JP2010260030A - Adsorbent for adsorbing contaminating component and method for producing the adsorbent - Google Patents
Adsorbent for adsorbing contaminating component and method for producing the adsorbent Download PDFInfo
- Publication number
- JP2010260030A JP2010260030A JP2009114845A JP2009114845A JP2010260030A JP 2010260030 A JP2010260030 A JP 2010260030A JP 2009114845 A JP2009114845 A JP 2009114845A JP 2009114845 A JP2009114845 A JP 2009114845A JP 2010260030 A JP2010260030 A JP 2010260030A
- Authority
- JP
- Japan
- Prior art keywords
- cerium
- adsorbent
- hydrate
- compound
- adsorbent according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、重金属等の汚染成分を吸着するための吸着剤、特に、従来の高価な吸着剤と同等の性能で安価に提供でき、さらに、吸着効果が長時間持続する汚染成分吸着剤及びその製造方法に関する。 The present invention can provide an adsorbent for adsorbing contaminants such as heavy metals, in particular, at a low cost with performance equivalent to that of conventional expensive adsorbents, and further, an adsorbent for adsorbing contaminants that lasts for a long period of time. It relates to a manufacturing method.
従来、フッ素やヒ素等の汚染成分を含有した媒体(土壌、灰など)の処理方法としては、汚染した土壌を掘削・除去したり、水硬性のセメント等を用いることで、前記汚染土壌を固定化したり、薬剤等を用いて、前記汚染成分を水に溶けにくく拡散しにくい形態に変化させるなどの技術が挙げられる。 Conventionally, as a method of treating media (soil, ash, etc.) containing contaminating components such as fluorine and arsenic, the contaminated soil is fixed by excavating or removing the contaminated soil or using hydraulic cement or the like. And a technique such as changing the form of the contaminated component into a form that hardly dissolves in water and diffuses by using a chemical or the like.
例えば、特許文献1では、リン酸水溶液や硫酸水溶液等によって汚染土壌を洗浄した後、ランタンやセリウム、鉄塩の水溶液等を用いて土壌中のヒ素成分を不溶化することで、拡散を抑制するという技術が開示されている。また、特許文献2では、セリウム、ランタン等の希土類金属の水酸化物を取材とするヒ素不溶化処理剤を用いることで、ヒ素の不溶化を図るという技術が開示されている。さらに、特許文献3では、硫化鉄(II)からなる重金属の不溶化剤が開示されている。 For example, in Patent Document 1, after contaminated soil is washed with a phosphoric acid aqueous solution, a sulfuric acid aqueous solution, or the like, arsenic components in the soil are insolubilized using an aqueous solution of lanthanum, cerium, iron salt, or the like, thereby suppressing diffusion. Technology is disclosed. Further, Patent Document 2 discloses a technique for insolubilizing arsenic by using an arsenic insolubilizing agent using a rare earth metal hydroxide such as cerium or lanthanum. Furthermore, Patent Document 3 discloses a heavy metal insolubilizing agent made of iron sulfide (II).
また、特許文献4では、硫酸イオンの一部を計算イオンに置換したシュベルトマナイト等の特殊鉄鋼物を用いることで、水中又は土壌中のヒ素を吸着処理する技術が開示されている。さらにまた、特許文献5では、非晶質水酸化鉄(III)を含有する除去剤を用いて、水溶性のセレンを除去する技術が開示されている。 Patent Document 4 discloses a technique for adsorbing arsenic in water or soil by using a special steel product such as Schwbertmannite in which a part of sulfate ions is replaced with calculated ions. Furthermore, Patent Document 5 discloses a technique for removing water-soluble selenium using a remover containing amorphous iron (III) hydroxide.
しかしながら、特許文献1〜5の技術については、以下の問題があった。
特許文献1の技術は、ヒ素に拡散抑制については一定の効果があるものの、大量の土壌を洗浄するため設備が大掛かりなものとなることや、セリウム等を大量に要するため、処理コストが大きくなるという問題がある。また、土壌は硫酸等で洗浄することで酸性となるため、処理後の土壌の生物に悪影響を与える恐れがある。
However, the techniques of Patent Documents 1 to 5 have the following problems.
Although the technique of Patent Document 1 has a certain effect for suppressing diffusion of arsenic, it requires a large amount of equipment for washing a large amount of soil, and requires a large amount of cerium, so that the processing cost increases. There is a problem. Moreover, since soil becomes acidic by washing with sulfuric acid or the like, there is a risk of adversely affecting living organisms in the treated soil.
特許文献2の技術は、ヒ素の不溶化を図るという点では一定の効果を奏するものの、希土類の酸化物が酸に溶解しにくく、極端に低いpHや、温度・溶解条件の適正化を図る必要が生じ、不溶化剤の製造が困難である。さらに、アルカリで処理して中和を行うが、中和時に発生する塩が薬剤中に残存し、該薬剤を汚染土壌に用いた際、前記塩による悪影響が発生する恐れがある。 Although the technique of Patent Document 2 has a certain effect in terms of insolubilization of arsenic, it is difficult for rare earth oxides to dissolve in acid, and it is necessary to optimize extremely low pH, temperature and dissolution conditions. It is difficult to produce an insolubilizing agent. Furthermore, neutralization is carried out by treating with an alkali. However, when a salt generated during neutralization remains in the chemical and the chemical is used in contaminated soil, there is a possibility that an adverse effect due to the salt may occur.
特許文献3の技術は、硫酸鉄、酸化鉄及び酢酸鉄は工業材料であり、比較的安価に汚染成分の不溶化を行えるものの、上記の鉄化合物は用意に酸化し(例えば、硫化鉄の場合、硫化鉄(II)から硫化鉄(III)へ酸化)、酸化前の状態でなければ汚染成分吸着効果が発現しないことから、発明の効果が持続しないという問題がある。 In the technology of Patent Document 3, iron sulfate, iron oxide, and iron acetate are industrial materials, and although the insoluble components can be insolubilized relatively inexpensively, the above iron compound is readily oxidized (for example, in the case of iron sulfide, There is a problem that the effect of the invention is not sustained because the effect of adsorbing contaminants is not exhibited unless the state is oxidized (from iron sulfide (II) to iron sulfide (III)).
特許文献4の技術は、ヒ素を吸着し、固定化する効果を奏するものの、用いられる鉱物は特殊なものであるため、製造が煩雑となり、結果として、処理コストが高騰するという問題があった。 Although the technique of Patent Document 4 has an effect of adsorbing and fixing arsenic, since the mineral used is a special one, there is a problem that the manufacturing becomes complicated and as a result, the processing cost increases.
特許文献5の技術は、水溶性のセレンを除去することが可能であるものの、除去に用いられる非晶質水酸化鉄(III)は、地中で水と接触することで還元され、鉄が溶出する結果、吸着剤自身が重金属汚染を引き起こすという問題があった。また、非晶質の水酸化鉄の製造に要するコストが高騰するという問題もあった。 Although the technique of Patent Document 5 can remove water-soluble selenium, amorphous iron hydroxide (III) used for the removal is reduced by contact with water in the ground, As a result of elution, there was a problem that the adsorbent itself caused heavy metal contamination. In addition, there is a problem that the cost required for producing amorphous iron hydroxide increases.
