JP2007125536A - Immobilizing agent and method for harmful component - Google Patents
Immobilizing agent and method for harmful component Download PDFInfo
- Publication number
- JP2007125536A JP2007125536A JP2006020029A JP2006020029A JP2007125536A JP 2007125536 A JP2007125536 A JP 2007125536A JP 2006020029 A JP2006020029 A JP 2006020029A JP 2006020029 A JP2006020029 A JP 2006020029A JP 2007125536 A JP2007125536 A JP 2007125536A
- Authority
- JP
- Japan
- Prior art keywords
- agent
- weight
- arsenic
- waste liquid
- harmful
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Treatment Of Sludge (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、有害成分の固定化薬剤および固定化方法に関するものである。詳しくは、排水、廃液等の水溶液および/または汚泥、ケーキ等の泥状物に含有する重金属や砒素等の有害成分を固定化する薬剤、およびこの固定化薬剤を用いて有害成分を含有する水溶液および/または泥状物中の有害成分を固定化する方法に関するものである。 The present invention relates to an immobilizing agent for harmful components and an immobilizing method. Specifically, an aqueous solution such as drainage and waste liquid and / or a chemical that immobilizes harmful components such as heavy metals and arsenic contained in sludge and sludge such as cake, and an aqueous solution that contains harmful components using this immobilized chemical And / or a method for immobilizing harmful components in mud.
砒素等を含有する廃棄物の固定化方法として、鉄塩またはアルミニウム塩に水酸化カルシウムを添加して行う方法(例えば、非特許文献1参照。)、または脱アルカリシリカを添加して行う方法(例えば、特許文献1参照。)のような化学処理による方法が知られている。 As a method for immobilizing waste containing arsenic or the like, a method in which calcium hydroxide is added to an iron salt or an aluminum salt (for example, see Non-Patent Document 1), or a method in which dealkalized silica is added ( For example, a method by chemical treatment as in Patent Document 1 is known.
しかしながら、これらの化学処理法では、固定化処理物中への有害成分の固定化が不十分であるため、固定化処理物が酸性雨等に接触してpHが低下したり、酸化還元作用を受けて元素の価数が変化したりすると、一旦は固定化された有害成分が雨水や地下水に溶出するため、重金属や砒素等の有害成分を含有する浸出水の漏出を完全に防止することは困難である。化学処理後の固定化処理物にセメントを添加して固化するセメント固化法は有害成分の溶出を防止する有力な方法であるが、化学処理と固化処理の二段処理であるためおよびセメント固化処理物の発生量が多いため、処理費が高くなるという欠点がある。 However, in these chemical treatment methods, the immobilization of harmful components in the immobilization treatment product is insufficient, so that the immobilization treatment product comes into contact with acid rain or the like to lower the pH, or the redox action. If the valence of the element changes, the harmful components once immobilized will elute into the rainwater and groundwater, so it is not possible to completely prevent leakage of leachate containing harmful components such as heavy metals and arsenic. Have difficulty. The cement solidification method, in which cement is added to the solidified product after chemical treatment and solidified, is a powerful method to prevent the elution of harmful components, but it is a two-stage treatment of chemical treatment and solidification treatment, and cement solidification treatment. There is a disadvantage that the processing cost becomes high because of the large amount of generated matter.
また、アロフェンまたは火山灰と水酸化カルシウムとを原材料に用いた重金属の吸着作用を有する汚水の浄化材および浄化方法(例えば、特許文献2参照。)も知られている。 In addition, a sewage purifying material and a purifying method (for example, see Patent Document 2) having an action of adsorbing heavy metals using allophane or volcanic ash and calcium hydroxide as raw materials are also known.
しかし、吸着作用を有する浄化材のみでは、排水基準(平成16年5月環境省令第16号)を達成することが困難で、固定化処理物の管理が必要であった。
本発明の目的は、重金属や砒素等の有害成分を含有する水溶液および/または泥状物を固定化して得られる固定化処理物が、酸性雨等の酸性液体に接触しても有害成分が簡単に溶出しないようにすることが可能な有害成分の固定化薬剤、およびこの固定化薬剤を用いた重金属や砒素等の有害成分を含有する水溶液および/または泥状物中の有害成分を容易に固定化する方法を提供することである。 The object of the present invention is to make it easy even if an immobilized treatment product obtained by immobilizing an aqueous solution and / or mud containing a harmful component such as heavy metal or arsenic comes into contact with an acidic liquid such as acid rain. Fixing of harmful components that can be prevented from eluting in water, and easily fixing harmful components in aqueous solutions and / or mud containing harmful components such as heavy metals and arsenic using this fixing agent Is to provide a way to
すなわち本発明の有害成分の固定化薬剤は、シリカ材料と、マグネシウム化合物またはストロンチウム化合物とからなることを特徴とし、有害成分を含有する水溶液および/または泥状物中の有害成分の固定化方法は、有害成分を含有する水溶液および/または泥状物に、有害成分に応じた前処理を行った後、有害成分を含有する水溶液および/または泥状物のpHが4〜12の範囲になるように、シリカ材料と、マグネシウム化合物またはストロンチウム化合物とからなる有害成分の固定化薬剤を添加すること、またはこの固定化薬剤を添加し、次いでpH調整剤を添加することを特徴とする。
なお、固定化とは、有害成分を捕捉し、有害成分の溶出を抑制することであり、これによって有害成分は無害化される。
That is, the harmful component immobilization agent of the present invention is characterized by comprising a silica material and a magnesium compound or a strontium compound, and the method for immobilizing a harmful component in an aqueous solution and / or mud containing the harmful component includes: The aqueous solution and / or mud containing the harmful component is pretreated according to the harmful component, and then the pH of the aqueous solution and / or the mud containing the harmful component is in the range of 4 to 12. In addition, it is characterized by adding an immobilizing agent of a harmful component comprising a silica material and a magnesium compound or a strontium compound, or adding this immobilizing agent and then adding a pH adjuster.
The immobilization means capturing harmful components and suppressing the elution of harmful components, thereby detoxifying the harmful components.
本発明の有害成分の固定化薬剤を使用して、重金属や砒素等の有害成分を含有する水溶液および/または泥状物を固定化して得られる固定化処理物は、酸性雨等の酸性液体に接触しても有害成分が簡単に溶出しない。本発明の有害成分の固定化薬剤を構成する材料は容易に安価に入手できる材料であり、取り扱いも容易で実用的である。 An immobilized treatment product obtained by immobilizing an aqueous solution and / or mud containing a harmful component such as heavy metal and arsenic using the harmful component immobilization agent of the present invention is converted into an acidic liquid such as acid rain. Hazardous components do not elute easily when contacted. The material constituting the harmful component-immobilized drug of the present invention is a material that can be easily obtained at low cost, and is easy to handle and practical.
以下、本発明を詳細に説明する。
本発明の重金属や砒素等の有害成分の固定化薬剤は、シリカ材料と、マグネシウム化合物またはストロンチウム化合物とからなる。
Hereinafter, the present invention will be described in detail.
The agent for immobilizing harmful components such as heavy metals and arsenic of the present invention comprises a silica material and a magnesium compound or a strontium compound.
固定化薬剤の構成成分の一つであるシリカ材料としては、火山灰などの火山噴出物、ガラスカレット、ガラス研磨スラッジ、シリカ質堆積物(けいそう土など)、粘土鉱物(ベントナイト、はくとう土など)、珪砂、石炭灰、シリカゲルおよびシリカヒュームなどが挙げられ、好ましくは火山噴出物、ガラスカレット、珪砂が使用される。これらは単独または組み合わせて使用される。 Silica materials that are one of the components of immobilization agents include volcanic eruptions such as volcanic ash, glass cullet, glass polishing sludge, siliceous deposits (such as diatomaceous earth), and clay minerals (bentonite, clay) Etc.), silica sand, coal ash, silica gel, silica fume and the like, and volcanic ejecta, glass cullet, and silica sand are preferably used. These are used alone or in combination.
このシリカ材料は、珪素(Si)成分の含有量がシリカ(SiO2)換算で50〜99.9重量%、好ましくは60〜90重量%、より好ましくは70〜85重量%のものである。ここで、シリカ換算の含有量とは、このシリカ材料中のSi成分の全てがSiO2を形成しているとしたときの当該シリカ材料中のSiO2の含有量を意味する。
また、その平均粒子径は、通常0.1〜400μm、好ましくは1〜100μm、より好ましくは2〜20μmであり、その比表面積は、100〜5,000,000cm2/g、好ましくは500〜500,000cm2/g、より好ましくは1,000〜100,000cm2/gである。0.1μm未満では取り扱い難くなり、また400μmを越えると反応性が低下し、好ましくない。
This silica material has a silicon (Si) component content of 50 to 99.9 wt%, preferably 60 to 90 wt%, more preferably 70 to 85 wt% in terms of silica (SiO 2 ). Here, the content of silica in terms means the content of SiO 2 of the silica material when all the Si component of the silica material is to be formed a SiO 2.
Moreover, the average particle diameter is 0.1-400 micrometers normally, Preferably it is 1-100 micrometers, More preferably, it is 2-20 micrometers, The specific surface area is 100-5,000,000 cm < 2 > / g, Preferably it is 500-. 500,000 cm 2 / g, more preferably 1,000 to 100,000 cm 2 / g. If it is less than 0.1 μm, handling becomes difficult, and if it exceeds 400 μm, the reactivity is lowered, which is not preferable.
このシリカ材料は、そのまま、乾燥および/または分級された加工品(市販品)、更には高温加熱発泡された加工品(市販品)等を用いることができる。 As this silica material, a dried and / or classified processed product (commercial product), a processed product subjected to high temperature heating foaming (commercial product), and the like can be used as they are.
固定化薬剤の構成成分のもう一つは、マグネシウム化合物またはストロンチウム化合物である。
マグネシウム化合物としては、マグネシウムの水酸化物、酸化物または炭酸塩等であり、具体的には、水酸化マグネシウム(Mg(OH)2)、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)等であり、好ましくは水酸化マグネシウム、酸化マグネシウムが使用される。これらは単独または組み合わせて使用される。
マグネシウム化合物の平均粒子径は、通常0.1〜200μm、好ましくは1〜100μm、より好ましくは2〜20μmである。0.1μm未満では取り扱い難くなり、また200μmを越えると反応性が低下し、好ましくない。
Another component of the immobilized drug is a magnesium compound or a strontium compound.
Examples of the magnesium compound include magnesium hydroxide, oxide, carbonate, and the like. Specifically, magnesium hydroxide (Mg (OH) 2 ), magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), and the like. Yes, preferably magnesium hydroxide or magnesium oxide is used. These are used alone or in combination.
The average particle size of the magnesium compound is usually 0.1 to 200 μm, preferably 1 to 100 μm, more preferably 2 to 20 μm. If it is less than 0.1 μm, handling becomes difficult, and if it exceeds 200 μm, the reactivity is lowered, which is not preferable.
ストロンチウム化合物としては、ストロンチウムの水酸化物、酸化物または炭酸塩等であり、具体的には、水酸化ストロンチウム(Sr(OH)2)、酸化ストロンチウム(SrO)、炭酸ストロンチウム(SrCO3)等であり、好ましくは炭酸ストロンチウムが使用される。これらは単独または組み合わせて使用される。
ストロンチウム化合物の平均粒子径は、通常0.1〜200μm、好ましくは1〜100μm、より好ましくは2〜20μmである。0.1μm未満では取り扱い難くなり、また200μmを越えると反応性が低下し、好ましくない。
Examples of the strontium compound include strontium hydroxide, oxide or carbonate, and specifically, strontium hydroxide (Sr (OH) 2 ), strontium oxide (SrO), strontium carbonate (SrCO 3 ), and the like. Yes, preferably strontium carbonate is used. These are used alone or in combination.
The average particle diameter of the strontium compound is usually 0.1 to 200 μm, preferably 1 to 100 μm, more preferably 2 to 20 μm. If it is less than 0.1 μm, handling becomes difficult, and if it exceeds 200 μm, the reactivity is lowered, which is not preferable.
固定化薬剤がシリカ材料とマグネシウム化合物とからなる場合、シリカ材料とマグネシウム化合物の割合を、シリカ材料中の珪素成分をシリカ換算した重量とマグネシウム化合物中に含有されるマグネシウム原子の重量との比(SiO2:Mg)で表すと、通常100:5〜1,000であり、好ましくは100:10〜800、より好ましくは100:15〜400、更に好ましくは100:20〜200である。
固定化薬剤がシリカ材料とストロンチウム化合物とからなる場合、シリカ材料とストロンチウム化合物の割合を、シリカ材料中の珪素成分をシリカ換算した重量とストロンチウム化合物中に含有されるストロンチウム原子の重量との比(SiO2:Sr)で表すと、通常100:20〜1,500であり、好ましくは100:30〜1,000、より好ましくは100:40〜500、更に好ましくは100:50〜200である。
これらの組成範囲から外れると、固定化性能が低下し、好ましくない。
When the immobilization agent is composed of a silica material and a magnesium compound, the ratio of the silica material and the magnesium compound is determined by the ratio of the weight of the silicon component in the silica material converted to silica and the weight of the magnesium atom contained in the magnesium compound ( When expressed in terms of (SiO 2 : Mg), it is usually 100: 5 to 1,000, preferably 100: 10 to 800, more preferably 100: 15 to 400, and still more preferably 100: 20 to 200.
When the immobilization agent is composed of a silica material and a strontium compound, the ratio of the silica material and the strontium compound is determined by the ratio of the weight of the silicon component in the silica material converted to silica and the weight of the strontium atom contained in the strontium compound ( When expressed by SiO 2 : Sr), it is usually 100: 20 to 1,500, preferably 100: 30 to 1,000, more preferably 100: 40 to 500, and still more preferably 100: 50 to 200.
If it is out of these composition ranges, the immobilization performance is lowered, which is not preferable.
該固定化薬剤においては、カルシウム化合物は固定化性能を低下させるので、固定化薬剤、それを構成するシリカ材料、マグネシウム化合物、ストロンチウム化合物のそれぞれについて、カルシウム化合物の含有量がCaO換算で好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下のものを使用するのが好ましい。 In the immobilization agent, the calcium compound decreases the immobilization performance. Therefore, the content of the calcium compound is preferably 10 in terms of CaO for each of the immobilization agent, the silica material constituting the immobilization agent, the magnesium compound, and the strontium compound. It is preferable to use those not more than wt%, more preferably not more than 5 wt%, still more preferably not more than 1 wt%.
この固定化薬剤は、粉末状または水スラリー状で使用される。取り扱い易さから、好ましくは水スラリー状で使用される。
水スラリー中の固定化薬剤含有量は、添加とpH調整のし易さから、通常5〜50重量%、好ましくは10〜30重量%とする。
この水スラリーは、通常、アルカリ性であり、例えば、50重量%の火山灰(丸中白土(株)製、シルトF)と50重量%の水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)とからなる固定化薬剤(SiO2:Mg=100:57)を20重量%含有する水スラリーのpHは9〜11である。
This immobilization drug is used in the form of powder or water slurry. In view of ease of handling, it is preferably used in the form of a water slurry.
The content of the immobilized drug in the water slurry is usually 5 to 50% by weight, preferably 10 to 30% by weight, because of easy addition and pH adjustment.
This water slurry is usually alkaline. For example, 50% by weight of volcanic ash (manufactured by Marunaka Shirato Co., Ltd., Silt F) and 50% by weight of magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg ( The pH of the water slurry containing 20% by weight of an immobilizing agent (SiO 2 : Mg = 100: 57) consisting of (OH) 2 purity: 95% by weight or more) is 9-11.
