる。 The manufacturing method of the manganese dioxide used for the heavy metal processing agent of this invention can be manufactured using a permanganate and Mn2 + salt, for example.
従来、過マンガン酸塩とMn2+塩を用いてδ型二酸化マンガンを合成する一般的な方法は、下記の反応式に従い、合成時のMn2+/Mn7+のモル比は1.5として合成されている。 Conventionally, a general method for synthesizing δ-type manganese dioxide using permanganate and Mn 2+ salt is synthesized according to the following reaction formula, with a molar ratio of Mn 2+ / Mn 7+ at the time of synthesis being 1.5. ing.
本発明の重金属処理剤は、焼却灰又は飛灰、土壌、地下水並びに廃水等、各種の重金属を含有する汚染物質と混合して用いることにより、重金属を処理することができる。 The heavy metal treating agent of the present invention can treat heavy metals by using it mixed with pollutants containing various heavy metals such as incineration ash or fly ash, soil, groundwater and wastewater.
焼却灰中には、各種ごみに含まれていた重金属類が濃縮されている。特に飛灰や溶融飛灰において顕著であり、溶融飛灰の中にはパーセントオーダーで鉛のような重金属が含まれているものも数多く、無害化処理が必要とされる。飛灰や溶融飛灰は焼却炉の構造や運転方法の違いにより、アルカリ性飛灰、中性飛灰、アルカリ性溶融飛灰、中性溶融飛灰等の種類があり、また、焼却するごみの種類によって含まれる重金属類の種類と含有量は大きく異なっていることが知られているが、本発明の重金属処理剤はどのような種類の飛灰にも用いることができ、これらごみ焼却灰や飛灰に対し、本発明の重金属類処理剤と水を添加し混練することで無害化処理が可能となる。 Heavy metals contained in various types of garbage are concentrated in the incineration ash. This is particularly noticeable in fly ash and molten fly ash, and many of the molten fly ash contain heavy metals such as lead in a percent order, and thus a detoxification treatment is required. Fly ash and molten fly ash are classified into alkaline fly ash, neutral fly ash, alkaline molten fly ash, neutral molten fly ash, etc., depending on the structure and operation method of the incinerator, and the type of garbage to be incinerated. It is known that the type and content of heavy metals contained in each type differ greatly, but the heavy metal treating agent of the present invention can be used for any type of fly ash. The ash can be rendered harmless by adding the heavy metal treating agent of the present invention and water and kneading.
本発明の重金属処理剤は、重金属類を含んだ土壌の処理にも有効であり、重金属類を含んだ土壌に対して、当該重金属処理剤を添加し混練することで無害化処理できる。必要に応じて、さらに水を添加し、混練することもできる。 The heavy metal treating agent of the present invention is also effective for treating soil containing heavy metals, and can be rendered harmless by adding and kneading the heavy metal treating agent to soil containing heavy metals. If necessary, water can be further added and kneaded.
本発明の重金属処理剤は重金属類を含んだ廃水の処理にも可能であり、重金属類を含んだ廃水に対して、重金属処理剤を添加し混合する、或いは、カラム等に当該重金属処理剤を充填し重金属で汚染された廃水を通水することで無害化が可能となる。 The heavy metal treatment agent of the present invention can be used for treatment of waste water containing heavy metals. The heavy metal treatment agent is added to and mixed with waste water containing heavy metals, or the heavy metal treatment agent is added to a column or the like. It can be rendered harmless by passing wastewater that is filled and contaminated with heavy metals.
重金属汚染物質に対する重金属処理剤の使用量は、汚染物質中の重金属含有量によっても異なるため一概に規定できないが、焼却灰や飛灰等、混合しにくい固形物系処理物に対しては0.1〜50wt%、好ましくは0.5〜30wt%を例示することができる。また、均一に分散し易い水系処理物(排水、地下水)に対しては、0.01〜20wt%、好ましくは0.05〜10wt%を混合することが好ましい。 The amount of heavy metal treating agent used for heavy metal pollutants varies depending on the heavy metal content in the pollutant and cannot be specified unconditionally. However, it is 0 for solid-type treated products that are difficult to mix, such as incineration ash and fly ash. 1 to 50 wt%, preferably 0.5 to 30 wt% can be exemplified. Moreover, it is preferable to mix 0.01-20 wt%, preferably 0.05-10 wt% with respect to the water-based processed material (drainage, groundwater) which is easy to disperse | distribute uniformly.
また、本発明の効果を損なわない範囲で、他の助剤を添加して用いてもよい。 Moreover, you may add and use another adjuvant in the range which does not impair the effect of this invention.
本発明の重金属処理剤は、重金属汚染物質に対し少量の添加で高度の無害化処理ができ、処理後の重金属元素は完全に固定化されるため再溶出のない極めて安定な処理が可能となる。 The heavy metal treatment agent of the present invention can be highly detoxified by adding a small amount to a heavy metal contaminant, and the heavy metal element after treatment is completely fixed, so that extremely stable treatment without re-elution is possible. .