本発明の目的は、従来の吸着剤と同等の汚染成分吸着性能を有し、さらに、吸着効果が長時間持続する汚染成分吸着剤及びその製造方法を、低コストで提供することにある。 An object of the present invention is to provide a contaminating component adsorbent having a performance of adsorbing contaminating components equivalent to that of conventional adsorbents, and further providing an adsorbing effect for a long time and a method for producing the same.
本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた。その結果、汚染成分吸着剤が、セリウム化合物の水和物及び水酸化鉄を含有することによって、セリウム化合物の水和物及び水酸化鉄の高い吸着作用を発揮できるとともに、水酸化鉄は鉄材料を用いることから希土類金属化合物の吸着剤に比べて安価に製造できるため、吸着剤の低コスト化を図れることを見出した。さらに、セリウム化合物の水和物が酸化剤としての特性を有するため、吸着剤中の水酸化鉄(III)が、土壌中などの還元雰囲気の媒体(水等)と接触した場合であっても、土壌中に溶出しやすい水酸化鉄(II)へと変化する還元反応を抑制することができ、吸着剤の吸着性能の持続についても高い効果を奏することを見出した。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, the contaminating component adsorbent contains a cerium compound hydrate and iron hydroxide, so that a high adsorption action of the cerium compound hydrate and iron hydroxide can be exhibited. It was found that the cost of the adsorbent can be reduced because it can be manufactured at a lower cost than the rare earth metal compound adsorbent. In addition, since hydrates of cerium compounds have properties as oxidizing agents, even when iron (III) hydroxide in the adsorbent comes into contact with a medium (such as water) in a reducing atmosphere such as in the soil. The present inventors have found that the reduction reaction that changes to iron (II) hydroxide, which is easily eluted in soil, can be suppressed, and that the adsorbent adsorption performance is highly effective.
本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
(1)セリウム化合物の水和物及び水酸化鉄を含有することを特徴とする汚染成分吸着剤。
The present invention has been made based on such findings, and the gist thereof is as follows.
(1) A contaminant adsorbent comprising a cerium compound hydrate and iron hydroxide.
(2)前記水酸化鉄は、前記セリウム化合物の水和物の表面上又は近傍に析出してなる上記(1)記載の汚染成分吸着剤。 (2) The contaminant adsorbent according to (1) above, wherein the iron hydroxide is deposited on or near the surface of the cerium compound hydrate.
(3)前記水酸化鉄は、前記セリウム化合物の水和物の表面上又は近傍に析出してなる上記(1)又は(2)記載の汚染成分吸着剤。 (3) The contaminant adsorbent according to (1) or (2), wherein the iron hydroxide is deposited on or near the surface of the cerium compound hydrate.
(4)前記水酸化鉄を構成する鉄成分は、Fe3+/(Fe2++Fe3+)≧50質量%である上記(1)〜(3)のいずれか1項の汚染成分吸着剤。 (4) The contamination component adsorbent according to any one of (1) to (3), wherein the iron component constituting the iron hydroxide is Fe 3+ / (Fe 2+ + Fe 3+ ) ≧ 50 mass%.
(5)前記セリウム化合物の水和物を構成するセリウムは、3価のセリウム及び/又は4価のセリウムからなる上記(1)〜(4)のいずれか1項記載の汚染成分吸着剤。 (5) The contaminant adsorbent according to any one of (1) to (4), wherein the cerium constituting the hydrate of the cerium compound comprises trivalent cerium and / or tetravalent cerium.
(6)前記セリウム中の4価セリウムの割合が、5質量%以上である上記(5)記載の汚染成分吸着剤。 (6) The contaminant adsorbent according to (5), wherein the ratio of tetravalent cerium in the cerium is 5% by mass or more.
(7)前記吸着剤は、シリカ及びアルミニウムを含んだ無機材料をさらに含有する上記(1)〜(6)のいずれか1項記載の汚染成分吸着剤。 (7) The contaminant adsorbent according to any one of (1) to (6), wherein the adsorbent further contains an inorganic material containing silica and aluminum.
(8)前記吸着剤中の水酸化鉄の含有量が、5〜90質量%である上記(1)〜(7)のいずれか1項記載の汚染成分吸着剤。 (8) The contamination component adsorbent according to any one of (1) to (7), wherein the content of iron hydroxide in the adsorbent is 5 to 90% by mass.
(9)前記吸着剤中でのセリウム化合物の水和物の含有量が、10〜95質量%である上記(1)〜(8)のいずれか1項記載の汚染成分吸着剤。 (9) The pollutant component adsorbent according to any one of (1) to (8) above, wherein the cerium compound hydrate content in the adsorbent is 10 to 95% by mass.
(10)前記汚染成分が、ヒ素、フッ素、ホウ素、鉛、カドミウム、水銀、アンチモン、クロム、モリブデン、セレン、リン、タリウム、インジウム及びビスマスの群から選択される1種以上の成分である上記(1)〜(9)のいずれか1項記載の汚染成分吸着剤。 (10) The above-mentioned contamination component is one or more components selected from the group consisting of arsenic, fluorine, boron, lead, cadmium, mercury, antimony, chromium, molybdenum, selenium, phosphorus, thallium, indium and bismuth ( The contaminant adsorbent according to any one of 1) to (9).
(11)所定の塩化鉄水溶液にセリウム化合物の水和物を添加、混合し、第1混合液を得る工程と、該第1混合液中に、シリカ及びアルミニウムを含有する無機材料をさらに添加、混合し、第2混合液を得る工程と、該第2混合液中に、所定の速度でアルカリ材料を添加、混合して懸濁液とし、該濁液のpHを7〜11の範囲に調整することで、懸濁液中のセリウム化合物の水和物の表面に水酸化鉄を析出させる工程と、前記懸濁液を脱水し、セリウム化合物の水和物及び水酸化鉄を有する吸着剤を得る工程とを具えることを特徴とする汚染成分吸着剤の製造方法。 (11) A step of adding and mixing a cerium compound hydrate to a predetermined aqueous iron chloride solution to obtain a first mixed solution, and further adding an inorganic material containing silica and aluminum to the first mixed solution, A step of mixing to obtain a second mixed liquid, and adding an alkaline material to the second mixed liquid at a predetermined speed and mixing to make a suspension, and adjusting the pH of the turbid liquid to a range of 7 to 11 A step of precipitating iron hydroxide on the surface of the cerium compound hydrate in the suspension, and dehydrating the suspension to provide an adsorbent having the cerium compound hydrate and iron hydroxide. And a process for producing a contaminating component adsorbent, comprising the step of:
(12)前記混合液中に、シリカ及びアルミニウムを含有する無機材料を添加、混合する工程をさらに含む上記(11)記載の汚染成分吸着剤の製造方法。 (12) The method for producing a contaminating component adsorbent according to (11), further comprising a step of adding and mixing an inorganic material containing silica and aluminum into the mixed solution.