本発明の固定化方法は、有害成分を含有する水溶液および/または泥状物に、有害成分に応じた前処理を行った後、有害成分を含有する水溶液および/または泥状物のpHが4〜12の範囲になるように、シリカ材料と、マグネシウム化合物またはストロンチウム化合物とからなる有害成分の固定化薬剤を添加すること、またはこの固定化薬剤を添加し、次いでpH調整剤を添加することを特徴とし、このことによって水溶液および/または泥状物中の有害成分を容易に固定化するものである。 In the immobilization method of the present invention, an aqueous solution and / or mud containing a harmful component is pretreated according to the harmful component, and then the pH of the aqueous solution and / or the mud containing the harmful component is 4. Adding an immobilizing agent of a harmful component consisting of a silica material and a magnesium compound or a strontium compound, or adding this immobilizing agent, and then adding a pH adjusting agent so as to be in the range of ˜12. It is characterized by the fact that it can easily fix harmful components in aqueous solution and / or mud.
本発明の処理対象とする水溶液としては、有害成分を含有する排水、廃液、地下水、河川水等が挙げられ、例えば、工場排水や鉱山廃液、土壌を洗浄した排水がある。また泥状物としては、有害成分を含有する廃液処理によって発生したケーキ、建設汚泥、下水汚泥、鉱さい、燃殻、土壌等が挙げられる。
有害成分としては、砒素、水銀、クロム、セレン、カドミウム、鉛、アンチモン、亜鉛、銅、マンガン、コバルト、ニッケル、モリブデン、スズ、燐などの元素またはこれらの化合物が挙げられるが、これらに限定されるものではない。
Examples of the aqueous solution to be treated according to the present invention include wastewater containing harmful components, waste liquid, groundwater, river water, and the like. Examples include factory wastewater, mine wastewater, and wastewater from which soil has been washed. Examples of the muddy material include cakes, construction sludge, sewage sludge, slag, fuel shells, soil and the like generated by waste liquid treatment containing harmful components.
Hazardous components include, but are not limited to, elements such as arsenic, mercury, chromium, selenium, cadmium, lead, antimony, zinc, copper, manganese, cobalt, nickel, molybdenum, tin, phosphorus, or compounds thereof. It is not something.
本発明の方法において、重金属や砒素等の有害成分を含有する水溶液および/または泥状物に前記固定化薬剤を添加する前に、有害成分を固定化し易い形態にしたり、より毒性の少ない形態にして取り扱いを容易にしたりするために、有害成分に応じた前処理を行う。
前処理としては、有害成分に応じて、酸化剤、還元剤、共沈剤からなる群より選ばれた少なくとも一種の薬剤を、有害成分を含有する水溶液および/または泥状物に添加し、pHを1〜4に調整する方法などが挙げられる。
In the method of the present invention, before adding the immobilizing agent to an aqueous solution and / or mud containing a harmful component such as heavy metal or arsenic, the harmful component can be easily fixed or less toxic. In order to facilitate handling, pre-treatment according to harmful components is performed.
As pretreatment, at least one agent selected from the group consisting of an oxidizing agent, a reducing agent, and a coprecipitation agent is added to an aqueous solution and / or mud containing the harmful component according to the harmful component, and the pH is increased. The method of adjusting to 1-4 is mentioned.
前記酸化剤としては、例えば、次亜塩素酸塩、第二鉄塩、第二銅塩、マンガン化合物等が挙げられ、なかでも次亜塩素酸ナトリウム、硫酸第二鉄、塩化第二鉄、硫酸第二銅、塩化第二銅、二酸化マンガンが好ましい。酸化剤の添加量は、有害成分を含有する水溶液および/または泥状物中に含有される還元態の有害成分を酸化態にするのに必要な化学量論量以上であり、例えば、第二鉄塩を使用して亜砒酸を砒酸塩にする時、第二鉄塩の量は、亜砒酸を基準に2モル倍以上である。
通常、水溶液および/または泥状物中の有害成分が、第一鉄塩のような溶解度の高いもの、亜砒酸塩のような共沈し難いもの、または亜砒酸塩のような有害ガスを発生し易いものであるとき、前記の酸化剤を添加し、これらを酸化することによって、各々、第二鉄塩のような難溶性のもの、砒酸塩のような共沈し易いもの、または有害ガスを発生し難いものにすることができる。
Examples of the oxidizing agent include hypochlorite, ferric salt, cupric salt, manganese compounds, etc., among them sodium hypochlorite, ferric sulfate, ferric chloride, sulfuric acid. Cupric, cupric chloride and manganese dioxide are preferred. The addition amount of the oxidizing agent is not less than the stoichiometric amount necessary for converting the reduced harmful component contained in the aqueous solution and / or the sludge containing the harmful component into the oxidized state, for example, the second When iron salt is used to convert arsenous acid to arsenate, the amount of ferric salt is 2 moles or more based on arsenous acid.
Usually, harmful components in aqueous solution and / or mud are likely to generate highly soluble substances such as ferrous salts, difficult to co-precipitate such as arsenite, or harmful gases such as arsenite. When these are added, the above oxidizing agents are added, and these are oxidized to generate insoluble substances such as ferric salts, coprecipitates such as arsenates, or harmful gases, respectively. Can be difficult.
前記還元剤としては、例えば、チオ硫酸塩、第一鉄塩、第一銅塩、亜硝酸塩、亜硫酸塩、硫黄化合物等が挙げられ、なかでもチオ硫酸ナトリウム、硫酸第一鉄、塩化第一鉄、硫酸第一銅、塩化第一銅、亜硝酸ナトリウム、亜硫酸ナトリウム、硫化鉄が好ましい。還元剤の添加量は、有害成分を含有する水溶液および/または泥状物中に含有される酸化態の有害成分を還元態にするのに必要な化学量論量以上であり、例えば、第一鉄塩を使用して6価クロムを3価クロムにする時、第一鉄塩の量は、6価クロムを基準に3モル倍以上である。
通常、水溶液および/または泥状物中の有害成分が、6価クロムや6価セレンのような溶解度の高いものであるとき、前記の還元剤を添加し、これらを還元することによって、3価クロムや4価セレンのような難溶性のものにすることができる。
Examples of the reducing agent include thiosulfate, ferrous salt, cuprous salt, nitrite, sulfite, sulfur compound, and the like. Among them, sodium thiosulfate, ferrous sulfate, ferrous chloride Cuprous sulfate, cuprous chloride, sodium nitrite, sodium sulfite and iron sulfide are preferred. The amount of the reducing agent added is equal to or more than the stoichiometric amount necessary for converting the oxidized harmful component contained in the aqueous solution and / or sludge containing the harmful component into the reduced state. When hexavalent chromium is converted to trivalent chromium using an iron salt, the amount of ferrous salt is 3 moles or more based on hexavalent chromium.
Usually, when a harmful component in an aqueous solution and / or a muddy substance is a highly soluble substance such as hexavalent chromium or hexavalent selenium, the above-mentioned reducing agent is added, and these are reduced to reduce trivalent. It can be made insoluble such as chromium and tetravalent selenium.
前記共沈剤としては、例えば、第二鉄塩、アルミニウム塩、第二銅塩、亜鉛塩、マグネシウム塩、カルシウム塩、金属リン酸塩等が挙げられ、なかでも硫酸第二鉄、塩化第二鉄、硫酸アルミニウム、第一リン酸塩(例えば、第一リン酸カルシウム、第一リン酸ナトリウム、第一リン酸カリウム、第一リン酸マグネシウムなど)が好ましい。共沈剤の添加量は、有害成分を含有する水溶液および/または泥状物中に含有される有害成分を基準に、通常2モル倍以上である。 Examples of the coprecipitation agent include ferric salt, aluminum salt, cupric salt, zinc salt, magnesium salt, calcium salt, metal phosphate and the like, among others, ferric sulfate, ferric chloride. Iron, aluminum sulfate, and primary phosphate (for example, primary calcium phosphate, primary sodium phosphate, primary potassium phosphate, primary magnesium phosphate, etc.) are preferred. The addition amount of the coprecipitation agent is usually 2 mol times or more based on the harmful components contained in the aqueous solution and / or mud containing the harmful components.
前記前処理においては、酸化剤、還元剤、共沈剤からなる群より選ばれた少なくとも一種の薬剤を、有害成分に応じて、有害成分を含有する水溶液および/または泥状物に添加し、pHを1〜4の範囲に調整する。
使用する薬剤またはその量によって、薬剤を添加した水溶液および/または泥状物のpHは1〜4の範囲になる場合もあるし、範囲外になる場合もある。pHを1〜4の範囲内にするため、または範囲内でpHを変更する場合に、酸またはアルカリであるpH調整剤を添加してpHを調整する。すなわち、前処理において、必要によりpH調整剤を添加してpHを調整する。
In the pretreatment, at least one agent selected from the group consisting of an oxidizing agent, a reducing agent, and a coprecipitation agent is added to an aqueous solution and / or a mud containing the harmful component, depending on the harmful component, Adjust the pH to the range of 1-4.
Depending on the drug used or its amount, the pH of the aqueous solution and / or mud containing the drug may be in the range of 1 to 4, or may be outside the range. In order to make pH into the range of 1-4, or when changing pH within the range, pH adjuster which is an acid or an alkali is added and pH is adjusted. That is, in the pretreatment, if necessary, a pH adjuster is added to adjust the pH.
この場合のpH調整剤としては、硫酸、塩酸、燐酸、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウムおよび硫酸鉄等の酸性硫酸塩等が挙げられる。これらは水溶液または水スラリーで添加される。
また、酸化カルシウム、水酸化カルシウム及び炭酸カルシウム等のカルシウム化合物は、この場合、固定化性能を低下させるので好ましくない。
Examples of the pH adjuster in this case include sulfuric acid, hydrochloric acid, phosphoric acid, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, and iron sulfate sulfate. These are added as aqueous solutions or water slurries.
In this case, calcium compounds such as calcium oxide, calcium hydroxide and calcium carbonate are not preferable because they deteriorate the fixing performance.
前処理を行った後、有害成分を含有する水溶液および/または泥状物に、水溶液および/または泥状物のpHが4〜12の範囲になるように前記固定化薬剤を添加し、または前記固定化薬剤を添加し、次いでpH調整剤を添加し、有害成分を固定化する。
前処理を行った後、固定化薬剤を添加する際に、固定化薬剤の構成成分であるシリカ材料と、マグネシウム化合物またはストロンチウム化合物とを別々に添加しても良い。
After the pretreatment, the immobilized agent is added to the aqueous solution and / or mud containing the harmful component so that the pH of the aqueous solution and / or the mud is in the range of 4 to 12, or An immobilizing agent is added, and then a pH adjuster is added to immobilize harmful components.
After the pretreatment, when the immobilizing agent is added, the silica material that is a component of the immobilizing agent and the magnesium compound or the strontium compound may be added separately.
前記したとおり、本発明の固定化薬剤は、通常、アルカリ性を呈しており、この固定化薬剤を、前処理して得た水溶液および/または泥状物に、pHが4〜12の範囲になるように添加する。本発明の固定化薬剤を添加した後に目的とするpHの範囲にならない時には、固定化薬剤を添加し、次いでpH調整剤を添加する。
pHが4〜12の範囲内で有害成分のそれぞれにとって最適なpH範囲が存在し、そのpHとなるように添加するのが好ましい。例えば、下記するように、有害成分が砒素の場合にはpH5〜9、有害成分が6価クロムの場合にはpH7〜9とするのが好ましい。
また、pHが最適pHから外れたり、pH4〜12の範囲内でpHを変更したりする場合等、必要によりpH調整剤を添加して行う。
pH調整剤としては、硫酸、塩酸、燐酸、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、酸化カルシウム、水酸化カルシウム、炭酸カルシウムおよび硫酸鉄等の酸性硫酸塩等が挙げられる。これらは水溶液または水スラリーで添加される。
固定化薬剤の添加で目的とするpHの範囲にならない時には、pH調整剤として、通常、上記pH調整剤のうちのアルカリ化合物である水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、酸化カルシウム、水酸化カルシウムまたは炭酸カルシウムが添加される。
pH調整剤として、酸化カルシウム、水酸化カルシウムまたは炭酸カルシウムを使用する場合は、前記固定化薬剤を添加した後に添加する。固定化薬剤の添加よりも前に添加することは、固定化性能が低下するので好ましくない。
As described above, the immobilized drug of the present invention is usually alkaline, and the pH is in the range of 4 to 12 in an aqueous solution and / or mud obtained by pretreating this immobilized drug. Add as follows. When the target pH is not reached after the immobilizing agent of the present invention is added, the immobilizing agent is added, and then the pH adjusting agent is added.
There is an optimum pH range for each of the harmful components within the pH range of 4 to 12, and it is preferable to add such a pH. For example, as described below, when the harmful component is arsenic, the pH is preferably 5 to 9, and when the harmful component is hexavalent chromium, the pH is preferably 7 to 9.
In addition, when the pH deviates from the optimum pH or when the pH is changed within the range of pH 4 to 12, a pH adjusting agent is added as necessary.
pH adjusters include sulfuric acid, hydrochloric acid, phosphoric acid, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, calcium oxide, calcium hydroxide, calcium carbonate, and iron sulfate. Examples include salts. These are added as aqueous solutions or water slurries.
When the target pH range is not reached by addition of the immobilizing agent, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, carbonic acid, which is an alkali compound of the above pH adjusters, is usually used as the pH adjuster. Potassium, potassium bicarbonate, calcium oxide, calcium hydroxide or calcium carbonate is added.
When calcium oxide, calcium hydroxide or calcium carbonate is used as a pH adjuster, it is added after the immobilizing agent is added. Addition before the addition of the immobilizing agent is not preferable because immobilization performance is deteriorated.
前処理と固定化の具体的な例について説明する。
(1)砒素含有廃液の場合
前処理として砒素含有廃液に硫酸第二鉄水溶液を添加してpHを1.5〜2.5にし、次にこの廃液のpHが5〜9になるように、前記固定化薬剤を添加する。このことにより、有害成分である砒素と酸化/共沈剤である硫酸第二鉄と固定化薬剤とが反応して、水に不溶性のもの(シリカ化合物など)が生成し、有害成分が固定化される。
(2)6価クロム含有廃液の場合
前処理として6価クロム含有廃液に硫酸第一鉄と硫酸第二鉄の混合水溶液を添加し、さらに硫酸を添加してpHを2〜2.5にし、次にこの廃液のpHが7〜9になるように前記固定化薬剤を添加する。このことにより、有害成分である6価クロムと還元/共沈剤である混合硫酸鉄(硫酸第一鉄と硫酸第二鉄)と固定化薬剤とが反応して、水に不溶性のもの(シリカ化合物など)が生成し、有害成分が固定化される。
(3)鉛含有廃液の場合
前処理として鉛含有廃液に硫酸第一鉄と硫酸第二鉄の混合水溶液を添加し、さらに第一リン酸マグネシウムの水スラリーを添加する。必要に応じて硫酸を添加し、pHを2〜3にする。次にこの廃液のpHが5〜7になるように前記固定化薬剤を添加し、次いでこの廃液のpHが9〜10になるように水酸化カルシウムを添加する。このことにより、有害成分である鉛と還元/共沈剤である混合硫酸鉄(硫酸第一鉄と硫酸第二鉄)と共沈剤である第一リン酸マグネシウムと固定化薬剤とが反応して、水に不溶性のもの(シリカ化合物など)が生成し、有害成分が固定化される。
A specific example of preprocessing and immobilization will be described.