以下本発明を実施例で説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
実施例1
0.1mol/L濃度となる過マンガン酸カリウム(KMnO4)を純水に溶解させ、1mol/Lの硫酸を徐々に添加し溶液を調整した。一方、0.55mol/L濃度の硫酸マンガン(MnSO4・5H2O)を溶解させた水溶液に1mol/L濃度の硫酸を添加した溶液を調整し、仕込み時のMn2+/Mn7+のモル比が1.25となる硫酸マンガン水溶液227mLを過マンガン酸塩水溶液に滴下し2時間熟成した。得られた生成物はろ過、水洗、乾燥した。
Example 1
Potassium permanganate (KMnO 4 ) having a concentration of 0.1 mol / L was dissolved in pure water, and 1 mol / L sulfuric acid was gradually added to prepare a solution. On the other hand, a solution in which sulfuric acid of 1 mol / L concentration was added to an aqueous solution in which manganese sulfate (MnSO 4 .5H 2 O) of 0.55 mol / L was dissolved was prepared, and the molar ratio of Mn 2+ / Mn 7+ at the time of preparation 227 mL of an aqueous manganese sulfate solution having a 1.25 of 1.25 was added dropwise to the aqueous permanganate solution and aged for 2 hours. The resulting product was filtered, washed with water and dried.
得られた生成物のXRD測定結果を図1に示す。結晶構造はδ型二酸化マンガンであった。また、得られたδ型二酸化マンガン2gに導電剤のグラファイト0.6gと9N−KOHを少量添加し混練した後、9N−KOH中でHg/HgOを参照電極として室温で電位測定を行ったところ、電位は280mVであった。 The XRD measurement result of the obtained product is shown in FIG. The crystal structure was δ-type manganese dioxide. Further, after adding a small amount of 0.6 g of conductive agent graphite and 9N-KOH to 2 g of the obtained δ-type manganese dioxide and kneading, the potential was measured at room temperature using Hg / HgO as a reference electrode in 9N-KOH. The potential was 280 mV.
実施例2
合成時の仕込みMn2+/Mn7+モル比が0.5となるよう実施例1の0.55mol/L硫酸マンガン水溶液を91mL分取して、過マンガン酸カリウム水溶液中に滴下した以外は、実施例1と同様とした。
Example 2
Preparation was carried out except that 91 mL of the 0.55 mol / L manganese sulfate aqueous solution of Example 1 was taken and dropped into the potassium permanganate aqueous solution so that the charge Mn 2+ / Mn 7+ molar ratio at the time of synthesis was 0.5. Same as Example 1.
得られた生成物のXRD測定結果を図1に示す。また、電位は、290mVを示した。 The XRD measurement result of the obtained product is shown in FIG. The potential was 290 mV.
比較例1
合成時の仕込みMn2+/Mn7+モル比が1.5となるよう実施例1の0.55mol/L硫酸マンガン水溶液を273mL分取して、過マンガン酸カリウム水溶液中に滴下した以外は、実施例1と同様とした。実施例1に基づき電位測定した結果、270mVを示した。
Comparative Example 1
Preparation was carried out except that 273 mL of the 0.55 mol / L manganese sulfate aqueous solution of Example 1 was taken and dropped into the potassium permanganate aqueous solution so that the charge Mn 2+ / Mn 7+ molar ratio at the time of synthesis was 1.5. Same as Example 1. As a result of measuring the potential based on Example 1, it showed 270 mV.
比較例2
合成時の仕込みMn2+/Mn7+モル比が2.0となるよう実施例1の0.55mol/L硫酸マンガン水溶液を364mL分取して、過マンガン酸カリウム水溶液中に滴下した以外は、実施例1と同様とした。電位測定した結果、260mVであった。
Comparative Example 2
364 mL of the 0.55 mol / L manganese sulfate aqueous solution of Example 1 was taken so that the charged Mn 2+ / Mn 7+ molar ratio at the time of synthesis was 2.0, and this was carried out except that it was dropped into the potassium permanganate aqueous solution. Same as Example 1. As a result of measuring the potential, it was 260 mV.
比較例3
硫酸マンガンを0.6mol/L、硫酸を0.35mol/Lの濃度で含む水溶液中で、陽極にチタン、陰極にカーボンを用いて0.5A/dm2の電流密度で電解してチタン上にγ型二酸化マンガンを析出させた。
Comparative Example 3
In an aqueous solution containing manganese sulfate at a concentration of 0.6 mol / L and sulfuric acid at a concentration of 0.35 mol / L, electrolysis is performed on the titanium at a current density of 0.5 A / dm 2 using titanium as the anode and carbon as the cathode. γ-type manganese dioxide was deposited.
得られたγ型二酸化マンガンの電位は300mVであった。 The potential of the obtained γ-type manganese dioxide was 300 mV.