(13)前記吸着剤の水分量を調整するため、前記懸濁液を脱水する工程をさらに含む上記(11)又は(12)記載の汚染成分吸着剤の製造方法。 (13) The method for producing a contaminating component adsorbent according to (11) or (12), further comprising a step of dehydrating the suspension in order to adjust the water content of the adsorbent.
(14)前記セリウム化合物の水和物は、水酸化セリウムの化合物又は酸化セリウムの化合物である上記(11)〜(13)のいずれか1項記載の汚染成分吸着剤の製造方法。 (14) The method for producing a contaminated component adsorbent according to any one of (11) to (13), wherein the cerium compound hydrate is a cerium hydroxide compound or a cerium oxide compound.
(15)前記懸濁液の脱水は、フィルタープレス法により行われる上記(11)〜(14)のいずれか1項記載の汚染成分吸着剤の製造方法。 (15) The method for producing the contaminant adsorbent according to any one of (11) to (14), wherein the suspension is dehydrated by a filter press method.
(16)前記セリウム化合物の水和物を構成するセリウムは、3価のセリウム及び4価のセリウムからなり、セリウム中の4価のセリウムの割合が、5質量%以上である上記(11)〜(15)のいずれか1項記載の汚染成分吸着剤の製造方法。 (16) The cerium constituting the cerium compound hydrate is composed of trivalent cerium and tetravalent cerium, and the ratio of tetravalent cerium in cerium is 5% by mass or more. (15) The manufacturing method of the contaminating component adsorbent according to any one of (15).
(17)前記吸着剤を400℃以下の温度で乾燥し、粉体とする上記(11)〜(16)のいずれか1項記載の汚染成分吸着剤の製造方法。 (17) The method for producing a contaminating component adsorbent according to any one of (11) to (16), wherein the adsorbent is dried at a temperature of 400 ° C. or lower to form a powder.
本発明によれば、従来の吸着剤と同等の汚染成分吸着性能を有し、さらに、吸着効果が長時間持続する汚染成分吸着剤及びその製造方法を、低コストで提供することが可能となった。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the contaminating component adsorption agent and its manufacturing method which have the contamination component adsorption | suction performance equivalent to the conventional adsorption agent, and also the adsorption effect lasts for a long time at low cost. It was.
本発明による汚染成分吸着剤及びその製造方法について説明する。
本発明による汚染成分吸着剤は、セリウム化合物の水和物及び水酸化鉄を含有することを特徴とする。
The contaminating component adsorbent and the method for producing the same according to the present invention will be described.
The contaminant adsorbent according to the present invention is characterized by containing a hydrate of cerium compound and iron hydroxide.
上記構成を採用することによって、セリウム化合物の水和物及び水酸化鉄の高い吸着作用によって、従来の吸着剤と同等の汚染成分吸着効果を奏することができる。また、セリウム化合物の水和物が酸化剤としての特性を有するため、吸着剤中の水酸化鉄(III)が、汚染土壌中に存在する水などの還元雰囲気の媒体と接触した場合であっても、水酸化鉄(II)へ還元する反応を抑制することができる。水酸化鉄(II)は、水酸化鉄(III)に比べて溶出しやすいため、還元反応を有効に抑制できる結果、吸着性能の持続についても高い効果を奏することができる。さらに、本発明の吸着剤に含有する水酸化鉄は、鉄を材料として用いるため、セリウムやランタン等の希土類金属化合物のみからなる吸着剤に比べて、製造コストを大幅に低減できる。 By adopting the above-described configuration, it is possible to achieve the same effect of adsorbing contaminating components as conventional adsorbents due to the high adsorption action of cerium compound hydrates and iron hydroxide. In addition, since hydrates of cerium compounds have properties as oxidants, iron (III) hydroxide in the adsorbent is in contact with a reducing atmosphere medium such as water present in the contaminated soil. Moreover, the reaction which reduces to iron (II) hydroxide can be suppressed. Since iron hydroxide (II) is easier to elute than iron hydroxide (III), the reduction reaction can be effectively suppressed, and as a result, the adsorption performance can be highly effective. Furthermore, since the iron hydroxide contained in the adsorbent of the present invention uses iron as a material, the manufacturing cost can be greatly reduced as compared with an adsorbent composed only of a rare earth metal compound such as cerium or lanthanum.
ここで、前記セリウム化合物の水和物とは、通常液相法で合成され、水酸化セリウム水和物又は酸化セリウム水和物の形で得られる。水酸化セリウム水和物又は酸化セリウム水和物の水和物以外では、十分な吸着効果を得ることができない。前記水酸化セリウム水和物及び酸化セリウム水和物は、乾燥前の沈殿や低温で乾燥させた場合はアモルファスであり、通常はCe(OH)4・nH2Oと標記される。一方、高温で乾燥させると、酸化セリウムと同じホタル石型の粉末X線回折パターンが得られ、これはCeO2・nH2Oと標記される。 Here, the cerium compound hydrate is usually synthesized by a liquid phase method and obtained in the form of cerium hydroxide hydrate or cerium oxide hydrate. Except for cerium hydroxide hydrate or hydrate of cerium oxide hydrate, a sufficient adsorption effect cannot be obtained. The cerium hydroxide hydrate and cerium oxide hydrate are amorphous when precipitated before drying or when dried at a low temperature, and are usually labeled as Ce (OH) 4 .nH 2 O. On the other hand, when dried at a high temperature, the same fluorite-type powder X-ray diffraction pattern as that of cerium oxide is obtained, which is denoted as CeO 2 .nH 2 O.
また、本発明による汚染成分吸着剤では、前記水酸化鉄が、前記セリウム化合物の水和物の表面上又は近傍に析出してなることが好ましい。前記セリウム化合物の水和物と前記水酸化鉄が一体化しているため、相乗効果による汚染成分の吸着効果が得やすく、より高い水酸化鉄(III)の還元抑制効果が得られ、吸着性能の持続性がさらに向上するからである。ここで、前記セリウム化合物の水和物表面上又は近傍に析出するとは、セリウム化合物が核となり、その表面又は近傍(一部が接している状態)に水酸化鉄の非晶質体、結晶体、ゲル状の固体物が存在している状態をいう。 In the contaminant adsorbent according to the present invention, the iron hydroxide is preferably deposited on or near the surface of the cerium compound hydrate. Since the cerium compound hydrate and the iron hydroxide are integrated, it is easy to obtain the effect of adsorbing contaminating components due to a synergistic effect, and a higher reduction effect of iron (III) hydroxide can be obtained. This is because sustainability is further improved. Here, the precipitation on or near the surface of the cerium compound hydrate means that the cerium compound serves as a nucleus, and the amorphous or crystalline substance of iron hydroxide on or near the surface (part of contact). The state in which a gel-like solid substance is present.