(1) In the case of arsenic-containing waste liquid As a pretreatment, an aqueous ferric sulfate solution is added to the arsenic-containing waste liquid to adjust the pH to 1.5 to 2.5, and then the pH of this waste liquid is adjusted to 5 to 9, Add the immobilized drug. As a result, arsenic, which is a harmful component, ferric sulfate, which is an oxidizing / co-precipitating agent, and an immobilizing agent react with each other to produce water-insoluble substances (such as silica compounds), and the harmful component is immobilized. Is done.
(2) In the case of hexavalent chromium-containing waste liquid As a pretreatment, a mixed aqueous solution of ferrous sulfate and ferric sulfate is added to the hexavalent chromium-containing waste liquid, and sulfuric acid is further added to adjust the pH to 2 to 2.5. Next, the immobilizing agent is added so that the pH of the waste liquid becomes 7-9. As a result, hexavalent chromium which is a harmful component, mixed iron sulfate (ferrous sulfate and ferric sulfate) which is a reducing / coprecipitation agent reacts with the immobilizing agent, and is insoluble in water (silica). Compound, etc.) are generated, and harmful components are immobilized.
(3) In the case of lead-containing waste liquid As a pretreatment, a mixed aqueous solution of ferrous sulfate and ferric sulfate is added to the lead-containing waste liquid, and an aqueous slurry of magnesium phosphate is further added. Sulfuric acid is added as necessary to bring the pH to 2-3. Next, the immobilizing agent is added so that the pH of the waste liquid becomes 5 to 7, and then calcium hydroxide is added so that the pH of the waste liquid becomes 9 to 10. As a result, lead, which is a harmful component, mixed iron sulfate (ferrous sulfate and ferric sulfate) which is a reducing / coprecipitation agent, magnesium phosphate which is a coprecipitation agent, and the immobilized agent react with each other. As a result, water-insoluble substances (such as silica compounds) are generated, and harmful components are immobilized.
本発明の固定化方法では、シアン化水素(HCN)、アルシン(AsH3)等の発生が予想される場合、前処理の際に酸化還元電位を調整することによって、これらのガス等の発生を抑制するのが好ましい。 In the immobilization method of the present invention, when generation of hydrogen cyanide (HCN), arsine (AsH 3 ) or the like is expected, the generation of these gases or the like is suppressed by adjusting the oxidation-reduction potential during the pretreatment. Is preferred.
具体的には、例えば下記の(1)〜(6)の方法が挙げられる。
(1)シアン化合物と砒素を含有する水溶液および/または泥状物の場合、水溶液および/または泥状物に、pH10以上の条件下で次亜塩素酸ナトリウム水溶液等の次亜塩素酸塩の水溶液を酸化還元電位が300〜350mVになるまで添加し、0〜10分間保持し、次いでpHを7〜8に調整し、次亜塩素酸ナトリウム水溶液等の次亜塩素酸塩の水溶液を酸化還元電位が600〜650mVになるまで添加し、0〜30分間保持し、シアン化合物を事前に酸化分解し有害なシアン化水素の発生を抑制した後、硫酸第二鉄水溶液等の第二鉄塩の水溶液を、Fe3+/Asモル比が2倍以上、好ましくは5倍以上、より好ましくは10倍以上となる量を添加し、砒素の固定化処理中の有害なアルシンの発生を抑制する。
Specific examples include the following methods (1) to (6).
(1) In the case of an aqueous solution and / or mud containing cyanide and arsenic, an aqueous solution of hypochlorite, such as an aqueous sodium hypochlorite solution, under the condition of pH 10 or higher. Until the oxidation-reduction potential reaches 300 to 350 mV, hold for 0 to 10 minutes, then adjust the pH to 7 to 8, and add an aqueous solution of hypochlorite such as an aqueous sodium hypochlorite solution to the oxidation-reduction potential. Is added until it reaches 600 to 650 mV, and held for 0 to 30 minutes. After the cyanide is oxidatively decomposed in advance to prevent generation of harmful hydrogen cyanide, an aqueous solution of a ferric salt such as an aqueous ferric sulfate solution is added. The amount of Fe 3+ / As molar ratio is 2 times or more, preferably 5 times or more, more preferably 10 times or more, to suppress generation of harmful arsine during the arsenic immobilization treatment.
(2)pH10において酸化還元電位(以下、換算酸化還元電位という)が300mV未満で、砒素を含有する水溶液および/または泥状物の場合、水溶液および/または泥状物に、アルカリ条件下で次亜塩素酸ナトリウム水溶液等の次亜塩素酸塩の水溶液を換算酸化還元電位が300〜500mVになるまで添加した後、硫酸第二鉄水溶液等の第二鉄塩の水溶液を、Fe3+/Asモル比が2倍以上、好ましくは5倍以上、より好ましくは10倍以上となる量を添加し、砒素の固定化処理中の有害なアルシンの発生を抑制する。 (2) In the case of an aqueous solution and / or mud containing arsenic having a redox potential (hereinafter referred to as a reduced redox potential) of less than 300 mV at pH 10, the aqueous solution and / or the mud are subjected to the following under alkaline conditions. After adding an aqueous solution of hypochlorite such as an aqueous solution of sodium chlorite until the reduced redox potential becomes 300 to 500 mV, an aqueous solution of ferric salt such as an aqueous solution of ferric sulfate is added to Fe 3+ / As mol. Addition of an amount that makes the ratio 2 times or more, preferably 5 times or more, more preferably 10 times or more, suppresses the generation of harmful arsine during the arsenic immobilization treatment.
(3)換算酸化還元電位が300〜800mVで、砒素を含有する水溶液および/または泥状物の場合、水溶液および/または泥状物に、硫酸第二鉄水溶液等の第二鉄塩の水溶液を、Fe3+/Asモル比が2倍以上、好ましくは5倍以上、より好ましくは10倍以上となる量を添加し、砒素の固定化処理中の有害なアルシンの発生を抑制する。なお、この場合、既にアルシンが発生し難い状態になっているので、敢えて次亜塩素酸塩の水溶液等を添加して酸化還元電位を調整しなくても良い。 (3) In the case of an aqueous solution and / or mud containing an arsenic having an equivalent oxidation-reduction potential of 300 to 800 mV, an aqueous solution of a ferric salt such as a ferric sulfate aqueous solution is added to the aqueous solution and / or the mud. , Fe 3+ / As molar ratio is added 2 times or more, preferably 5 times or more, more preferably 10 times or more to suppress generation of harmful arsine during arsenic immobilization treatment. In this case, since arsine is already hardly generated, it is not necessary to adjust the redox potential by adding a hypochlorite aqueous solution or the like.
(4)換算酸化還元電位が800mVを越え、砒素を含有する水溶液および/または泥状物の場合、水溶液および/または泥状物に、アルカリ条件下でチオ硫酸ナトリウム水溶液等のチオ硫酸塩の水溶液を換算酸化還元電位が500〜800mVになるまで添加した後、硫酸第二鉄水溶液等の第二鉄塩の水溶液を、Fe3+/Asモル比が2倍以上、好ましくは5倍以上、より好ましくは10倍以上となる量を添加し、砒素の固定化処理中の有害なアルシンの発生を抑制する。なお、このように換算酸化還元電位が800mVを越える場合、水溶液および/または泥状物中に次亜塩素酸ナトリウム水溶液等の次亜塩素酸塩が含有している可能性がある為、同時に固定化処理中の有害な塩素の発生を抑制している。 (4) In the case of an aqueous solution and / or mud containing an arsenic whose converted oxidation-reduction potential exceeds 800 mV, an aqueous solution of thiosulfate such as an aqueous sodium thiosulfate solution is used in the aqueous solution and / or mud under alkaline conditions. Is added until the converted oxidation-reduction potential reaches 500 to 800 mV, and then an aqueous solution of ferric salt such as ferric sulfate aqueous solution has an Fe 3+ / As molar ratio of 2 times or more, preferably 5 times or more, more preferably Is added in an amount of 10 times or more to suppress the generation of harmful arsine during the arsenic immobilization process. In addition, when the converted oxidation-reduction potential exceeds 800 mV, hypochlorite such as sodium hypochlorite aqueous solution may be contained in the aqueous solution and / or the sludge, so that it is fixed at the same time. The generation of harmful chlorine during chemical treatment is suppressed.
(5)換算酸化還元電位が50mV未満で、セレンを含有する水溶液および/または泥状物の場合、水溶液および/または泥状物に、アルカリ条件下で硫酸第ニ鉄水溶液等の第ニ鉄塩の水溶液を、Fe3+/Seモル比が4倍以上となる量、かつ換算酸化還元電位が50〜250mVになるまで添加し、セレンの固定化処理中の有害なセレン化水素の発生を抑制する。 (5) In the case of an aqueous solution and / or mud containing a selenium having a reduced redox potential of less than 50 mV, a ferric salt such as a ferric sulfate aqueous solution under alkaline conditions in the aqueous solution and / or mud Is added until the Fe 3+ / Se molar ratio is 4 times or more and the reduced oxidation-reduction potential is 50 to 250 mV to suppress generation of harmful hydrogen selenide during the selenium immobilization treatment. .
(6)換算酸化還元電位が250mVを越え、セレンを含有する水溶液および/または泥状物の場合、水溶液および/または泥状物に、アルカリ条件下で硫酸第一鉄水溶液等の第一鉄塩の水溶液を、Fe2+/Seモル比が2倍以上となる量、かつ換算酸化還元電位が50〜250mVになるまで添加し、セレンの固定化処理中の有害なセレン化水素の発生を抑制する。 (6) In the case of an aqueous solution and / or mud containing an equivalent oxidation-reduction potential exceeding 250 mV and containing selenium, a ferrous salt such as an aqueous ferrous sulfate solution is used in the aqueous solution and / or mud under alkaline conditions. Is added until the Fe 2+ / Se molar ratio is doubled or more and the reduced oxidation-reduction potential is 50 to 250 mV, thereby suppressing generation of harmful hydrogen selenide during the selenium immobilization treatment. .
本発明の固定化方法は、キレート剤、吸着剤(活性アルミナ、活性炭など)または凝集剤等を用いる処理方法を施した水溶液および/または泥状物に適用しても良いし、また本発明の固定化方法を施した水溶液および/または泥状物に対してキレート剤、吸着剤(活性アルミナ、活性炭など)または凝集剤等を用いる処理方法を適用しても良い。 The immobilization method of the present invention may be applied to an aqueous solution and / or mud that has been subjected to a treatment method using a chelating agent, an adsorbent (active alumina, activated carbon, etc.) or a flocculant. A treatment method using a chelating agent, an adsorbent (active alumina, activated carbon, etc.), a flocculant, or the like may be applied to the aqueous solution and / or the sludge subjected to the immobilization method.
本発明では、有害ガスが発生する可能性があることから、固定化に使用する反応槽、攪拌装置、送液装置、水溶液および/または泥状物と接する部分等は、ガラス(強化ガラス、耐熱ガラスなど)、ガラス繊維、繊維強化プラスチック、セラミック、または耐酸モルタル等の材料からなるものが好ましい。また同様の理由から、金属粉粒子を含有する水溶液を処理する場合、事前に水溶液中の金属微粒子を濾過または沈降分離等により除去した後、処理することが好ましい。 In the present invention, since harmful gas may be generated, the reaction tank, the stirring device, the liquid feeding device, the portion in contact with the aqueous solution and / or the muddy material, etc. used for immobilization are made of glass (tempered glass, heat resistant Glass, etc.), glass fiber, fiber reinforced plastic, ceramic, or acid resistant mortar is preferred. For the same reason, when treating an aqueous solution containing metal powder particles, it is preferable to treat the metal fine particles in the aqueous solution in advance after removing them by filtration or sedimentation separation.
本発明では、有害成分を含有する水溶液および/または泥状物を固定化して得られる固定化処理物を放置熟成することによって、有害成分の溶出抑制効果が高くなる。水溶液処理の場合、固定化後の固定化処理物と上澄み液を固液分離し熟成することが好ましい。熟成時間は長いほど溶出抑制効果が強化されるため、固定化処理物を20時間以上放置、熟成することが好ましい。熟成は、例えば、静置条件下、0〜40℃の空気中で行われる。
また熟成が完了するまでは、固定化処理物を酸性液体に接触させるのは好ましくない。
In the present invention, the effect of suppressing the elution of harmful components is enhanced by leaving and aging an immobilized treatment product obtained by immobilizing an aqueous solution and / or mud containing a harmful component. In the case of an aqueous solution treatment, it is preferable to solidify the immobilization treatment product and the supernatant after immobilization and ripen. The longer the aging time is, the stronger the elution suppressing effect is. Therefore, it is preferable that the immobilization product is left for aging for 20 hours or more. Aging is performed, for example, in air at 0 to 40 ° C. under stationary conditions.
In addition, it is not preferable to bring the immobilized treatment product into contact with the acidic liquid until ripening is completed.
本発明の前記固定化薬剤に代えて、水酸化カルシウム、水酸化マグネシウム等を用いる固定化では、有害成分の固定化が不十分であるため、固定化後の固定化処理物が酸性雨等に接触してpHが低下したりすると、一旦は固定化された有害成分が液中に溶出する。この場合、液中に溶出する有害成分が排水基準(例えば、砒素の場合、0.1mg/l以下)を達成することができない。従って、固定化処理物を埋立て処分した場合、浸出水の恒久対策が必要となる。
溶出の有無は、固定化処理物を酸性水溶液を用いて洗浄し、液中に溶出する有害成分(砒素など)を定量すること(酸洗浄溶出試験)により調べることができる。
例えば、砒素の排水基準は0.1mg/l以下であるが、固定化条件の変動、固定化処理物の処分環境の変動等もあるので、実用的には、この酸洗浄溶出試験で約0.05mg/l以下を奏する固定化方法が好ましく採用される。
In the immobilization using calcium hydroxide, magnesium hydroxide or the like instead of the immobilization agent of the present invention, the immobilization of harmful components is insufficient. When the pH decreases due to contact, the harmful components once immobilized are eluted in the liquid. In this case, the harmful component eluted in the liquid cannot achieve the waste water standard (for example, 0.1 mg / l or less in the case of arsenic). Therefore, when the immobilization treatment is disposed of in landfill, permanent measures for leachate are required.
The presence or absence of elution can be examined by washing the immobilized product with an acidic aqueous solution and quantifying harmful components (such as arsenic) eluted in the solution (acid washing elution test).
For example, the drainage standard for arsenic is 0.1 mg / l or less, but there are also fluctuations in immobilization conditions, changes in the disposal environment of the immobilization treatment, etc. An immobilization method of 0.05 mg / l or less is preferably employed.
本発明においては、有害成分の固定化薬剤の原料として、日本全国に分布する火山灰などの火山噴出物および粘土鉱物などの有効利用や、ガラスカレットおよびガラス研磨スラッジなどの廃棄物利用を図ることができ、マグネシウム化合物を含め、容易に安価に入手できる材料を用いて、重金属や砒素等の有害成分を含有する水溶液および/または泥状物中の有害成分を容易に固定化することができ、固定化処理物が酸性雨等の酸性液体と接触しても有害成分の漏洩を防止することが可能である。 In the present invention, it is possible to effectively use volcanic eruptions such as volcanic ash and clay minerals distributed throughout Japan, as well as wastes such as glass cullet and glass polishing sludge, as raw materials for harmful component immobilization agents. It is possible to fix and easily fix harmful components in aqueous solutions and / or mud containing toxic components such as heavy metals and arsenic using materials that can be easily obtained at low cost, including magnesium compounds. Leakage of harmful components can be prevented even when the chemical treatment product comes into contact with an acidic liquid such as acid rain.