(試験1:重金属処理能の評価)
実施例1、実施例2、比較例1、比較例2及び比較例3で得られた二酸化マンガン20mgを用いて、初期のPb濃度が10ppmでpH7の溶液500mLを30分間処理し、溶液中の残存Pb濃度を測定した。結果を表1に示す。
(Test 1: Evaluation of heavy metal processing ability)
Using 20 mg of manganese dioxide obtained in Example 1, Example 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3, 500 mL of a solution having an initial Pb concentration of 10 ppm and a pH of 7 was treated for 30 minutes. The residual Pb concentration was measured. The results are shown in Table 1.
実施例1、実施例2の二酸化マンガンでは、Pb残存濃度が0.01mg/L以下であったが、比較例1〜3では処理性能が低下した。 In the manganese dioxides of Example 1 and Example 2, the Pb residual concentration was 0.01 mg / L or less, but in Comparative Examples 1 to 3, the treatment performance was lowered.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008104553A JP2009254932A (en) | 2008-04-14 | 2008-04-14 | Heavy metal treating agent and method of treating heavy metal-contaminated matter using the agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008104553A JP2009254932A (en) | 2008-04-14 | 2008-04-14 | Heavy metal treating agent and method of treating heavy metal-contaminated matter using the agent |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009254932A true JP2009254932A (en) | 2009-11-05 |
Family
ID=41383073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008104553A Pending JP2009254932A (en) | 2008-04-14 | 2008-04-14 | Heavy metal treating agent and method of treating heavy metal-contaminated matter using the agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009254932A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015515924A (en) * | 2012-05-01 | 2015-06-04 | フューエル テック インコーポレーテッド | Dry method, apparatus, composition and system for reducing mercury, sulfur oxides and HCl |
CN108190974A (en) * | 2017-12-11 | 2018-06-22 | 湖南轸宇节能有限公司 | A kind of dechlorination removing heavy metals ceramics powdery water purification agent |
CN115259447A (en) * | 2022-07-14 | 2022-11-01 | 广州大学 | Deep thallium removal method for low-concentration mine wastewater |
-
2008
- 2008-04-14 JP JP2008104553A patent/JP2009254932A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015515924A (en) * | 2012-05-01 | 2015-06-04 | フューエル テック インコーポレーテッド | Dry method, apparatus, composition and system for reducing mercury, sulfur oxides and HCl |
CN108190974A (en) * | 2017-12-11 | 2018-06-22 | 湖南轸宇节能有限公司 | A kind of dechlorination removing heavy metals ceramics powdery water purification agent |
CN115259447A (en) * | 2022-07-14 | 2022-11-01 | 广州大学 | Deep thallium removal method for low-concentration mine wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008018312A (en) | Manganese dioxide heavy metal adsorbent and treatment method using the same | |
JP4870423B2 (en) | Heavy metal treatment material and heavy metal treatment method using the same | |
JP2006239583A (en) | Sintered body for water purification, and production method | |
JP3961558B1 (en) | Anion adsorbent, water quality or soil purification agent and method for producing them | |
JP2008272590A (en) | Heavy metal treating agent and stabilization treatment method of heavy metal contaminant using the same | |
JP2009254932A (en) | Heavy metal treating agent and method of treating heavy metal-contaminated matter using the agent | |
JP2012223733A (en) | Method for improving ambient water quality | |
JP3852844B2 (en) | Sludge decomposition / water purification agent and purification method | |
JP2009254920A (en) | Heavy metal treating agent and method of making heavy metal-contaminated matter harmless | |
JP2008264627A (en) | Waste treatment material and treatment method for detoxifying fly ash (soot and dust) and burned ash or the like | |
JP5286698B2 (en) | Hazardous element adsorbent | |
JP4352215B2 (en) | Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method | |
JP2015127049A (en) | Treatment agent for contaminated water or soil, and treatment method therefor | |
JP5144033B2 (en) | Organic compound decomposition material and method for treating soil or water using the same | |
JP3724062B2 (en) | Waste treatment material and waste treatment method | |
JP2007296408A (en) | Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater | |
JPH0249798B2 (en) | JUKIKAGOBUTSUGANJUSUINOSHORIHOHO | |
JP2008006427A (en) | Anion adsorbent, agent for cleaning water or soil and methods for manufacturing the adsorbent and agent | |
JP6686630B2 (en) | Heavy metal insolubilizing material and method for producing the same | |
JP3830878B2 (en) | Water-soluble selenium removing agent and method for removing water-soluble selenium using the same | |
JP4348740B2 (en) | Detoxification treatment method for harmful organic substances | |
JP2002066231A (en) | Siliceous porous body, siliceous powder and manufacturing method therefor | |
JP2004216367A (en) | Treatment agent for nitric acid phase and nitrous acid phase nitrogen-containing compound, and treatment method for soil or water using the same | |
JP5733944B2 (en) | Heavy metal immobilizing agent and method for treating heavy metal contaminants using the same | |
Erdem | The Application of Different Technologies for Removal of Rifampicin From Aquatic Environments: A Recent Review |