なお、前記水酸化鉄は、汚染性分吸着効果を得る観点から、主成分が水酸化鉄(III)であるが、より詳細には、前記水酸化鉄を構成する鉄成分が、Fe3+/(Fe2++Fe3+)≧50質量%であることが好ましい。Fe3+/(Fe2++Fe3+)が50質量%未満である場合、水酸化鉄(III)による共沈効果より、水酸化鉄(II)の溶出の影響が大きくなり、汚染成分の吸着力持続効果が低下する恐れがあるからである。 The iron hydroxide is mainly composed of iron (III) hydroxide from the viewpoint of obtaining a pollutant component adsorption effect. More specifically, the iron component constituting the iron hydroxide is Fe 3+ / It is preferable that (Fe 2+ + Fe 3+ ) ≧ 50 mass%. When Fe 3+ / (Fe 2+ + Fe 3+ ) is less than 50% by mass, the effect of elution of iron hydroxide (II) is greater than the coprecipitation effect of iron hydroxide (III), and the adsorbing power of contaminating components is sustained. This is because the effect may be reduced.
また、前記セリウム化合物の水和物を構成するセリウムは、3価のセリウム及び/又は4価のセリウムからなることが好ましい。3価セリウムと4価セリウムでは、それぞれ、有効に吸着できる汚染成分の種類が異なるため、土壌中に含有される汚染成分の種類に応じて、3価セリウム及び/又は4価セリウムを選択すれば、より効率的に汚染成分の処理を行うことができる。ここで、表1は、3価セリウム及び4価セリウムの各汚染成分に対する吸着性能(水酸化セリウム化合物の水和物1gあたりの吸着できる汚染成分の量(mg/g))を示したものであるが、3価セリウムは、ヒ素、鉛、フッ素に対して有効であり、4価セリウムは、クロム、セレン、ホウ素、水銀に対して有効であることがわかる。さらに、多くの汚染成分に対して、安定した吸着性能を発揮する観点や、還元雰囲気の媒体に対する緩衝材としての役目を果たす観点から、前記セリウム中における4価セリウムの割合が、5質量%以上であることが好ましい。 Further, the cerium constituting the cerium compound hydrate is preferably composed of trivalent cerium and / or tetravalent cerium. Since trivalent cerium and tetravalent cerium have different types of contaminating components that can be adsorbed effectively, depending on the type of contaminating components contained in the soil, trivalent cerium and / or tetravalent cerium can be selected. Thus, the contaminated component can be processed more efficiently. Here, Table 1 shows the adsorption performance for each contaminating component of trivalent cerium and tetravalent cerium (the amount of contaminating component that can be adsorbed per gram of hydrate of cerium hydroxide compound (mg / g)). However, trivalent cerium is effective against arsenic, lead, and fluorine, and tetravalent cerium is effective against chromium, selenium, boron, and mercury. Furthermore, the proportion of tetravalent cerium in the cerium is 5% by mass or more from the viewpoint of exhibiting stable adsorption performance with respect to many contaminating components and the role of serving as a buffer for the medium in the reducing atmosphere. It is preferable that
なお、前記セリウム化合物の水和物の形状については、特に限定はせず、粒状であってもスラリー状であっても構わない。例えば、スラリー状態の場合には、水が介在することで、セリウム表面と空気との接触が抑えられ、3価のセリウム化合物の水和物が酸化により、吸着性能が低い4価のセリウム化合物の水和物となることを防ぐことができる。ただし、前記セリウム化合物の水和物の表面上に水酸化鉄が析出する場合には、前記セリウム化合物の水和物の粒径は水酸化鉄の粒径よりも大きいほうが好ましく、形状としては、粒状、破砕状、顆粒状等の単体、又はそれらの凝集体であることが好ましい。 The shape of the cerium compound hydrate is not particularly limited, and may be granular or slurry. For example, in the case of a slurry state, water intervenes to suppress contact between the cerium surface and air, and the hydrate of the trivalent cerium compound is oxidized, so that the adsorption performance of the tetravalent cerium compound is low. It can prevent becoming a hydrate. However, when iron hydroxide is deposited on the surface of the cerium compound hydrate, the particle size of the cerium compound hydrate is preferably larger than the particle size of the iron hydroxide, It is preferably a single body such as granular, crushed or granular, or an aggregate thereof.
また、本発明による吸着剤は、シリカ及びアルミニウムを含んだ無機材料をさらに含有することが好ましい。シリカ及びアルミニウムを含んだ無機材料が、前記セリウム化合物の水和物及び前記水酸化鉄の濃度を調整するための役目を果たすためであり、さらに、汚染成分を含有する媒体に対し、吸着剤を混合する際、吸着成分を均質に混合するほど、効率的に汚染成分の吸着効果が得られ、汚染媒体中の汚染成分の含有量(溶出量)により、混合に必要な吸着剤(セリウム化合物の水和物、水酸化鉄)の量が決まることから、前記無機材料を適切に調整することで、最適な混合条件が設計できるからである。 Further, the adsorbent according to the present invention preferably further contains an inorganic material containing silica and aluminum. This is because an inorganic material containing silica and aluminum serves to adjust the concentration of the cerium compound hydrate and the iron hydroxide, and an adsorbent is added to the medium containing the contaminating component. When mixing, the adsorbing components are mixed more homogeneously, and the adsorbing effect of the contaminating components can be obtained more efficiently. This is because the optimum mixing conditions can be designed by appropriately adjusting the inorganic material since the amount of hydrate and iron hydroxide is determined.
なお、前記吸着剤中の水酸化鉄の含有量が、5〜90質量%であることが好ましい。水酸化鉄の含有量が5%未満の場合、水酸化鉄の含有量が少なすぎるため、ヒ素又はセレン等の水酸化鉄が主に吸着性能を発揮する汚染成分について吸着能力が低下する恐れがあることに加えて、吸着剤の製造コスト低減効果が得られにくくなるからである。一方、90質量%を超えると、前記セリウム化合物の水和物の含有量が低下するため、所望の汚染成分吸着性能が得られなくなる恐れがあるからである。 In addition, it is preferable that content of the iron hydroxide in the said adsorbent is 5-90 mass%. If the content of iron hydroxide is less than 5%, the content of iron hydroxide is too low, so that the adsorption capacity of the contaminated components, such as arsenic or selenium, that mainly exert the adsorption performance may decrease. In addition to this, it is difficult to obtain the effect of reducing the manufacturing cost of the adsorbent. On the other hand, if the content exceeds 90% by mass, the content of the cerium compound hydrate is lowered, so that there is a possibility that the desired contaminating component adsorption performance may not be obtained.
また、前記吸着剤中のセリウム化合物の水和物の含有量が、10〜95質量%であることが好ましい。セリウム化合物の水和物の含有量が10質量%未満では、セリウム化合物の水和物による吸着作用が小さくない、吸着剤全体として、十分な汚染成分吸着効果が得られなくなる恐れがあり、一方、95質量%を超えると、セリウム化合物の水和物の含有量が多くなりすぎるため、本発明の吸着剤の製造コスト低減効果が得られなくなる恐れがあるからである。 Moreover, it is preferable that content of the hydrate of the cerium compound in the said adsorbent is 10-95 mass%. If the content of the cerium compound hydrate is less than 10% by mass, the adsorption action by the cerium compound hydrate is not small, and the adsorbent as a whole may not be able to obtain a sufficient contamination component adsorption effect, This is because if the content exceeds 95% by mass, the cerium compound hydrate content becomes too high, and the production cost reduction effect of the adsorbent of the present invention may not be obtained.