以下、本発明を実施例で詳細に説明するが、本発明はこれらに限定されるものではない。
なお、成分濃度や物性の測定は次の方法で行った。
(1)砒素濃度:JIS K 0102 61.2水素化物発生原子吸光法 備考3に基づいて行った。
(2)鉛濃度:濃度が高い場合はJIS K 0102 54.2フレーム原子吸光法に基づき、濃度が低い場合はJIS K 0102 65.1.3電気加熱原子吸光法に基づいて行った。
(3)燐濃度:JIS K 0102 46.3.1またはJIS K 0102 46.3.3の前処理を行った後にJIS K 0102 46.1.1モリブデン青・アスコルビン酸還元吸光光度法に基づいて行った。
(4)平均粒子径:マイクロトラック粒度分布測定装置9320HRA(X−100)(日機装(株)製)を用いて求めた。
(5)比表面積:流動法BET一点法比表面積測定装置MONOSORB(ユアサアイオニクス(株)製)を用いて求めた。
(6)結晶性:X線回折装置RAD−RB RU−200((株)リガク製)を用いて求めた。
(7)アルシン濃度:ガス検知器(新コスモス電機(株)製:商品名“XD−303AH”)を用いて測定した。
(8)pH:ハンディータイプpHメーター(堀場(株)製:商品名“D−22”、pH電極9621−10D付き)を用いて測定した。
(9)酸化還元電位:ポータブルORP計(東亜ディーケーケー(株)製:商品名“RM−20P”、複合センサーPST−2739C付き)を用いて測定し、水素電極基準値で表した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
The component concentration and physical properties were measured by the following method.
(1) Arsenic concentration: Measured based on JIS K 0102 61.2 Hydride generation atomic absorption method Remark 3.
(2) Lead concentration: When the concentration was high, it was based on JIS K 0102 54.2 flame atomic absorption method, and when the concentration was low, it was based on JIS K 0102 65.1.3.
(3) Phosphorus concentration: after pretreatment of JIS K 0102 46.3.1 or JIS K 0102 463.3, based on JIS K 0102 46.1.1 Molybdenum Blue / Ascorbic Acid Reduction Spectrophotometry went.
(4) Average particle diameter: It was determined using a Microtrac particle size distribution analyzer 9320HRA (X-100) (manufactured by Nikkiso Co., Ltd.).
(5) Specific surface area: It was determined using a flow method BET single point method specific surface area measuring device MONOSORB (manufactured by Yuasa Ionics Co., Ltd.).
(6) Crystallinity: It was determined using an X-ray diffractometer RAD-RB RU-200 (manufactured by Rigaku Corporation).
(7) Arsine concentration: measured using a gas detector (manufactured by Shin Cosmos Electric Co., Ltd .: trade name “XD-303AH”).
(8) pH: Measured using a handy type pH meter (manufactured by Horiba, Ltd .: trade name “D-22”, with pH electrode 9621-10D).
(9) Oxidation-reduction potential: Measured using a portable ORP meter (manufactured by Toa DKK Co., Ltd .: trade name “RM-20P”, with combined sensor PST-2739C), and expressed as a hydrogen electrode reference value.
実施例1
(有害成分の固定化薬剤の調製)
シリカ材料として火山灰のシルトF(丸中白土(株)製)を用いた。
該シルトFは、Si、Al、Fe、Ca、Mg、KおよびNa成分のそれぞれを、SiO2に換算して71.1重量%、Al2O3に換算して12〜14重量%、Fe2O3に換算して1〜2重量%、CaOに換算して1.2重量%、MgOに換算して0.05〜0.12重量%、K2Oに換算して1.5〜3.5重量%、Na2Oに換算して1.8〜3.2重量%含有し、更に鉛を0.6ppm以下、砒素を0.05ppm以下、リンを20ppm以下、水分を2.2重量%含有し、平均粒子径が8.1μm、比表面積が169,000cm2/gで非晶質のものである。
マグネシウム化合物として水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いた。
該水酸化マグネシウムは、Mg原子を40.5重量%(Mg(OH)2に換算すると97.1重量%)、Ca成分をCaOに換算して0.29重量%、水分を0.53重量%含有し、平均粒子径が4.2μmのものである。
該シルトF50重量部と、該水酸化マグネシウム50重量部を混合し、50重量%の火山灰と50重量%の水酸化マグネシウムとからなる固定化薬剤A(SiO2:Mg=100:57)を調製した。
Example 1
(Preparation of immobilized drug for harmful components)
Volcanic ash silt F (manufactured by Marunaka Shirato Co., Ltd.) was used as the silica material.
The silt F is, Si, Al, Fe, Ca, Mg, respectively K and Na component, 71.1 wt% in terms of SiO 2, 12 to 14 wt% in terms of Al 2 O 3, Fe 1 to 2% by weight in terms of 2 O 3 , 1.2% by weight in terms of CaO, 0.05 to 0.12% in terms of MgO, 1.5 to 5% in terms of K 2 O 3.5% by weight, converted to Na 2 O, 1.8 to 3.2% by weight, lead 0.6 ppm or less, arsenic 0.05 ppm or less, phosphorus 20 ppm or less, moisture 2.2 It is contained by weight%, has an average particle diameter of 8.1 μm, a specific surface area of 169,000 cm 2 / g, and is amorphous.
Magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the magnesium compound.
The magnesium hydroxide has 40.5 wt% Mg atoms (97.1 wt% converted to Mg (OH) 2 ), 0.29 wt% Ca component converted to CaO, and 0.53 wt% water. The average particle diameter is 4.2 μm.
50 parts by weight of Silt F and 50 parts by weight of magnesium hydroxide are mixed to prepare an immobilizing agent A (SiO 2 : Mg = 100: 57) composed of 50% by weight of volcanic ash and 50% by weight of magnesium hydroxide. did.
(砒素含有廃液の固定化)
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度430mg/l、pH9.98、酸化還元電位+408mV(換算酸化還元電位:+407mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が9.3倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.75であった。
(Immobilization of waste liquid containing arsenic)
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid with an As concentration of 430 mg / l, pH 9.98, oxidation-reduction potential +408 mV (converted oxidation-reduction potential: +407 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 9.3 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.75.
次に、前処理した砒素含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように前記固定化薬剤Aを添加した。具体的には、固定化薬剤A20gと水80gを混合して得られた水スラリーを96.0g(固定化薬剤Aとして19.20g)添加し、更に15分間反応させた。固定化薬剤A添加後の砒素含有廃液のpHは6.17であった。固定化薬剤A添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に93時間保持して熟成し、含水率40重量%の固定化処理物35gを得た。濾液の砒素濃度は0.01mg/l未満であった。 Next, the immobilizing agent A was added to the pretreated arsenic-containing waste liquid while stirring in a room temperature atmosphere so that the pH of the waste liquid was about 6. Specifically, 96.0 g of water slurry obtained by mixing 20 g of immobilized drug A and 80 g of water (19.20 g as immobilized drug A) was added, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after addition of the immobilized drug A was 6.17. After the reaction of adding the immobilized drug A, stirring is stopped, and then the resulting cake (immobilized product) is allowed to stand for 30 minutes to settle, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 93 hours in air at room temperature to obtain 35 g of immobilization treatment product having a water content of 40% by weight. The arsenic concentration of the filtrate was less than 0.01 mg / l.
(酸洗浄溶出試験1)
次に、得られた含水率40重量%の固定化処理物20gをフッ素樹脂製撹拌羽根を備えたガラス製容器に入れ、次いでpH2.5に調整した塩酸溶液を固定化処理物の30倍量を加えてスラリー化した後、室温雰囲気で攪拌しながら、スラリーのpHが常に2.5〜2.6となるように0.5mol/l塩酸溶液でpH調整しながら、6時間攪拌した。次に、このスラリーを粒子保持能力1.0μmのガラス繊維製濾紙で濾過し、この濾液の砒素濃度を測定した。濾液の砒素濃度は0.02mg/lであった。
(Acid washing dissolution test 1)
Next, 20 g of the obtained immobilization treatment product having a water content of 40% by weight is put into a glass container equipped with a fluororesin stirring blade, and then the hydrochloric acid solution adjusted to pH 2.5 is 30 times the immobilization treatment product. Then, the mixture was stirred at room temperature for 6 hours while adjusting the pH with a 0.5 mol / l hydrochloric acid solution so that the pH of the slurry was always 2.5 to 2.6. Next, the slurry was filtered through a glass fiber filter paper having a particle holding capacity of 1.0 μm, and the arsenic concentration of the filtrate was measured. The arsenic concentration of the filtrate was 0.02 mg / l.
(アルシン発生濃度)
上記の各工程におけるアルシン発生濃度を測定した。この結果を表1に示す。
また、このときの廃液のpHおよび酸化還元電位をあわせて表1に示す。
(Arsine concentration)
The arsine generation concentration in each of the above steps was measured. The results are shown in Table 1.
In addition, the pH and oxidation-reduction potential of the waste liquid at this time are shown in Table 1.
実施例2
(有害成分の固定化薬剤の調製)
シリカ材料として火山灰の前記シルトF(丸中白土(株)製)を用いた。
ストロンチウム化合物として炭酸ストロンチウム(和光純薬工業(株)製、SrCO3純度:95重量%以上)を用いた。
該炭酸ストロンチウムは、Sr原子を56.7重量%(SrCO3に換算すると95.5重量%)、Ca成分をCaOに換算して0.09重量%、水分を0.1重量%含有し、平均粒子径が3.3μmのものである。
該シルトF50重量部と、該炭酸ストロンチウム50重量部を混合し、50重量%の火山灰と50重量%の炭酸ストロンチウムとからなる固定化薬剤B(SiO2:Sr=100:80)を調製した。
Example 2
(Preparation of immobilized drug for harmful components)
The silt F of volcanic ash (manufactured by Marunaka Shirato Co., Ltd.) was used as the silica material.
As the strontium compound, strontium carbonate (manufactured by Wako Pure Chemical Industries, Ltd., SrCO 3 purity: 95% by weight or more) was used.
The strontium carbonate contains 56.7% by weight of Sr atoms (95.5% by weight when converted to SrCO 3 ), 0.09% by weight when converted to CaO, and 0.1% by weight of water, The average particle size is 3.3 μm.
50 parts by weight of the silt F and 50 parts by weight of the strontium carbonate were mixed to prepare an immobilizing agent B (SiO 2 : Sr = 100: 80) composed of 50% by weight of volcanic ash and 50% by weight of strontium carbonate.
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに前記固定化薬剤Bを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度370mg/l、pH9.80、酸化還元電位+407mV(換算酸化還元電位:+395mV)の砒素含有廃液1Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.34)を用いて調製した41重量%水溶液を26.0g(Fe3+/Asモル比が10.8倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.81であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤B30gと水120gを混合して得られた水スラリーを134.3g(固定化薬剤Bとして26.86g)添加し、更に15分間反応させた。固定化薬剤Bを添加後の砒素含有廃液のpHは5.97であった。固定化薬剤B添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約1Lを得た。次いで濾紙上の固定化処理物を室温の空気中に65時間保持して熟成し、含水率19重量%の固定化処理物43gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率19重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, the immobilized drug B was used.
In a glass container equipped with a fluororesin stirring blade, 1 L of an arsenic-containing waste liquid having an As concentration of 370 mg / l, pH 9.80, oxidation-reduction potential +407 mV (converted oxidation-reduction potential: +395 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.34) was 26.0 g (Fe 3+ / As molar ratio was 10.8 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.81.
Next, 134.3 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 30 g of immobilizing agent B and 120 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. 26.86 g) was added as chemical agent B, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after addition of the immobilizing agent B was 5.97. After the reaction of immobilizing the chemical B, the stirring is stopped, and then the resulting cake (immobilized product) is allowed to stand for 30 minutes to settle, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 1 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 65 hours, and 43 g of immobilization treatment product having a water content of 19% by weight was obtained. The arsenic concentration of the filtrate at this time is shown in Table 2.
In addition, the acid washing elution test 1 was conducted in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 19% by weight. The results are shown in Table 2.
実施例3
(有害成分の固定化薬剤の調製)
シリカ材料としてガラスカレットを用いた。
該ガラスカレットは、Si成分をSiO2に換算して67.2重量%、Ca成分をCaOに換算して9.8重量%、水分を1.1重量%含有し、平均粒子径が111μm、比表面積が3,900cm2/gで非晶質のものである。
マグネシウム化合物として水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いた。
該ガラスカレット50重量部と、該水酸化マグネシウム50重量部を混合し、50重量%のガラスカレットと50重量%の水酸化マグネシウムとからなる固定化薬剤C(SiO2:Mg=100:60)を調製した。
Example 3
(Preparation of immobilized drug for harmful components)
Glass cullet was used as the silica material.
The glass cullet, 67.2 wt% in terms of Si component in SiO 2, 9.8 wt% in terms of Ca component in CaO, water contained 1.1 weight%, average particle diameter 111Myuemu, The specific surface area is 3,900 cm 2 / g and is amorphous.
Magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the magnesium compound.
50 parts by weight of the glass cullet and 50 parts by weight of magnesium hydroxide are mixed, and an immobilizing agent C (SiO 2 : Mg = 100: 60) comprising 50% by weight of glass cullet and 50% by weight of magnesium hydroxide. Was prepared.
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに前記固定化薬剤Cを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度380mg/l、pH9.95、酸化還元電位+375mV(換算酸化還元電位:+372mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が10.5倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.82であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤C30gと水120gを混合して得られた水スラリーを93.4g(固定化薬剤Cとして18.68g)添加し、更に15分間反応させた。固定化薬剤Cを添加後の砒素含有廃液のpHは6.03であった。固定化薬剤C添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に94時間保持して熟成し、含水率13重量%の固定化処理物25gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率13重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, the immobilized drug C was used.
In a glass container equipped with a fluororesin stirring blade, 2 L of arsenic-containing waste liquid with an As concentration of 380 mg / l, pH 9.95, oxidation-reduction potential +375 mV (equivalent oxidation-reduction potential: +372 mV) was added and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) was 52.1 g (Fe 3+ / As molar ratio was 10.5 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.82.
Next, 93.4 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 30 g of immobilized chemical C and 120 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. (18.68 g) was added as chemical agent C, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent C was 6.03. After the reaction of adding the immobilizing agent C, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 94 hours in air at room temperature to obtain 25 g of immobilization treatment product having a water content of 13% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 for 20 g of the obtained immobilized processed product having a water content of 13% by weight. The results are shown in Table 2.
実施例4
(有害成分の固定化薬剤の調製)
シリカ材料として、けいそう土(和光純薬工業(株)製)を用いた。
該けいそう土は、Si成分をSiO2に換算して71.9重量%、Ca成分をCaOに換算して1.0重量%、水分を5.2重量%含有し、平均粒子径が14.7μm、比表面積が400,000cm2/gで非晶質のものである。
マグネシウム化合物として水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いた。
該けいそう土50重量部と、該水酸化マグネシウム50重量部を混合し、50重量%のけいそう土と50重量%の水酸化マグネシウムとからなる固定化薬剤D(SiO2:Mg=100:56)を調製した。
Example 4
(Preparation of immobilized drug for harmful components)
As a silica material, diatomaceous earth (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
The diatomaceous earth is 71.9 wt% in terms of Si component in SiO 2, 1.0 wt% in terms of Ca component in CaO, water contained 5.2 weight%, average particle size 14 0.7 μm, specific surface area is 400,000 cm 2 / g and amorphous.
Magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the magnesium compound.