ここで、前記汚染成分とは、前記汚染土壌中に含まれる人体に悪影響を与える成分のことであり、例えば、ヒ素、フッ素、ホウ素、鉛、カドミウム、水銀、アンチモン、クロム、モリブデン、セレン、リン、タリウム、インジウム及びビスマスの群から選択される1種以上の成分をいう。本発明の吸着剤を用いれば、これらの汚染成分に対して、有効に吸着作用を発揮し、汚染土壌中などでの拡散を抑制することができる。 Here, the contaminated component is a component that adversely affects the human body contained in the contaminated soil. For example, arsenic, fluorine, boron, lead, cadmium, mercury, antimony, chromium, molybdenum, selenium, phosphorus , One or more components selected from the group of thallium, indium and bismuth. By using the adsorbent of the present invention, it is possible to effectively exert an adsorption action on these contaminated components and suppress diffusion in the contaminated soil.
次に、本発明による汚染成分吸着剤の製造方法について、図面を用いて説明する。図1は、本発明による汚染成分吸着剤の製造方法を説明するためのフロー図である。
本発明による汚染成分吸着剤の製造方法は、図1に示すように、所定の塩化鉄水溶液にセリウム化合物の水和物を添加、混合し、混合液を得る工程(図1(a))と、該混合液中に、所定の速度でアルカリ材料を添加、混合して懸濁液とし、該濁液のpHを7〜11の範囲に調整することで、懸濁液中のセリウム化合物の水和物の表面又は近傍に水酸化鉄を析出させる工程(図1(c))と、セリウム化合物の水和物及び水酸化鉄を有する吸着剤を得る工程(図1(d))を具えることを特徴とする。
Next, the manufacturing method of the contaminating component adsorbent according to the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a method for producing a contaminant adsorbent according to the present invention.
As shown in FIG. 1, the method for producing a contaminating component adsorbent according to the present invention includes a step of adding a cerium compound hydrate to a predetermined aqueous iron chloride solution and mixing to obtain a mixture (FIG. 1 (a)). In the mixed solution, an alkaline material is added and mixed at a predetermined speed to form a suspension, and the pH of the turbid solution is adjusted to a range of 7 to 11, so that the water of the cerium compound in the suspension is adjusted. A step of depositing iron hydroxide on or near the surface of the hydrate (FIG. 1 (c)), and a step of obtaining an adsorbent having a cerium compound hydrate and iron hydroxide (FIG. 1 (d)). It is characterized by that.
上記構成を採用することで、前記水酸化鉄及びセリウム化合物の水和物によって、従来の吸着剤と同等の汚染成分吸着性能を有し、さらに、前記セリウム化合物の水和物が前記水酸化鉄(III)が水酸化鉄(II)へ還元するのを抑制し、土壌中へ流出することを防ぐことができるため、吸着効果が長時間持続する汚染成分吸着剤を得ることができ、材料として鉄材料を用いていることから、低コストで製造することができる。 By adopting the above configuration, the hydrate of the iron hydroxide and the cerium compound has the same contamination component adsorption performance as that of the conventional adsorbent, and further, the hydrate of the cerium compound is the iron hydroxide. (III) Suppresses reduction of iron hydroxide (II) and prevents it from flowing out into the soil, so it is possible to obtain a pollutant adsorbent with a long-lasting adsorption effect. Since an iron material is used, it can be manufactured at a low cost.
前記混合液は、所定の塩化鉄水溶液に粒子状のセリウム化合物の水和物を添加、混合してなる液である。ここで、前記塩化鉄水溶液は、後の工程で水酸化ナトリウム等と混合することで、水酸化鉄を生成することができれば、特に限定はせず、例えば、塩化第二鉄水溶液(FeCl3)や、ポリ硫酸第二鉄([Fe2(OH)n(SO4)3-n/2]m(0<n,0<m))を用いることができる。また工程数は増えるが塩化第一鉄を使用し、酸化剤等を用い鉄の酸化工程を含む工程などを用いることができる。また、塩化鉄水溶液の濃度や温度等の条件についても、必要に応じて調整すればよい。 The liquid mixture is a liquid obtained by adding and mixing a particulate cerium compound hydrate to a predetermined aqueous iron chloride solution. Here, the iron chloride aqueous solution is not particularly limited as long as iron hydroxide can be generated by mixing with sodium hydroxide or the like in a later step. For example, ferric chloride aqueous solution (FeCl 3 ) Alternatively, polyferric sulfate ([Fe 2 (OH) n (SO 4 ) 3-n / 2 ] m (0 <n, 0 <m)) can be used. Further, although the number of processes increases, ferrous chloride is used, and a process including an iron oxidation process using an oxidizing agent or the like can be used. Moreover, what is necessary is just to adjust conditions, such as a density | concentration of iron chloride aqueous solution, temperature, as needed.
また、前記混合液中のセリウム化合物の水和物を構成するセリウムについては、3価のセリウム及び4価のセリウムからなり、4価のセリウムの割合が、5質量%以上であることが好ましい。3価セリウムと4価セリウムでは、それぞれ、有効に吸着できる汚染成分の種類が異なるため、土壌中に含有される汚染成分の種類に応じて、3価セリウム及び/又は4価セリウムを選択すれば、より効率的に汚染成分の処理を行うことができ、さらに、多くの汚染成分に対して、安定した吸着性能を発揮する観点や、還元雰囲気の媒体に対する緩衝材としての役目を果たす観点から、前記セリウム中における4価セリウムの割合が、5%以上であることがより好適である。なお、前記セリウム化合物の水和物の形状としては、特に限定はせず、粒状であっても、スラリー状であっても構わない。 Moreover, about the cerium which comprises the hydrate of the cerium compound in the said liquid mixture, it consists of trivalent cerium and tetravalent cerium, and it is preferable that the ratio of tetravalent cerium is 5 mass% or more. Since trivalent cerium and tetravalent cerium have different types of contaminating components that can be effectively adsorbed, depending on the type of contaminating components contained in the soil, trivalent cerium and / or tetravalent cerium can be selected. From the viewpoint of more efficiently treating contaminating components, and also exhibiting stable adsorption performance for many contaminating components and serving as a buffer material for a medium in a reducing atmosphere, The proportion of tetravalent cerium in the cerium is more preferably 5% or more. The shape of the cerium compound hydrate is not particularly limited, and may be granular or slurry.
さらに、前記混合液について、所定の熱処理を施すことが好ましい。この熱処理によって、前記第1混合液に添加・混合したセリウム化合物の水和物が溶解し、前記セリウム化合物の水和物の表面が水和反応することによって、より高い吸着性能が得られるためである。 Furthermore, it is preferable to perform a predetermined heat treatment on the mixed solution. This heat treatment dissolves the hydrate of the cerium compound added and mixed in the first mixed solution, and the surface of the hydrate of the cerium compound undergoes a hydration reaction, so that higher adsorption performance can be obtained. is there.