50 parts by weight of the diatomaceous earth and 50 parts by weight of the magnesium hydroxide are mixed, and an immobilizing agent D (SiO 2 : Mg = 100: 100% consisting of 50% by weight of diatomaceous earth and 50% by weight of magnesium hydroxide). 56) was prepared.
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに前記固定化薬剤Dを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度450mg/l、pH10.02、酸化還元電位+399mV(換算酸化還元電位:+400mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が8.9倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.80であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤D30gと水120gを混合して得られた水スラリーを92.5g(固定化薬剤Dとして18.50g)添加し、更に15分間反応させた。固定化薬剤Dを添加後の砒素含有廃液のpHは6.23であった。固定化薬剤D添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に89時間保持して熟成し、含水率34重量%の固定化処理物32gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率34重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, the immobilized drug D was used.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 450 mg / l, a pH of 10.02, an oxidation-reduction potential of +399 mV (converted oxidation-reduction potential: +400 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) was 52.1 g (Fe 3+ / As molar ratio was 8.9 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.80.
Next, 92.5 g of water slurry obtained by mixing 30 g of immobilized drug D and 120 g of water so that the pH of the waste liquid is about 6 while stirring the pretreated arsenic-containing waste liquid in a room temperature atmosphere (fixed) 18.50 g) was added as chemical agent D, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing drug D was 6.23. After the reaction of adding the immobilizing agent D, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Next, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 89 hours, to obtain 32 g of immobilization treatment product having a moisture content of 34% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was performed in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a moisture content of 34% by weight. The results are shown in Table 2.
実施例5
(有害成分の固定化薬剤の調製)
シリカ材料としてベントナイト(和光純薬工業(株)製)を用いた。
該ベントナイトは、Si成分をSiO2に換算して59.5重量%、Ca成分をCaOに換算して2.9重量%、水分を6.7重量%含有し、平均粒子径が7.6μm、比表面積が358,000cm2/gで結晶質のものである。
マグネシウム化合物として水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いた。
該ベントナイト50重量部と、該水酸化マグネシウム50重量部を混合し、50重量%のベントナイトと50重量%の水酸化マグネシウムとからなる固定化薬剤E(SiO2:Mg=100:68)を調製した。
Example 5
(Preparation of immobilized drug for harmful components)
Bentonite (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the silica material.
The bentonite, 59.5 wt% in terms of Si component in SiO 2, 2.9 wt% in terms of Ca component in CaO, moisture contained 6.7 wt%, average particle diameter of 7.6μm The specific surface area is 358,000 cm 2 / g and crystalline.
Magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the magnesium compound.
50 parts by weight of the bentonite and 50 parts by weight of the magnesium hydroxide are mixed to prepare an immobilizing agent E (SiO 2 : Mg = 100: 68) composed of 50% by weight of bentonite and 50% by weight of magnesium hydroxide. did.
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに前記固定化薬剤Eを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度380mg/l、pH9.63、酸化還元電位+414mV(換算酸化還元電位:+392mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が10.5倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.80であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤E30gと水120gを混合して得られた水スラリーを95.1g(固定化薬剤Eとして19.02g)添加し、更に15分間反応させた。固定化薬剤Eを添加後の砒素含有廃液のpHは6.33であった。固定化薬剤E添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に93時間保持して熟成し、含水率43重量%の固定化処理物37gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率43重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
(Immobilization of waste liquid containing arsenic)
The immobilization drug E was used in place of the immobilization drug A.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 380 mg / l, a pH of 9.63, an oxidation-reduction potential of +414 mV (equivalent oxidation-reduction potential: +392 mV) was added and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) was 52.1 g (Fe 3+ / As molar ratio was 10.5 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.80.
Next, 95.1 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 30 g of immobilizing agent E and 120 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. 19.02 g) was added as chemical agent E, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent E was 6.33. After the reaction of adding the immobilizing agent E, the stirring is stopped, and then left to stand for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 93 hours in air at room temperature to obtain 37 g of immobilization treatment product having a water content of 43% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
In addition, acid washing elution test 1 was performed in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 43% by weight. The results are shown in Table 2.
実施例6
(有害成分の固定化薬剤の調製)
シリカ材料として、はくとう土(和光純薬工業(株)製)を用いた。
該はくとう土は、Si成分をSiO2に換算して76.2重量%、Ca成分をCaOに換算して0.06重量%、水分を1.7重量%含有し、平均粒子径が4.4μm、比表面積が76,000cm2/gで結晶質のものである。
マグネシウム化合物として水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いた。
該はくとう土50重量部と、該水酸化マグネシウム50重量部を混合し、50重量%のはくとう土と50重量%の水酸化マグネシウムとからなる固定化薬剤F(SiO2:Mg=100:53)を調製した。
Example 6
(Preparation of immobilized drug for harmful components)
As the silica material, Hakuto soil (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
The bald soil, 76.2 wt% in terms of Si component in SiO 2, 0.06 wt% in terms of Ca component in CaO, moisture contained 1.7 wt%, average particle diameter It is 4.4 μm and has a specific surface area of 76,000 cm 2 / g and is crystalline.
Magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the magnesium compound.
50 parts by weight of the clay and 50 parts by weight of the magnesium hydroxide are mixed, and the immobilization agent F (SiO 2 : Mg = 50% by weight of the clay and 50% by weight of magnesium hydroxide is mixed. 100: 53).
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに前記固定化薬剤Fを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度450mg/l、pH9.84、酸化還元電位+434mV(換算酸化還元電位:+425mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が8.9倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.83であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤F30gと水120gを混合して得られた水スラリーを92.3g(固定化薬剤Fとして18.46g)添加し、更に15分間反応させた。固定化薬剤Fを添加後の砒素含有廃液のpHは6.13であった。固定化薬剤F添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に89時間保持して熟成し、含水率42重量%の固定化処理物37gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率42重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, the immobilized drug F was used.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 450 mg / l, a pH of 9.84, an oxidation-reduction potential of +434 mV (converted oxidation-reduction potential: +425 mV), and stirring at room temperature, A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) was 52.1 g (Fe 3+ / As molar ratio was 8.9 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.83.
Next, 92.3 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 30 g of immobilized chemical F and 120 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. 18.46 g) was added as a chemical agent F, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent F was 6.13. After the reaction of adding the immobilizing agent F, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 89 hours to obtain 37 g of immobilization treatment product having a water content of 42% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 42% by weight. The results are shown in Table 2.
実施例7
(有害成分の固定化薬剤の調製)
シリカ材料として珪砂(オーストラリア産)を用いた。
該珪砂は、Si成分をSiO2に換算して98.4重量%、Ca成分をCaOに換算して0.01重量%未満、水分を0.01重量%未満含有し、平均粒子径が334μm、比表面積が400cm2/gで結晶質のものである。
マグネシウム化合物として水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いた。
該珪砂50重量部と、該水酸化マグネシウム50重量部を混合し、50重量%の珪砂と50重量%の水酸化マグネシウムとからなる固定化薬剤G(SiO2:Mg=100:41)を調製した。
Example 7
(Preparation of immobilized drug for harmful components)
Silica sand (Australia) was used as the silica material.
該珪sand, 98.4 wt% in terms of Si component in SiO 2, in terms of the Ca component in CaO less than 0.01 wt%, a moisture content less than 0.01 wt%, average particle diameter of 334μm The specific surface area is 400 cm 2 / g and crystalline.
Magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the magnesium compound.
50 parts by weight of the silica sand and 50 parts by weight of the magnesium hydroxide are mixed to prepare an immobilizing agent G (SiO 2 : Mg = 100: 41) composed of 50% by weight of silica sand and 50% by weight of magnesium hydroxide. did.
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに前記固定化薬剤Gを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度380mg/l、pH9.88、酸化還元電位+338mV(換算酸化還元電位:+331mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が10.5倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.81であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤G30gと水120gを混合して得られた水スラリーを94.9g(固定化薬剤Gとして18.98g)添加し、更に15分間反応させた。固定化薬剤Gを添加後の砒素含有廃液のpHは6.01であった。固定化薬剤G添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に69時間保持して熟成し、含水率26重量%の固定化処理物33gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率26重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
(Immobilization of waste liquid containing arsenic)
The immobilized drug G was used in place of the immobilized drug A.
A glass container equipped with a fluororesin stirring blade was charged with 2 L of an arsenic-containing waste liquid having an As concentration of 380 mg / l, pH 9.88, oxidation-reduction potential +338 mV (converted oxidation-reduction potential: +331 mV), and stirring in a room temperature atmosphere. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) was 52.1 g (Fe 3+ / As molar ratio was 10.5 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.81.
Next, 94.9 g of water slurry obtained by mixing 30 g of immobilizing agent G and 120 g of water so that the pH of the waste liquid is about 6 while stirring the pretreated arsenic-containing waste liquid at room temperature. (18.98 g) as a chemical agent G was added, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing drug G was 6.01. After the reaction of adding the immobilizing agent G, stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 69 hours in air at room temperature to obtain 33 g of immobilization treatment product having a water content of 26% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was performed in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 26% by weight. The results are shown in Table 2.
実施例8
(有害成分の固定化薬剤の調製)
シリカ材料としてシリカゲル(ALDRICH製)を用いた。
該シリカゲルは、Si成分をSiO2に換算して88.8重量%、Ca成分をCaOに換算して0.08重量%、水分を6.1重量%含有し、平均粒子径が59.9μm、比表面積が4,628,000cm2/gで非晶質のものである。
マグネシウム化合物として水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いた。
該シリカゲル50重量部と、該水酸化マグネシウム50重量部を混合し、50重量%のシリカゲルと50重量%の水酸化マグネシウムとからなる固定化薬剤H(SiO2:Mg=100:46)を調製した。
Example 8
(Preparation of immobilized drug for harmful components)
Silica gel (ALDRICH) was used as the silica material.
The silica gel, 88.8 wt% in terms of Si component in SiO 2, 0.08 wt% in terms of Ca component in CaO, water contained 6.1 weight%, average particle diameter 59.9μm The specific surface area is 4,628,000 cm 2 / g and is amorphous.
Magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the magnesium compound.
50 parts by weight of the silica gel and 50 parts by weight of the magnesium hydroxide are mixed to prepare an immobilizing agent H (SiO 2 : Mg = 100: 46) composed of 50% by weight silica gel and 50% by weight magnesium hydroxide. did.
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに前記固定化薬剤Hを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度450mg/l、pH9.72、酸化還元電位+425mV(換算酸化還元電位:+408mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が8.9倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.82であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤H30gと水120gを混合して得られた水スラリーを94.1g(固定化薬剤Hとして18.82g)添加し、更に15分間反応させた。固定化薬剤Hを添加後の砒素含有廃液のpHは6.25であった。固定化薬剤H添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に89時間保持して熟成し、含水率49重量%の固定化処理物43gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率49重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
(Immobilization of waste liquid containing arsenic)
The immobilization drug H was used in place of the immobilization drug A.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 450 mg / l, pH of 9.72, and an oxidation-reduction potential of +425 mV (converted oxidation-reduction potential: +408 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) was 52.1 g (Fe 3+ / As molar ratio was 8.9 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.82.
Next, 94.1 g (fixed) of an aqueous slurry obtained by mixing the pretreated arsenic-containing waste liquid with 30 g of immobilized chemical H and 120 g of water so that the pH of the waste liquid is about 6 while stirring in a room temperature atmosphere. 18.82 g) was added as a chemical agent H, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing drug H was 6.25. After the reaction of adding the immobilized drug H, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Next, the immobilization-treated product on the filter paper was aged by holding it in air at room temperature for 89 hours to obtain 43 g of an immobilization-treated product having a water content of 49% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was performed in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 49% by weight. The results are shown in Table 2.
比較例1
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Iとして水酸化カルシウム(和光純薬工業(株)製、Ca(OH)2純度:95重量%以上)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度430mg/l、pH9.70、酸化還元電位+358mV(換算酸化還元電位:+340mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が9.3倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.83であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤I20gと水80gを混合して得られた水スラリーを57.7g(固定化薬剤Iとして11.54g)添加し、更に15分間反応させた。固定化薬剤Iを添加後の砒素含有廃液のpHは6.04であった。固定化薬剤I添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に88時間保持して熟成し、含水率47重量%の固定化処理物51gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率47重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 1
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Ca (OH) 2 purity: 95% by weight or more) was used as the immobilized drug I.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 430 mg / l, a pH of 9.70, and an oxidation-reduction potential of +358 mV (converted oxidation-reduction potential: +340 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 9.3 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.83.
Next, 57.7 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 20 g of immobilizing agent I and 80 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. 11.54 g) was added as chemical agent I, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after addition of the immobilizing drug I was 6.04. After the reaction of immobilizing the drug I, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 88 hours, to obtain 51 g of immobilization treatment product having a water content of 47% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 for 20 g of the obtained immobilized processed product having a water content of 47% by weight. The results are shown in Table 2.
比較例2
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Jとして水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度410mg/l、pH9.38、酸化還元電位+384mV(換算酸化還元電位:+347mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=5.98)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が9.8倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.83であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤J20gと水80gを混合して得られた水スラリーを49.8g(固定化薬剤Jとして9.96g)添加し、更に15分間反応させた。固定化薬剤Jを添加後の砒素含有廃液のpHは6.50であった。固定化薬剤J添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に89時間保持して熟成し、含水率31重量%の固定化処理物18gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率31重量%の固定化処理物15gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 2
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) was used as the immobilized drug J.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 410 mg / l, pH 9.38, oxidation-reduction potential +384 mV (converted oxidation-reduction potential: +347 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 5.98) was 52.1 g (Fe 3+ / As molar ratio was 9.8 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.83.
Next, 49.8 g (fixed) of an aqueous slurry obtained by mixing the pretreated arsenic-containing waste liquid with 20 g of immobilized chemical J and 80 g of water so that the pH of the waste liquid is about 6 while stirring in a room temperature atmosphere. 9.96 g) as a chemical agent J was added, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent J was 6.50. After the reaction of adding the immobilizing agent J, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 89 hours to obtain 18 g of immobilization treatment product having a water content of 31% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 for 15 g of the obtained immobilization treatment product having a water content of 31% by weight. The results are shown in Table 2.
比較例3
(有害成分の固定化薬剤の調製)
火山灰である前記シルトF50重量部と水酸化カルシウム(和光純薬工業(株)製、Ca(OH)2純度:95%以上)50重量部を混合し、50重量%の火山灰と50重量%の水酸化カルシウムとからなる固定化薬剤Kを調製した。
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Kを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度360mg/l、pH9.90、酸化還元電位+426mV(換算酸化還元電位:+420mV)の砒素含有廃液1Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を26.1g(Fe3+/Asモル比が11.1倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.82であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤K20gと水80gを混合して得られた水スラリーを56.5g(固定化薬剤Kとして11.30g)添加し、更に15分間反応させた。固定化薬剤Kを添加後の砒素含有廃液のpHは6.05であった。固定化薬剤K添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約1Lを得た。次いで濾紙上の固定化処理物を室温の空気中に89時間保持して熟成し、含水率44重量%の固定化処理物33gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率44重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 3
(Preparation of immobilized drug for harmful components)
50 parts by weight of the silt F, which is volcanic ash, and 50 parts by weight of calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Ca (OH) 2 purity: 95% or more) are mixed, and 50% by weight of volcanic ash and 50% by weight of volcanic ash are mixed. An immobilized drug K consisting of calcium hydroxide was prepared.
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, the immobilized drug K was used.
In a glass container equipped with a fluororesin stirring blade, 1 L of an arsenic-containing waste liquid having an As concentration of 360 mg / l, a pH of 9.90, an oxidation-reduction potential +426 mV (converted oxidation-reduction potential: +420 mV), and stirring in a room temperature atmosphere, A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 26.1 g (Fe 3+ / As molar ratio was 11.1 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.82.
Next, 56.5 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 20 g of immobilized chemical K and 80 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. 11.30 g) was added as chemical agent K, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after addition of the immobilizing agent K was 6.05. After the reaction of adding the immobilized drug K, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 1 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 89 hours to obtain 33 g of immobilization treatment product having a water content of 44% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 44% by weight. The results are shown in Table 2.
比較例4
(有害成分の固定化薬剤の調製)
けい酸アルミニウム(和光純薬工業(株)製、Al2O3・3SiO2)50重量部と水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)50重量部を混合し、50重量%のけい酸アルミニウムと50重量%の水酸化マグネシウムとからなる固定化薬剤Lを調製した。
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Lを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度370mg/l、pH10.10、酸化還元電位+406mV(換算酸化還元電位:+412mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が10.8倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.81であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤L20gと水81gを混合して得られた水スラリーを98.0g(固定化薬剤Lとして19.37g)添加し、更に15分間反応させた。固定化薬剤Lを添加後の砒素含有廃液のpHは6.00であった。固定化薬剤L添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に113時間保持して熟成し、含水率33重量%の固定化処理物29gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率33重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 4
(Preparation of immobilized drug for harmful components)
50 parts by weight of aluminum silicate (Wako Pure Chemical Industries, Al 2 O 3 / 3SiO 2 ) and magnesium hydroxide (Wako Pure Chemical Industries, Mg (OH) 2 purity: 95% by weight or more) 50 parts by weight of the mixture was mixed to prepare an immobilized drug L composed of 50% by weight of aluminum silicate and 50% by weight of magnesium hydroxide.
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, the immobilized drug L was used.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid with an As concentration of 370 mg / l, pH 10.10, oxidation-reduction potential +406 mV (converted oxidation-reduction potential: +412 mV) was added and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 10.8 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.81.
Next, 98.0 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 20 g of immobilizing agent L and 81 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. 19.37 g) was added as a chemical agent L, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after addition of the immobilizing drug L was 6.00. After the reaction of adding the immobilized drug L, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 113 hours to obtain 29 g of immobilization treatment product having a water content of 33% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was performed in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 33% by weight. The results are shown in Table 2.
比較例5
(有害成分の固定化薬剤の調製)
けい酸カルシウム(和光純薬工業(株)製、CaO含有率:40〜48重量%、SiO2含有率:51〜57重量%)50重量部と水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)50重量部を混合し、50重量%のけい酸カルシウムと50重量%の水酸化マグネシウムとからなる固定化薬剤Mを調製した。
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Mを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度360mg/l、pH9.70、酸化還元電位+430mV(換算酸化還元電位:+412mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が11.1倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.81であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤M20gと水80gを混合して得られた水スラリーを67.0g(固定化薬剤Mとして13.40g)添加し、更に15分間反応させた。固定化薬剤Mを添加後の砒素含有廃液のpHは6.01であった。固定化薬剤M添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に89時間保持して熟成し、含水率35重量%の固定化処理物26gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率35重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 5
(Preparation of immobilized drug for harmful components)
50 parts by weight of calcium silicate (Wako Pure Chemical Industries, CaO content: 40 to 48 wt%, SiO 2 content: 51 to 57 wt%) and magnesium hydroxide (Wako Pure Chemical Industries, Ltd.) , Mg (OH) 2 purity: 95 wt% or more) was mixed to prepare an immobilizing drug M consisting of 50 wt% calcium silicate and 50 wt% magnesium hydroxide.
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, the immobilized drug M was used.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 360 mg / l, a pH of 9.70, and an oxidation-reduction potential of +430 mV (converted oxidation-reduction potential: +412 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 11.1 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.81.
Next, 67.0 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 20 g of immobilized chemical M and 80 g of water so that the pH of the waste liquid becomes about 6 while stirring at room temperature. 13.40 g) was added as chemical agent M, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent M was 6.01. After the reaction of adding the immobilizing agent M, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by keeping it in air at room temperature for 89 hours to obtain 26 g of immobilization treatment product having a water content of 35% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
In addition, acid washing elution test 1 was performed in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 35% by weight. The results are shown in Table 2.
比較例6
(有害成分の固定化薬剤の調製)
けい酸マグネシウム五水和物(和光純薬工業(株)製、Mg2Si3O8・5H2O)57.3重量部と水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)42.7重量部を混合し、57.3重量%のけい酸マグネシウム五水和物と42.7重量%の水酸化マグネシウムとからなる固定化薬剤Nを調製した。
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Nを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度370mg/l、pH10.12、酸化還元電位+422mV(換算酸化還元電位:+429mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が10.8倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.81であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤N23.4gと水76.6gを混合して得られた水スラリーを71.1g(無水物に換算した固定化薬剤Nの量として14.19g)添加し、更に15分間反応させた。固定化薬剤Nを添加後の砒素含有廃液のpHは6.00であった。固定化薬剤N添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に94時間保持して熟成し、含水率37重量%の固定化処理物27gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率37重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 6
(Preparation of immobilized drug for harmful components)
Magnesium silicate pentahydrate (Wako Pure Chemical Industries, Ltd., Mg 2 Si 3 O 8 · 5H 2 O) 57.3 parts by weight of magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH 2 ) Purity: 95% by weight or more) 42.7 parts by weight are mixed to prepare an immobilized drug N composed of 57.3% by weight magnesium silicate pentahydrate and 42.7% by weight magnesium hydroxide. did.
(Immobilization of waste liquid containing arsenic)
Instead of immobilized drug A, immobilized drug N was used.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 370 mg / l, a pH of 10.12, an oxidation-reduction potential of +422 mV (converted oxidation-reduction potential: +429 mV) was added, and the mixture was stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 10.8 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.81.
Next, 71 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 23.4 g of the immobilizing agent N and 76.6 g of water so that the pH of the waste liquid becomes about 6 while stirring at room temperature. 0.1 g (14.19 g as the amount of immobilized drug N converted to anhydride) was added, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing drug N was 6.00. After the reaction of adding the immobilized drug N, the stirring was stopped, and then left to stand for 30 minutes to settle the generated cake (immobilized product), which was filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 94 hours in air at room temperature to obtain 27 g of immobilization treatment product having a water content of 37% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 37% by weight. The results are shown in Table 2.
比較例7
(有害成分の固定化薬剤の調製)
けい酸ナトリウム(和光純薬工業(株)製、Na2O含有率:17〜23重量%、SiO2含有率:51〜61重量%、SiO2/Na2Oモル比:2.0〜3.5)50重量部と水酸化マグネシウム(和光純薬工業(株)製、Mg(OH)2純度:95重量%以上)50重量部を混合し、50重量%のけい酸ナトリウムと50重量%の水酸化マグネシウムとからなる固定化薬剤Oを調製した。
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Oを用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度370mg/l、pH10.03、酸化還元電位+422mV(換算酸化還元電位:+424mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が10.8倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.82であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤O20gと水80gを混合して得られた水スラリーを95.3g(固定化薬剤Oとして19.06g)添加し、更に15分間反応させた。固定化薬剤Oを添加後の砒素含有廃液のpHは6.04であった。固定化薬剤O添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に118時間保持して熟成し、含水率51重量%の固定化処理物35gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率51重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 7
(Preparation of immobilized drug for harmful components)
Sodium silicate (manufactured by Wako Pure Chemical Industries, Ltd., Na 2 O content: 17-23 wt%, SiO 2 content: 51-61 wt%, SiO 2 / Na 2 O molar ratio: 2.0-3 .5) 50 parts by weight and 50 parts by weight of magnesium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Mg (OH) 2 purity: 95% by weight or more) are mixed, and 50% by weight of sodium silicate and 50% by weight An immobilized drug O consisting of magnesium hydroxide was prepared.
(Immobilization of waste liquid containing arsenic)
Instead of immobilized drug A, immobilized drug O was used.
In a glass container equipped with a fluororesin stirring blade, 2 L of arsenic-containing waste liquid with an As concentration of 370 mg / l, pH 10.03, oxidation-reduction potential +422 mV (equivalent oxidation-reduction potential: +424 mV) was added, and the mixture was stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 10.8 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.82.
Next, 95.3 g (fixed) of an aqueous slurry obtained by mixing the pretreated arsenic-containing waste liquid with 20 g of immobilized chemical O and 80 g of water so that the pH of the waste liquid becomes about 6 while stirring at room temperature. 19.06 g) was added as a chemical agent O, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent O was 6.04. After the reaction of adding the immobilizing agent O, stirring is stopped, and then the resulting cake (immobilized product) is allowed to stand for 30 minutes to settle, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by being kept in air at room temperature for 118 hours to obtain 35 g of immobilization treatment product having a water content of 51% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 for 20 g of the obtained immobilized processed product having a water content of 51% by weight. The results are shown in Table 2.
比較例8
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Pとしてけい酸アルミニウム(和光純薬工業(株)製、Al2O3・3SiO2)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度500mg/l、pH9.93、酸化還元電位+422mV(換算酸化還元電位:+418mV)の砒素含有廃液1Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を26.0g(Fe3+/Asモル比が8.0倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.79であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤P200gと水500gを混合して得られた水スラリーを700g(固定化薬剤Pとして200g)添加し、更に30分間反応させた。固定化薬剤Pを添加後の砒素含有廃液のpHは3.61であった。固定化薬剤P添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約1Lを得た。次いで濾紙上の固定化処理物を室温の空気中に112時間保持して熟成し、含水率67重量%の固定化処理物452gを得た。このときの濾液の砒素濃度を表2に示す。
この濾液の砒素濃度が、排水基準(0.1mg/l以下)を達成していないため、得られた固定化処理物の酸洗浄溶出試験1は行わなかった。
この場合、固定化薬剤PのpH調整機能が不十分であるため、固定化薬剤Pを200g添加しても、pHは3.6であった。これ以上、固定化薬剤Pを添加してもpHの調整は望めず、また、このときの熟成前の固定化処理物の量は590gであり、更に固定化処理物の発生量が多くなる。
Comparative Example 8
(Immobilization of waste liquid containing arsenic)
Instead of the immobilizing agent A, aluminum silicate (Wako Pure Chemical Industries, Ltd., Al 2 O 3 / 3SiO 2 ) was used as the immobilizing agent P.
In a glass container equipped with a fluororesin stirring blade, 1 L of an arsenic-containing waste liquid having an As concentration of 500 mg / l, a pH of 9.93, an oxidation-reduction potential of +422 mV (converted oxidation-reduction potential: +418 mV), and stirring at room temperature, A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 26.0 g (Fe 3+ / As molar ratio was 8.0 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.79.
Next, 700 g of the water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 200 g of the immobilized chemical P and 500 g of water so that the pH of the waste liquid becomes about 6 while stirring in a room temperature atmosphere (immobilized chemical). 200 g) was added as P, and the mixture was further reacted for 30 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing drug P was 3.61. After the reaction of adding the immobilized drug P, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 1 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 112 hours in air at room temperature to obtain 452 g of immobilization treatment product having a water content of 67% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Since the arsenic concentration of this filtrate did not achieve the waste water standard (0.1 mg / l or less), the acid washing elution test 1 of the obtained immobilization treatment was not performed.
In this case, since the pH adjustment function of the immobilized drug P was insufficient, the pH was 3.6 even when 200 g of the immobilized drug P was added. No more adjustment of the pH can be expected even when the immobilized drug P is added, and the amount of the immobilization treatment product before aging at this time is 590 g, and the generation amount of the immobilization treatment product is further increased.
比較例9
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Qとしてけい酸カルシウム(和光純薬工業(株)製、CaO含有率:40〜48重量%、SiO2含有率:51〜57重量%)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度500mg/l、pH9.96、酸化還元電位+435mV(換算酸化還元電位:+433mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が8.0倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.79であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤Q30gと水120gを混合して得られた水スラリーを125.3g(固定化薬剤Qとして25.06g)添加し、更に15分間反応させた。固定化薬剤Qを添加後の砒素含有廃液のpHは6.02であった。固定化薬剤Q添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に117時間保持して熟成し、含水率37重量%の固定化処理物66gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率37重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 9
(Immobilization of waste liquid containing arsenic)
Calcium silicate (manufactured by Wako Pure Chemical Industries, Ltd., CaO content: 40 to 48% by weight, SiO 2 content: 51 to 57% by weight) is used as the immobilized drug Q instead of the immobilized drug A. It was.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 500 mg / l, a pH of 9.96, an oxidation-reduction potential of +435 mV (converted oxidation-reduction potential: +433 mV), and stirring at room temperature, A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 8.0 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.79.
Next, 125.3 g (fixed) of the water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 30 g of immobilized chemical Q and 120 g of water so that the pH of the waste liquid is about 6 while stirring in a room temperature atmosphere. 25.06 g) was added as chemical agent Q, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after addition of the immobilizing drug Q was 6.02. After the reaction of adding the immobilized drug Q, the stirring is stopped, and then left to stand for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 117 hours in air at room temperature to obtain 66 g of immobilization treatment product having a water content of 37% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 37% by weight. The results are shown in Table 2.
比較例10
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Rとしてけい酸マグネシウム五水和物(和光純薬工業(株)製、Mg2Si3O8・5H2O)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度370mg/l、pH9.98、酸化還元電位+427mV(換算酸化還元電位:+426mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が10.8倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.78であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤R40gと水160gを混合して得られた水スラリーを187.4g(無水物に換算した固定化薬剤Rの量として27.87g)添加し、更に30分間反応させた。固定化薬剤Rを添加後の砒素含有廃液のpHは6.06であった。固定化薬剤R添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に93時間保持して熟成し、含水率39重量%の固定化処理物52gを得た。このときの濾液の砒素濃度を表2に示す。
また、得られた含水率39重量%の固定化処理物20gについて、実施例1と同様に酸洗浄溶出試験1を行った。結果を表2に示す。
Comparative Example 10
(Immobilization of waste liquid containing arsenic)
Magnesium silicate pentahydrate as an immobilizing agent R instead of fixing agent A (manufactured by Wako Pure Chemical Industries, Ltd., Mg 2 Si 3 O 8 · 5H 2 O) was performed using.
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid with an As concentration of 370 mg / l, pH 9.98, oxidation-reduction potential +427 mV (converted oxidation-reduction potential: +426 mV) was added, and the mixture was stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 10.8 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.78.
Next, 187.4 g (anhydrous) of an aqueous slurry obtained by mixing the pretreated arsenic-containing waste liquid with 40 g of immobilized chemical R and 160 g of water so that the pH of the waste liquid is about 6 while stirring in a room temperature atmosphere. 27.87 g) was added as the amount of immobilized drug R converted to a product, and the mixture was further reacted for 30 minutes. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent R was 6.06. After the reaction of adding the immobilizing agent R, stirring is stopped, and then the mixture is allowed to stand for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 93 hours in air at room temperature to obtain 52 g of immobilization treatment product having a water content of 39% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Further, the acid washing elution test 1 was conducted in the same manner as in Example 1 on 20 g of the obtained immobilized processed product having a water content of 39% by weight. The results are shown in Table 2.