また、前記混合液中に、シリカ及びアルミニウムを含有する無機材料を添加、混合する工程(図1(b))をさらに含むことが好ましい。無機材料が、前記セリウム化合物の水和物及び前記水酸化鉄の濃度を調整するための役目を果たすためである。ここで、前記無機材料は、シリカ及びアルミニウムを含有すれば特に限定はせず、任意の無機材料を添加・混合することができる。 Moreover, it is preferable to further include the process (FIG.1 (b)) which adds and mixes the inorganic material containing a silica and aluminum in the said liquid mixture. This is because the inorganic material serves to adjust the concentration of the cerium compound hydrate and the iron hydroxide. Here, the inorganic material is not particularly limited as long as it contains silica and aluminum, and any inorganic material can be added and mixed.
前記懸濁液は、前記混合液中に、所定の速度でアルカリ材料を添加、混合してなる懸濁液である。ここで、前記アルカリ材料は、塩化鉄の鉄イオンと反応し、水酸化鉄を生成できる材料であれば、特に限定はせず、例えば、水酸化ナトリウムなどを用いることができる。また、その後のpHを調整する際に用いられるアルカリ材料についても特に限定はなく、水酸化ナトリウム、消石灰、酸化マグネシウム、アンモニア水等を用いることができる。 The suspension is a suspension obtained by adding and mixing an alkali material at a predetermined speed in the mixed solution. Here, the alkali material is not particularly limited as long as it is a material that can react with iron ions of iron chloride to generate iron hydroxide, and for example, sodium hydroxide can be used. Moreover, there is no limitation in particular also about the alkaline material used when adjusting pH after that, Sodium hydroxide, slaked lime, magnesium oxide, aqueous ammonia, etc. can be used.
さらに、前記吸着剤を400℃以下の温度で乾燥し粉体とすることが好ましい。乾燥温度が400℃を超えると、吸着剤表面の水酸基がなくなり吸着性能が低下する問題があるからである。 Furthermore, it is preferable to dry the adsorbent at a temperature of 400 ° C. or lower to obtain a powder. This is because when the drying temperature exceeds 400 ° C., the hydroxyl group on the adsorbent surface disappears and the adsorbing performance is deteriorated.
その後、前記懸濁液から本発明の吸着剤を得るが、得られる吸着剤の水分量を調整するため、前記懸濁液を脱水する工程をさらに含むことが好ましい。脱水の方法としては、前記懸濁液の液体成分を脱水できる方法であれば特に限定はしないが、フィルタープレス法を用いれば、脱水処理を行うと同時に、得られる前記吸着剤の洗浄も行える点で好ましい。 Thereafter, the adsorbent of the present invention is obtained from the suspension, and it is preferable to further include a step of dehydrating the suspension in order to adjust the water content of the adsorbent obtained. The dehydration method is not particularly limited as long as the liquid component of the suspension can be dehydrated. However, if the filter press method is used, the adsorbent obtained can be washed simultaneously with the dehydration treatment. Is preferable.
上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。 The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.
本発明の実施例について説明する。
サンプル1〜6として、図1(a)〜(d)に示すように、塩化第2鉄水溶液(濃度、質量は表2に示す)に3価のセリウム化合物の水和物及び4価のセリウム化合物の水和物からなるセリウム化合物の水和物(4価のセリウム化合物の水和物の割合、合計質量は表2に示す)を添加、混合し、第1混合液を得る工程と、該第1混合液中に、シリカ及びカルシウムを含有する無機材料(構成材料及び合計質量は表2に示す)をさらに添加、混合し、第2混合液を得る工程と、該第2混合液中に、所定の速度でアルカリ材料(アルカリの種類及び添加速度は表2に示す)を添加、混合して懸濁液とし、該懸濁液のpHを所定の範囲に調整すること(調整したpHについては表2に示す)で、懸濁液中のセリウム化合物の水和物の表面に水酸化鉄を析出させる工程と、フィルターを用いて前記懸濁液を脱水する工程によって、セリウム化合物の水和物及び水酸化鉄を有する吸着剤(吸着剤中の各成分の含有量は表2に示す)を製造した。
Examples of the present invention will be described.
As Samples 1 to 6, as shown in FIGS. 1A to 1D, a trivalent cerium compound hydrate and a tetravalent cerium were added to a ferric chloride aqueous solution (concentration and mass are shown in Table 2). A step of adding a cerium compound hydrate comprising a hydrate of the compound (a ratio of a hydrate of a tetravalent cerium compound, the total mass is shown in Table 2) and mixing to obtain a first mixed solution; Into the first mixed solution, an inorganic material containing silica and calcium (the constituent materials and the total mass are shown in Table 2) are further added and mixed to obtain a second mixed solution; and in the second mixed solution, Add an alkaline material (type of alkali and addition rate shown in Table 2) at a predetermined speed, mix to make a suspension, and adjust the pH of the suspension to a predetermined range (about adjusted pH) Is shown in Table 2), and iron hydroxide is deposited on the surface of the cerium compound hydrate in the suspension. An adsorbent having a cerium compound hydrate and iron hydroxide (content of each component in the adsorbent is shown in Table 2) was produced by the process and the process of dehydrating the suspension using a filter. .
また、サンプル7については、懸濁液が得られた段階で、80℃で5時間の熱処理を施し、前記第3懸濁液中のセリウム化合物の水和物の一部を溶解させたこと以外は、サンプル1〜6と同様の条件によって、吸着剤を製造した。 Sample 7 was subjected to a heat treatment at 80 ° C. for 5 hours at the stage when the suspension was obtained to dissolve part of the cerium compound hydrate in the third suspension. Produced adsorbents under the same conditions as Samples 1-6.
また、サンプル8〜10については、バッチ式のオーブンを用いて、得られた吸着剤を加熱乾燥し(サンプル8では250℃×1時間、サンプル9では350℃×1時間、サンプル10では450℃×1時間)、サンプル8及び9については水分の少ない吸着剤であり、サンプル10については水和物でない水酸化セリウムからなる吸着剤であること以外は、サンプル1〜6と同様の条件によって製造した。 For samples 8 to 10, the obtained adsorbent was heated and dried using a batch type oven (250 ° C. × 1 hour for sample 8, 350 ° C. × 1 hour for sample 9, 450 ° C. for sample 10) × 1 hour), samples 8 and 9 are adsorbents with less moisture, and sample 10 is manufactured under the same conditions as samples 1-6 except that it is an adsorbent made of cerium hydroxide that is not a hydrate. did.
(評価方法)
上記サンプルについて、(1)汚染成分吸着性能、(2)還元水に対する鉄成分の溶解性及び(3)製造コストの評価を行った。
(Evaluation methods)
About the said sample, (1) Contamination component adsorption | suction performance, (2) Solubility of the iron component with reduced water, and (3) Manufacturing cost were evaluated.