比較例11
(砒素含有廃液の固定化)
固定化薬剤Aの代わりに、固定化薬剤Sとしてけい酸ナトリウム(和光純薬工業(株)製、Na2O含有率:17〜23重量%、SiO2含有率:51〜61重量%、SiO2/Na2Oモル比:2.0〜3.5)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度500mg/l、pH9.86、酸化還元電位+448mV(換算酸化還元電位:+440mV)の砒素含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.19)を用いて調製した41重量%水溶液を52.1g(Fe3+/Asモル比が8.0倍となる量)添加し、30分間反応させて前処理を行った。反応後のpHは1.80であった。
次に、前処理した砒素有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤S60gと水240gを混合して得られた水スラリーを273.7g(固定化薬剤Sとして54.74g)添加し、更に15分間反応させた。固定化薬剤Sを添加後の砒素含有廃液のpHは6.03であった。
固定化薬剤S添加反応後の砒素含有廃液は、粒子保持能力1.0μmのガラス繊維製濾紙では濾過することが非常に困難であり、一部得られた濾液の砒素濃度を表2に示す。
この濾液の砒素濃度が、砒素の排水基準(0.1mg/l以下)を達成していないため、得られた固定化処理物の酸洗浄溶出試験1は行わなかった。
Comparative Example 11
(Immobilization of waste liquid containing arsenic)
Instead of the immobilized drug A, sodium silicate (manufactured by Wako Pure Chemical Industries, Ltd., Na 2 O content: 17 to 23% by weight, SiO 2 content: 51 to 61% by weight, SiO as the immobilized drug S 2 / Na 2 O molar ratio: 2.0 to 3.5).
In a glass container equipped with a fluororesin stirring blade, 2 L of an arsenic-containing waste liquid having an As concentration of 500 mg / l, pH 9.86, oxidation-reduction potential +448 mV (converted oxidation-reduction potential: +440 mV) was stirred and stirred at room temperature. A 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.19) was 52.1 g (Fe 3+ / As molar ratio was 8.0 times). And a pretreatment was performed by reacting for 30 minutes. The pH after the reaction was 1.80.
Next, 273.7 g of water slurry obtained by mixing the pretreated arsenic-containing waste liquid with 60 g of immobilizing agent S and 240 g of water so that the pH of the waste liquid becomes about 6 while stirring at room temperature. 54.74 g) was added as a chemical agent S, and the mixture was further reacted for 15 minutes. The pH of the arsenic-containing waste liquid after addition of the immobilizing agent S was 6.03.
The arsenic-containing waste liquid after the addition reaction of the immobilized chemical S is very difficult to filter with a glass fiber filter paper having a particle retention capacity of 1.0 μm, and Table 2 shows the arsenic concentration of the obtained filtrate.
Since the arsenic concentration of this filtrate did not achieve the arsenic drainage standard (0.1 mg / l or less), the acid-washed elution test 1 of the obtained immobilization treatment was not performed.
比較例12
(砒素含有廃液の固定化)
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度500mg/l、pH9.89、酸化還元電位+451mV(換算酸化還元電位:+445mV)の砒素含有廃液1Lを入れ、室温雰囲気で撹拌しながら、前処理を行わず、固定化薬剤A9gと水36gを混合して得られた水スラリーを45.0g(固定化薬剤Aとして9.00g)全量添加し、15分間反応させた。固定化薬剤Aの添加量は、砒素含有廃液1L当りの添加量が実施例1とほぼ同等量になるようにした。固定化薬剤Aを添加後の砒素含有廃液のpHは10.18であった。固定化薬剤A添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約1Lを得た。次いで濾紙上の固定化処理物を室温の空気中に117時間保持して熟成し、含水率2.3重量%の固定化処理物8.4gを得た。このときの濾液の砒素濃度を表2に示す。
この濾液の砒素濃度が、排水基準(0.1mg/l以下)を達成していないため、得られた固定化処理物の酸洗浄溶出試験1は行わなかった。
この場合、前処理を行わなかったため、砒素の固定化が不十分である。
Comparative Example 12
(Immobilization of waste liquid containing arsenic)
In a glass container equipped with a fluororesin stirring blade, put 1 L of arsenic-containing waste liquid with an As concentration of 500 mg / l, pH 9.89, oxidation-reduction potential +451 mV (converted oxidation-reduction potential: +445 mV), and stirring at room temperature, Without pretreatment, 45.0 g of water slurry obtained by mixing 9 g of immobilized drug A and 36 g of water (9.00 g as immobilized drug A) was added and allowed to react for 15 minutes. The addition amount of the immobilizing agent A was set so that the addition amount per liter of arsenic-containing waste liquid was almost the same as that in Example 1. The pH of the arsenic-containing waste liquid after the addition of the immobilizing agent A was 10.18. After the reaction of adding the immobilized drug A, stirring is stopped, and then the resulting cake (immobilized product) is allowed to stand for 30 minutes to settle, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 1 L of filtrate was obtained. Subsequently, the immobilization-treated product on the filter paper was aged by being kept in air at room temperature for 117 hours to obtain 8.4 g of the immobilization-treated product having a water content of 2.3% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Since the arsenic concentration of this filtrate did not achieve the waste water standard (0.1 mg / l or less), the acid washing elution test 1 of the obtained immobilization treatment was not performed.
In this case, arsenic was not sufficiently fixed because no pretreatment was performed.
比較例13
(砒素含有廃液の固定化)
フッ素樹脂製撹拌羽根を備えたガラス製容器に、As濃度500mg/l、pH9.46、酸化還元電位+447mV(換算酸化還元電位:+415mV)の砒素含有廃液1Lを入れ、室温雰囲気で撹拌しながら、前処理を行わず、固定化薬剤Tとして火山灰の前記シルトF(丸中白土(株)製)を4.5g添加し、15分間反応させた。固定化薬剤Tの添加量は、砒素含有廃液1L当りの添加量が実施例1の固定化薬剤A添加量中のシルトFとほぼ同等量になるようにした。固定化薬剤Tを添加後の砒素含有廃液のpHは9.20であった。固定化薬剤T添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約1Lを得た。次いで濾紙上の固定化処理物を室温の空気中に92時間保持して熟成し、含水率3.0重量%の固定化処理物0.9gを得た。このときの濾液の砒素濃度を表2に示す。
この濾液の砒素濃度が、排水基準(0.1mg/l以下)を達成していないため、得られた固定化処理物の酸洗浄溶出試験1は行わなかった。
この場合、前処理を行わなかったため、および固定化薬剤の組成が不十分であるため、砒素の固定化が不十分である。
Comparative Example 13
(Immobilization of waste liquid containing arsenic)
In a glass container equipped with a fluororesin stirring blade, 1 L of an arsenic-containing waste liquid having an As concentration of 500 mg / l, pH 9.46, oxidation-reduction potential +447 mV (converted oxidation-reduction potential: +415 mV) was stirred while stirring at room temperature. Without pretreatment, 4.5 g of the silt F of volcanic ash (manufactured by Marunaka Shirato Co., Ltd.) was added as an immobilizing agent T and allowed to react for 15 minutes. The added amount of the immobilized drug T was set so that the added amount per liter of the arsenic-containing waste liquid was almost the same as the silt F in the added amount of the immobilized drug A of Example 1. The pH of the arsenic-containing waste liquid after the addition of the immobilizing drug T was 9.20. After the reaction of adding the immobilized drug T, the stirring is stopped, and then the resulting cake (immobilized product) is allowed to stand for 30 minutes to settle, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 1 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 92 hours in air at room temperature to obtain 0.9 g of immobilization treatment product having a water content of 3.0% by weight. The arsenic concentration of the filtrate at this time is shown in Table 2.
Since the arsenic concentration of this filtrate did not achieve the waste water standard (0.1 mg / l or less), the acid washing elution test 1 of the obtained immobilization treatment was not performed.
In this case, arsenic was not sufficiently fixed because no pretreatment was performed and the composition of the immobilizing agent was insufficient.
実施例9
(有害成分の固定化薬剤の調製)
実施例1と同様に、前記シルトF50重量部と、前記水酸化マグネシウム50重量部を混合し、50重量%の火山灰と50重量%の水酸化マグネシウムとからなる固定化薬剤A(SiO2:Mg=100:57)を調製した。
Example 9
(Preparation of immobilized drug for harmful components)
In the same manner as in Example 1, 50 parts by weight of Silt F and 50 parts by weight of magnesium hydroxide were mixed, and immobilized drug A (SiO 2 : Mg consisting of 50% by weight of volcanic ash and 50% by weight of magnesium hydroxide). = 100: 57) was prepared.
(鉛含有廃液の固定化)
フッ素樹脂製撹拌羽根を備えたガラス製容器に、Pb濃度370mg/l、pH5.25、酸化還元電位+577mV(換算酸化還元電位:+297mV)の鉛含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液4.7gと硫酸第一鉄七水和物(和光純薬工業(株)製、FeSO4・7H2O純度:99重量%以上)を用いて調製した5重量%水溶液29.3gとを混合して得た混合硫酸鉄水溶液を34g(Fe3+/Fe2+モル比が1、且つFe/Pbモル比が5.4倍となる量)添加し、30分間反応させ前処理1を行った。反応後のpHは2.59であった。次に、リン酸二水素マグネシウム(シグマ アルドリッチジャパン(株)製)を用いて調製した10重量%水スラリーを84g(PO4 3−/Pbモル比が21.6倍となる量)添加し、30分間反応させ前処理2を行った。反応後のpHは3.00であった。
(Immobilization of lead-containing waste liquid)
In a glass container equipped with a fluororesin stirring blade, 2 L of lead-containing waste liquid having a Pb concentration of 370 mg / l, pH 5.25, oxidation-reduction potential +577 mV (equivalent oxidation-reduction potential: +297 mV) was added, and stirred at room temperature. 4.7 g of a 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) and ferrous sulfate heptahydrate (Wako Pure Chemical Industries, Ltd.) Ltd., FeSO 4 · 7H 2 O purity: 99 wt% or more) mixing iron sulfate solution obtained by mixing 5 wt% aqueous solution of 29.3g prepared using the 34g (Fe 3+ / Fe 2+ mol The ratio was 1 and the Fe / Pb molar ratio was 5.4 times), and the mixture was reacted for 30 minutes for pretreatment 1. The pH after the reaction was 2.59. Next, 84 g of 10 wt% water slurry prepared using magnesium dihydrogen phosphate (manufactured by Sigma-Aldrich Japan Co., Ltd.) is added (amount in which the PO 4 3− / Pb molar ratio is 21.6 times). Pretreatment 2 was performed by reacting for 30 minutes. The pH after the reaction was 3.00.
次に、前処理した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように前記固定化薬剤Aを添加した。具体的には、固定化薬剤A20gと水80gを混合して得られた水スラリーを24.8g(固定化薬剤Aとして4.96g)添加し、更に15分間反応させた。固定化薬剤A添加後の鉛含有廃液のpHは6.22であった。次に、固定化薬剤Aを添加した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約9になるようにpH調整剤として水酸化カルシウム(和光純薬工業(株)製、Ca(OH)2純度:95重量%以上)を添加しpH調整した。具体的には、水酸化カルシウム10gと水40gを混合して得られた水スラリーを14.8g(水酸化カルシウムとして2.96g)添加し、更に15分間反応させた。水酸化カルシウム添加後の鉛含有廃液のpHは9.02であった。水酸化カルシウム添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に90時間保持して熟成し、含水率53重量%の固定化処理物38gを得た。濾液の鉛濃度は0.01mg/l未満であった。又濾液の燐濃度は7.7mg/lであった。 Next, the immobilized chemical A was added to the pretreated lead-containing waste liquid while stirring in a room temperature atmosphere so that the pH of the waste liquid was about 6. Specifically, 24.8 g of water slurry obtained by mixing 20 g of immobilized drug A and 80 g of water (4.96 g as immobilized drug A) was added, and the mixture was further reacted for 15 minutes. The pH of the lead-containing waste liquid after the addition of the immobilizing agent A was 6.22. Next, calcium hydroxide (made by Wako Pure Chemical Industries, Ltd., Ca) is used as a pH adjusting agent so that the pH of the waste liquid becomes about 9 while stirring the lead-containing waste liquid to which the immobilized medicine A is added at room temperature. (OH) 2 purity: 95 wt% or more) was added to adjust the pH. Specifically, 14.8 g (2.96 g as calcium hydroxide) of an aqueous slurry obtained by mixing 10 g of calcium hydroxide and 40 g of water was added, and the mixture was further reacted for 15 minutes. The pH of the lead-containing waste liquid after addition of calcium hydroxide was 9.02. After the calcium hydroxide addition reaction, stirring is stopped, and then the resulting cake (immobilized product) is allowed to settle for 30 minutes, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 90 hours in air at room temperature to obtain 38 g of immobilization treatment product having a water content of 53% by weight. The lead concentration in the filtrate was less than 0.01 mg / l. The phosphorus concentration in the filtrate was 7.7 mg / l.
(酸洗浄溶出試験2)
次に、得られた含水率53重量%の固定化処理物20gをフッ素樹脂製撹拌羽根を備えたガラス製容器に入れ、次いでpH3.0に調整した塩酸溶液を固定化処理物の30倍量を加えてスラリー化した後、室温雰囲気で攪拌しながら、スラリーのpHが常に3.0〜3.1となるように5mol/l塩酸溶液および0.5mol/l塩酸溶液でpH調整しながら、6時間攪拌した。次に、このスラリーを粒子保持能力1.0μmのガラス繊維製濾紙で濾過し、この濾液の鉛濃度を測定した。濾液の鉛濃度は0.01mg/l未満であった。
なお、以下の比較例では、5mol/l塩酸溶液および/または0.5mol/l塩酸溶液を用いてpH調整を行った。
(Acid washing dissolution test 2)
Next, 20 g of the obtained immobilized product having a water content of 53% by weight is placed in a glass container equipped with a fluororesin stirring blade, and then the hydrochloric acid solution adjusted to pH 3.0 is 30 times the amount of the immobilized product. After adding slurry to make a slurry, while stirring in a room temperature atmosphere, adjusting the pH with a 5 mol / l hydrochloric acid solution and a 0.5 mol / l hydrochloric acid solution so that the pH of the slurry is always 3.0 to 3.1, Stir for 6 hours. Next, the slurry was filtered through a glass fiber filter paper having a particle holding capacity of 1.0 μm, and the lead concentration of the filtrate was measured. The lead concentration in the filtrate was less than 0.01 mg / l.
In the following comparative examples, pH adjustment was performed using a 5 mol / l hydrochloric acid solution and / or a 0.5 mol / l hydrochloric acid solution.
比較例14
(鉛含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Iとして水酸化カルシウム(和光純薬工業(株)製、Ca(OH)2純度:95重量%以上)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、Pb濃度400mg/l、pH5.20、酸化還元電位+568mV(換算酸化還元電位:+285mV)の鉛含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液を18.8g(Fe3+/Pbモル比が10倍となる量)添加し、30分間反応させ前処理を行った。反応後のpHは2.14であった。
次に、前処理した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約9になるように固定化薬剤I10gと水40gを混合して得られた水スラリーを25.9g(固定化薬剤Iとして5.18g)添加し、更に15分間反応させた。固定化薬剤I添加後の鉛含有廃液のpHは9.00であった。固定化薬剤I添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に68時間保持して熟成し、含水率20重量%の固定化処理物7.1gを得た。このときの濾液の鉛濃度を表3に示す。
また、得られた含水率20重量%の固定化処理物5gについて、実施例9と同様に酸洗浄溶出試験2を行った。結果を表3に示す。
Comparative Example 14
(Immobilization of lead-containing waste liquid)
Instead of the immobilized drug A, calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Ca (OH) 2 purity: 95% by weight or more) was used as the immobilized drug I.