(1)汚染成分の吸着性
汚染成分についての吸着性は、各汚染成分(ヒ素、6価クロム、4価セレン、6価セレン、ホウ素、フッ素、水銀)を100mg/Lの濃度で含有する400mLの溶液中に、各サンプルの吸着剤1gを添加し、吸着剤1gあたりの吸着できる各汚染成分の量(mg/g)を測定することによって評価した。なお、汚染成分吸着量の測定は、溶液中に吸着剤を添加後、24時間揺動させて、その後の溶液濃度を調べることで得た。重金属については、ICP(島津製作所社製、ICP−1000IV)を用いた定量分析、フッ素については、イオンメータを用いた定量分析により測定した。なお、サンプル8〜10については、ヒ素に対する吸着性能のみ測定した。測定結果を表3に示す。
(1) Adsorption of contaminating components Adsorbability of contaminating components is 400mL containing each contaminating component (arsenic, hexavalent chromium, tetravalent selenium, hexavalent selenium, boron, fluorine, mercury) at a concentration of 100 mg / L. In each solution, 1 g of the adsorbent of each sample was added, and the amount (mg / g) of each contaminating component that could be adsorbed per 1 g of the adsorbent was measured. The amount of contaminating component adsorbed was measured by adding the adsorbent to the solution and then rocking for 24 hours and examining the concentration of the solution thereafter. Heavy metals were measured by quantitative analysis using ICP (manufactured by Shimadzu Corporation, ICP-1000IV), and fluorine was measured by quantitative analysis using an ion meter. For samples 8 to 10, only the adsorption performance for arsenic was measured. Table 3 shows the measurement results.
(2)還元水に対する鉄成分の溶解性
サンプル1及び3〜8について、還元水に対する鉄成分の溶解性について評価を行った。還元水に対する鉄成分の溶解性は、参考文献1(田本、「第14回地下水・土壌汚染とその防止対策に関する研究集会」、酸化・還元条件におけるトンネル掘削ずりからの重金属類溶出特性、2008年)に記載されている内容を参考に評価を行った。まず、蒸留水を分取し(3L減圧瓶、約2.5L)、超音波真空脱気を行い、2Lの瓶に入れ替え、窒素バブリングを1時間行い、炭酸ガスバブリングを5分行い、溶存酸素を固定し、瓶空隙を無くし密栓で蓋をすることで、酸化還元電位が「−280mV」の還元水を得た。次に、250mLの還元水に対して、各サンプルを25g添加し、7日間振トウを行い、遠心分離(3000rpm、20分)によって、液体を回収し、液対中に存在する鉄の濃度を測定することによって評価した。水に溶解した鉄の濃度については、電気加熱原子吸光法(JIS K 0102 57.3)によっての定量分析することで測定した。なお、各サンプルについては、ヒ素又はセレンを吸着させたサンプルを用いて評価を行った。表3に、各サンプルの鉄、ヒ素及び4価セレンの溶出量(mg/L)を測定した結果を示す。
(2) Solubility of iron component in reduced water Samples 1 and 3-8 were evaluated for the solubility of the iron component in reduced water. The solubility of iron components in reduced water can be found in Reference 1 (Tamoto, “14th Research Meeting on Groundwater and Soil Contamination and Prevention Measures”, Elution Characteristics of Heavy Metals from Tunnel Excavation under Oxidation and Reduction Conditions, 2008 The evaluation was conducted with reference to the contents described in the year. First, extract distilled water (3L vacuum bottle, approx. 2.5L), perform ultrasonic vacuum degassing, replace with 2L bottle, perform nitrogen bubbling for 1 hour, perform carbon dioxide bubbling for 5 minutes, and dissolve oxygen. Fixing, eliminating the bottle gap and capping with a tight stopper, gave reduced water having an oxidation-reduction potential of “−280 mV”. Next, 25 g of each sample is added to 250 mL of reduced water, shaken tow for 7 days, the liquid is recovered by centrifugation (3000 rpm, 20 minutes), and the concentration of iron present in the liquid pair is determined. It was evaluated by measuring. The concentration of iron dissolved in water was measured by quantitative analysis by an electric heating atomic absorption method (JIS K 0102 57.3). In addition, about each sample, it evaluated using the sample which adsorb | sucked arsenic or selenium. Table 3 shows the results of measuring the elution amounts (mg / L) of iron, arsenic and tetravalent selenium of each sample.
(3)吸着性能に対する製造コスト
各サンプルの原料コストを、処理できるAsの吸着性能で割り、砒素吸着性能に対する原料コストを算出した。そして、サンプル6の吸着性能に対する原料コストの値を1.0としたとき、他のサンプルの吸着性能に対する原料コストの値を相対的に算出し、以下の基準に従って評価した。なお、各サンプルの値は、小さいほど、サンプル6に対し、安価な原料コストで砒素を吸着処理できることを意味している。
◎:0.5以下
○:0.5超え、0.75未満
△:0.75以上、1.0未満
×:1.0以上
(3) Manufacturing cost for adsorption performance The raw material cost for each sample was divided by the adsorption performance of As that can be processed to calculate the raw material cost for the arsenic adsorption performance. And when the value of the raw material cost with respect to the adsorption | suction performance of the sample 6 was set to 1.0, the value of the raw material cost with respect to the adsorption | suction performance of another sample was calculated relatively, and it evaluated in accordance with the following references | standards. Note that the smaller the value of each sample, the more arsenic can be adsorbed to the sample 6 at a lower raw material cost.
◎: 0.5 or less ○: More than 0.5, less than 0.75 △: 0.75 or more, less than 1.0 ×: 1.0 or more
表3によれば、(1)汚染成分の吸着性能については、実施例に該当するサンプル(1〜4、7及び9)は、セリウム化合物の水和物及び水酸化鉄の相乗効果によって、有効に汚染成分に対する吸着性能が発揮されていることがわかる。一方、比較例に該当するサンプル(5、6及び10)は、吸着性能が十分に発揮されていないことがわかる。
また、(1)汚染成分の吸着性能については、サンプル10は加熱乾燥温度が400℃を超えた450℃であるため、吸着剤中の水酸化セリウムが水和物でなくなり、加熱乾燥温度が250℃の水和物であるサンプル8及び加熱乾燥温度が350℃の水和物であるサンプル9に比べて著しく汚染成分吸着力が低下することがわかる。
また、(2)還元水に対する鉄成分の溶解性については、セリウム化合物の水和物を含有しないサンプル6については、還元水によって多量の鉄が溶出し、環境に悪影響を及ぼす恐れがある。一方、その他のサンプルについては、有効に鉄成分、ヒ素及び4価セレンの溶出を抑制できていることがわかる。
さらに、(3)製造コストについては、鉄を材料として含むサンプル1〜4及び6〜9が、水酸化セリウムの水和物のみを吸着成分とするサンプル5及び水酸化セリウムのみを吸着成分とするサンプル10に比べて低コストで製造できることがわかる。
According to Table 3, (1) Regarding the adsorption performance of contaminating components, the samples (1-4, 7 and 9) corresponding to the examples are effective due to the synergistic effect of the cerium compound hydrate and iron hydroxide. It can be seen that the adsorption performance for the contaminating components is exhibited. On the other hand, it can be seen that the samples (5, 6 and 10) corresponding to the comparative examples do not sufficiently exhibit the adsorption performance.
(1) Regarding the adsorption performance of the contaminating component, since the heat drying temperature of Sample 10 is 450 ° C. exceeding 400 ° C., the cerium hydroxide in the adsorbent is no longer a hydrate, and the heat drying temperature is 250 ° C. It can be seen that the adsorbing power of the contaminating component is remarkably reduced as compared with the sample 8 which is a hydrate at 0 ° C. and the sample 9 which is a hydrate at a heat drying temperature of 350 ° C.
(2) Regarding the solubility of the iron component in the reduced water, a large amount of iron is eluted by the reduced water in the sample 6 not containing the cerium compound hydrate, which may adversely affect the environment. On the other hand, about other samples, it turns out that the elution of an iron component, arsenic, and tetravalent selenium can be suppressed effectively.
Furthermore, (3) Regarding production costs, Samples 1 to 4 and 6 to 9 containing iron as a material have Sample 5 containing only cerium hydroxide hydrate as an adsorbing component and only cerium hydroxide as an adsorbing component. It turns out that it can manufacture at low cost compared with the sample 10. FIG.
本発明によれば、従来の吸着剤と同等の汚染成分吸着性能を有し、さらに、吸着効果が長時間持続する汚染成分吸着剤及びその製造方法を、低コストで提供することが可能である。 According to the present invention, it is possible to provide a pollutant component adsorbent having a contaminant adsorbing performance equivalent to that of a conventional adsorbent and having an adsorption effect that lasts for a long time, and a method for producing the same, at a low cost. .
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009114845A JP2010260030A (en) | 2009-05-11 | 2009-05-11 | Adsorbent for adsorbing contaminating component and method for producing the adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009114845A JP2010260030A (en) | 2009-05-11 | 2009-05-11 | Adsorbent for adsorbing contaminating component and method for producing the adsorbent |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010260030A true JP2010260030A (en) | 2010-11-18 |
Family
ID=43358575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009114845A Withdrawn JP2010260030A (en) | 2009-05-11 | 2009-05-11 | Adsorbent for adsorbing contaminating component and method for producing the adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010260030A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184120A (en) * | 2012-03-08 | 2013-09-19 | Dowa Eco-System Co Ltd | Selenium adsorbent, method of manufacturing the same, and treatment method of selenium-containing liquid |
JP2014133221A (en) * | 2013-01-11 | 2014-07-24 | Nihon Kaisui:Kk | Insolubilization material for arsenic-containing heavy metal contaminated soil, and insolubilization method therefor |
JP2017159205A (en) * | 2016-03-08 | 2017-09-14 | オルガノ株式会社 | Processing apparatus and processing method of boron/selenium-containing water |
KR20210108259A (en) * | 2020-02-25 | 2021-09-02 | 인오켐 주식회사 | Fluorine adsorption material, preparing method for the same and treatment method of waste-water having fluorine ion using the same |
-
2009
- 2009-05-11 JP JP2009114845A patent/JP2010260030A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013184120A (en) * | 2012-03-08 | 2013-09-19 | Dowa Eco-System Co Ltd | Selenium adsorbent, method of manufacturing the same, and treatment method of selenium-containing liquid |
JP2014133221A (en) * | 2013-01-11 | 2014-07-24 | Nihon Kaisui:Kk | Insolubilization material for arsenic-containing heavy metal contaminated soil, and insolubilization method therefor |
JP2017159205A (en) * | 2016-03-08 | 2017-09-14 | オルガノ株式会社 | Processing apparatus and processing method of boron/selenium-containing water |
KR20210108259A (en) * | 2020-02-25 | 2021-09-02 | 인오켐 주식회사 | Fluorine adsorption material, preparing method for the same and treatment method of waste-water having fluorine ion using the same |
WO2021172619A1 (en) * | 2020-02-25 | 2021-09-02 | 인오켐주식회사 | Fluorine adsorbent, preparation method therefor, and method for treatment of fluorine-containing wastewater by using same |
KR102342317B1 (en) | 2020-02-25 | 2021-12-24 | 인오켐 주식회사 | Fluorine adsorption material, preparing method for the same and treatment method of waste-water having fluorine ion using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xue et al. | Adsorption characterization of Cu (II) from aqueous solution onto basic oxygen furnace slag | |
CN110894084B (en) | Nano zero-valent iron load material, preparation method thereof and purification method of hexavalent chromium in sewage | |
JP4609660B2 (en) | Adsorbent | |
JP5682809B2 (en) | Method for producing heavy metal or fluorine elution reducing material | |
JP2009072773A (en) | Adsorbent agent | |
WO2016192311A1 (en) | Hollow iron-manganese composite material prepared by etching template process and application thereof | |
Sihn et al. | Immobilization of uranium (VI) in a cementitious matrix with nanoscale zerovalent iron (NZVI) | |
JP2007283168A (en) | Adsorbent and its manufacturing method | |
Liem-Nguyen et al. | Removal mechanism of arsenic (V) by stainless steel slags obtained from scrap metal recycling | |
US10730034B2 (en) | Iron-selenide-oxide sorbent composition for removing mercury (Hg) vapor from a gaseous stream; methods of use and methods of manufacture | |
Agrawal et al. | Systematic studies on adsorption of lead on sea nodule residues | |
JP2007125536A (en) | Immobilizing agent and method for harmful component | |
JP2010260030A (en) | Adsorbent for adsorbing contaminating component and method for producing the adsorbent | |
KR102114995B1 (en) | Heavy Metal Absorbent having Nano Zero Valent Iron and Used Coffee Grounds, and Manufacturing Method thereof | |
Wu et al. | The adsorption and catalytic transformations of chromium on Mn substituted goethite | |
Zhang et al. | Enhanced removal of organics by permanganate preoxidation using tannic acid as a model compound–Role of in situ formed manganese dioxide | |
JP2011156470A (en) | Method for treatment of contaminant components | |
JP2011156466A (en) | Contaminant removing material, method of manufacturing the same and method of removing contaminant | |
Gattullo et al. | Alkaline hydrothermal stabilization of Cr (VI) in soil using glass and aluminum from recycled municipal solid wastes | |
JP4431664B2 (en) | A leaching inhibitor for harmful elements, fly ash that has been used to suppress the leaching of harmful elements | |
Yoshida et al. | Arsenic removal from contaminated water using the CaO–SiO 2–FeO glassy phase in steelmaking slag | |
JP6558744B2 (en) | Method for producing cesium adsorbent | |
JP2018103133A (en) | Soil treatment material and purification method of heavy metal contaminated soil | |
JP4823139B2 (en) | Method for improving acidified soil | |
CN110975798B (en) | Preparation method, application and regeneration method of FeO (OH) -diatomite composite adsorbent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20120807 |