In a glass container equipped with a fluororesin stirring blade, 2 L of lead-containing waste liquid having a Pb concentration of 400 mg / l, pH 5.20, oxidation-reduction potential +568 mV (converted oxidation-reduction potential: +285 mV) was added, while stirring in a room temperature atmosphere. 18.8 g (Fe 3+ / Pb molar ratio of 10 times) of a 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) ) And reacted for 30 minutes for pretreatment. The pH after the reaction was 2.14.
Next, 25.9 g of water slurry obtained by mixing the pretreated lead-containing waste liquid with 10 g of immobilizing agent I and 40 g of water so that the pH of the waste liquid is about 9 while stirring at room temperature. 5.18 g) as chemical agent I was added, and the mixture was further reacted for 15 minutes. The pH of the lead-containing waste liquid after the addition of the immobilizing drug I was 9.00. After the reaction of immobilizing the drug I, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Next, the immobilization-treated product on the filter paper was aged by holding it in air at room temperature for 68 hours to obtain 7.1 g of an immobilization-treated product having a water content of 20% by weight. The lead concentration of the filtrate at this time is shown in Table 3.
Further, the acid washing elution test 2 was conducted in the same manner as in Example 9 on 5 g of the obtained immobilized processed product having a water content of 20% by weight. The results are shown in Table 3.
比較例15
(鉛含有廃液の固定化)
固定化薬剤Aの代わりに固定化薬剤Iとして水酸化カルシウム(和光純薬工業(株)製、Ca(OH)2純度:95重量%以上)を用いて行った。
フッ素樹脂製撹拌羽根を備えたガラス製容器に、Pb濃度400mg/l、pH5.19、酸化還元電位+592mV(換算酸化還元電位:+308mV)の鉛含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第一鉄七水和物(和光純薬工業(株)製、FeSO4・7H2O純度:99重量%以上)を用いて調製した5重量%水溶液を117.3g(Fe2+/Pbモル比が10倍となる量)添加し、30分間反応させ前処理を行った。反応後のpHは4.14であった。
次に、前処理した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約9になるように固定化薬剤I10gと水40gを混合して得られた水スラリーを12.2g(固定化薬剤Iとして2.44g)添加し、更に15分間反応させた。固定化薬剤I添加後の鉛含有廃液のpHは9.00であった。固定化薬剤I添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に93時間保持して熟成し、含水率7.2重量%の固定化処理物5.4gを得た。このときの濾液の鉛濃度を表3に示す。
この濾液の鉛濃度が、排水基準(0.1mg/l以下)を達成していないため、得られた固定化処理物の酸洗浄溶出試験2は行わなかった。
Comparative Example 15
(Immobilization of lead-containing waste liquid)
Instead of the immobilized drug A, calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd., Ca (OH) 2 purity: 95% by weight or more) was used as the immobilized drug I.
In a glass container equipped with a fluororesin stirring blade, 2 L of lead-containing waste liquid having a Pb concentration of 400 mg / l, pH 5.19, oxidation-reduction potential +592 mV (converted oxidation-reduction potential: +308 mV) was added, and stirred at room temperature. 117.3 g (Fe 2+ / Pb mol) of a 5 wt% aqueous solution prepared using ferrous sulfate heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd., FeSO 4 · 7H 2 O purity: 99 wt% or more) The amount was 10 times), and the mixture was reacted for 30 minutes and pretreated. The pH after the reaction was 4.14.
Next, 12.2 g of water slurry obtained by mixing the pretreated lead-containing waste liquid with 10 g of immobilizing agent I and 40 g of water so that the pH of the waste liquid is about 9 while stirring at room temperature. 2.44 g) was added as chemical agent I, and the mixture was further reacted for 15 minutes. The pH of the lead-containing waste liquid after the addition of the immobilizing drug I was 9.00. After the reaction of immobilizing the drug I, the stirring is stopped, and then left for 30 minutes to settle the generated cake (immobilized product), which is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged for 93 hours in air at room temperature to obtain 5.4 g of immobilization treatment product having a water content of 7.2% by weight. The lead concentration of the filtrate at this time is shown in Table 3.
Since the lead concentration of this filtrate did not achieve the drainage standard (0.1 mg / l or less), the acid washing elution test 2 of the obtained immobilization treatment was not performed.
比較例16
(鉛含有廃液の固定化)
フッ素樹脂製撹拌羽根を備えたガラス製容器に、Pb濃度370mg/l、pH5.23、酸化還元電位+566mV(換算酸化還元電位:+285mV)の鉛含有廃液2Lを入れ、室温雰囲気で撹拌しながら、硫酸第二鉄n水和物(和光純薬工業(株)製:n=6.22)を用いて調製した41重量%水溶液4.7gと硫酸第一鉄七水和物(和光純薬工業(株)製、FeSO4・7H2O純度:99重量%以上)を用いて調製した5重量%水溶液29.3gとを混合して得た混合硫酸鉄水溶液を34g(Fe3+/Fe2+モル比が1、且つFe/Pbモル比が5.4倍となる量)添加し、30分間反応させ前処理を行った。反応後のpHは2.58であった。
次に、前処理した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤A20gと水80gを混合して得られた水スラリーを18.9g(固定化薬剤Aとして3.78g)添加し、更に15分間反応させた。固定化薬剤A添加後の鉛含有廃液のpHは6.48であった。次に、固定化薬剤Aを添加した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約9になるように、pH調整剤として水酸化カルシウム(和光純薬工業(株)製、Ca(OH)2純度:95重量%以上)10gと水40gを混合して得られた水スラリーを3.0g(粉末換算0.60g)添加し、更に15分間反応させた。水酸化カルシウム添加後の鉛含有廃液のpHは9.04であった。水酸化カルシウム添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に88時間保持して熟成し、含水率7.5重量%の固定化処理物5.8gを得た。このときの濾液の鉛濃度を表3に示す。
また、得られた含水率7.5重量%の固定化処理物5gについて、実施例9と同様に酸洗浄溶出試験2を行った。結果を表3に示す。
この場合、鉄塩の前処理だけでは鉛を固定化し易い形態にできないため、鉛の固定化が不十分である。
Comparative Example 16
(Immobilization of lead-containing waste liquid)
In a glass container equipped with a fluororesin stirring blade, 2 L of lead-containing waste liquid with a Pb concentration of 370 mg / l, pH 5.23, oxidation-reduction potential +566 mV (converted oxidation-reduction potential: +285 mV) was added, and the mixture was stirred at room temperature. 4.7 g of a 41 wt% aqueous solution prepared using ferric sulfate n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd .: n = 6.22) and ferrous sulfate heptahydrate (Wako Pure Chemical Industries, Ltd.) Ltd., FeSO 4 · 7H 2 O purity: 99 wt% or more) mixing iron sulfate solution obtained by mixing 5 wt% aqueous solution of 29.3g prepared using the 34g (Fe 3+ / Fe 2+ mol The ratio was 1 and the Fe / Pb molar ratio was 5.4 times), and the mixture was reacted for 30 minutes for pretreatment. The pH after the reaction was 2.58.
Next, 18.9 g of water slurry obtained by mixing the pretreated lead-containing waste liquid with 20 g of immobilized chemical A and 80 g of water so that the pH of the waste liquid is about 6 while stirring at room temperature. 3.78 g) as chemical agent A) was added, and the mixture was further reacted for 15 minutes. The pH of the lead-containing waste liquid after the addition of the immobilizing agent A was 6.48. Next, calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a pH adjuster so that the pH of the waste liquid is about 9 while stirring in a lead-containing waste liquid to which the immobilized drug A is added at room temperature. 3.0 g (0.60 g in terms of powder) of an aqueous slurry obtained by mixing 10 g of Ca (OH) 2 purity: 95% by weight or more) and 40 g of water was added, and the mixture was further reacted for 15 minutes. The pH of the lead-containing waste liquid after addition of calcium hydroxide was 9.04. After the calcium hydroxide addition reaction, stirring is stopped, and then the resulting cake (immobilized product) is allowed to settle for 30 minutes, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Subsequently, the immobilization treatment product on the filter paper was aged by keeping it in air at room temperature for 88 hours to obtain 5.8 g of immobilization treatment product having a water content of 7.5% by weight. The lead concentration of the filtrate at this time is shown in Table 3.
Further, the acid washing elution test 2 was performed in the same manner as in Example 9 on 5 g of the obtained immobilized processed product having a water content of 7.5% by weight. The results are shown in Table 3.
In this case, the lead cannot be easily fixed only by the pretreatment of the iron salt, so that the lead is not sufficiently fixed.
比較例17
(鉛含有廃液の固定化)
フッ素樹脂製撹拌羽根を備えたガラス製容器に、Pb濃度400mg/l、pH5.19、酸化還元電位+603mV(換算酸化還元電位:+319mV)の鉛含有廃液2Lを入れ、室温雰囲気で撹拌しながら、リン酸二水素マグネシウム(シグマ アルドリッチ ジャパン(株)製)を用いて調製した10重量%水スラリーを84g(PO4 3−/Pbモル比が20倍となる量)添加し、30分間反応させ前処理を行った。反応後のpHは5.17であった。
次に、前処理した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約6になるように固定化薬剤A20gと水80gを混合して得られた水スラリーを5.8g(固定化薬剤Aとして1.16g)添加し、更に15分間反応させた。固定化薬剤A添加後の鉛含有廃液のpHは6.23であった。次に、固定化薬剤Aを添加した鉛含有廃液に、室温雰囲気で撹拌しながら、廃液のpHが約9になるように、pH調整剤として水酸化カルシウム(和光純薬工業(株)製、Ca(OH)2純度:95重量%以上)10gと水40gを混合して得られた水スラリーを19.8g(水酸化カルシウムとして3.96g)添加し、更に15分間反応させた。水酸化カルシウム添加後の鉛含有廃液のpHは9.35であった。水酸化カルシウム添加反応後、攪拌を停止し、その後、30分間静置して発生ケーキ(固定化処理物)を沈降させ、これを粒子保持能力1.0μmのガラス繊維製濾紙を用い濾過して濾液約2Lを得た。次いで濾紙上の固定化処理物を室温の空気中に87時間保持して熟成し、含水率42重量%の固定化処理物24gを得た。このときの濾液の鉛濃度を表3に示す。
また、得られた含水率42重量%の固定化処理物20gについて、実施例9と同様に酸洗浄溶出試験2を行った。結果を表3に示す。
この濾液の燐濃度は11mg/lであった。
この場合、リン酸塩の前処理だけでは鉛を固定化し易い形態にできないため、鉛の固定化が不十分である。
Comparative Example 17
(Immobilization of lead-containing waste liquid)
In a glass container equipped with a fluororesin stirring blade, 2 L of lead-containing waste liquid having a Pb concentration of 400 mg / l, pH 5.19, oxidation-reduction potential +603 mV (converted oxidation-reduction potential: +319 mV) was added and stirred at room temperature. 84 g of a 10 wt% water slurry prepared using magnesium dihydrogen phosphate (manufactured by Sigma Aldrich Japan Co., Ltd.) (amount in which the PO 4 3− / Pb molar ratio is 20 times) was added and reacted for 30 minutes. Processed. The pH after the reaction was 5.17.
Next, 5.8 g of water slurry obtained by mixing the pretreated lead-containing waste liquid with 20 g of immobilized drug A and 80 g of water so that the pH of the waste liquid is about 6 while stirring in a room temperature atmosphere (fixed) 1.16 g) was added as a chemical agent A, and the mixture was further reacted for 15 minutes. The pH of the lead-containing waste liquid after the addition of the immobilizing agent A was 6.23. Next, calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a pH adjuster so that the pH of the waste liquid is about 9 while stirring in a lead-containing waste liquid to which the immobilized drug A is added at room temperature. 19.8 g (3.96 g as calcium hydroxide) of water slurry obtained by mixing 10 g of Ca (OH) 2 purity: 95% by weight or more) and 40 g of water was added and reacted for another 15 minutes. The pH of the lead-containing waste liquid after addition of calcium hydroxide was 9.35. After the calcium hydroxide addition reaction, stirring is stopped, and then the resulting cake (immobilized product) is allowed to settle for 30 minutes, and this is filtered using a glass fiber filter paper having a particle holding capacity of 1.0 μm. About 2 L of filtrate was obtained. Next, the immobilization treatment product on the filter paper was aged by keeping it in air at room temperature for 87 hours to obtain 24 g of immobilization treatment product having a water content of 42% by weight. The lead concentration of the filtrate at this time is shown in Table 3.
Further, the acid washing elution test 2 was performed in the same manner as in Example 9 on 20 g of the obtained immobilized processed product having a moisture content of 42% by weight. The results are shown in Table 3.
The filtrate had a phosphorous concentration of 11 mg / l.
In this case, since the lead cannot be easily fixed only by the pretreatment of the phosphate, the lead is not sufficiently fixed.
Claims (10)
The pH adjuster is an acidic sulfate of sulfuric acid, hydrochloric acid, phosphoric acid, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, calcium oxide, calcium hydroxide, calcium carbonate or iron sulfate The method for immobilizing harmful components according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006020029A JP4827541B2 (en) | 2005-01-31 | 2006-01-30 | Immobilizing agent for harmful components and immobilizing method |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005022626 | 2005-01-31 | ||
JP2005022626 | 2005-01-31 | ||
JP2005294453 | 2005-10-07 | ||
JP2005294453 | 2005-10-07 | ||
JP2006020029A JP4827541B2 (en) | 2005-01-31 | 2006-01-30 | Immobilizing agent for harmful components and immobilizing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007125536A true JP2007125536A (en) | 2007-05-24 |
JP4827541B2 JP4827541B2 (en) | 2011-11-30 |
Family
ID=38148640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006020029A Active JP4827541B2 (en) | 2005-01-31 | 2006-01-30 | Immobilizing agent for harmful components and immobilizing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4827541B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4440323B1 (en) * | 2008-12-26 | 2010-03-24 | 株式会社富士クリーン | Leached water purification method and purification device |
JP2010088991A (en) * | 2008-10-07 | 2010-04-22 | Waseda Univ | Water treatment agent and water treatment method |
CN102557221A (en) * | 2012-02-15 | 2012-07-11 | 中国科学院地球化学研究所 | Preparation method and application of eutrophic water body sediment phosphor in-situ passivating agent |
JP2015178064A (en) * | 2014-03-19 | 2015-10-08 | 富士シリシア化学株式会社 | Treatment agent of waste water containing phosphate, and treatment method of waste water containing phosphate |
JP2016022406A (en) * | 2014-07-17 | 2016-02-08 | 株式会社ワールド・リンク | Method for treating heavy metal-contaminated water |
JP2016169587A (en) * | 2015-03-11 | 2016-09-23 | 鹿島建設株式会社 | Disposal method and disposal system of excavated soil |
JP6147403B1 (en) * | 2016-09-29 | 2017-06-14 | ワールド・リンク株式会社 | Purification material and purification system for heavy metals eluted in water such as harbors and waterways |
JP2017177012A (en) * | 2016-03-30 | 2017-10-05 | 住友大阪セメント株式会社 | Insolubilizing material for heavy metals and the like, and method for producing the same |
JP2018051451A (en) * | 2016-09-27 | 2018-04-05 | 太平洋セメント株式会社 | Chlorine-containing powder treating method and chlorine-containing powder treating system |
JP7134658B2 (en) | 2017-05-30 | 2022-09-12 | Jx金属株式会社 | Sb removal method and valuable metal recovery method |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5235449A (en) * | 1975-09-16 | 1977-03-18 | Giken Kogyo Kk | Disposal method for industrial waste containing compound chromium |
JPS6078639A (en) * | 1983-09-29 | 1985-05-04 | Nippon Petrochem Co Ltd | Mercury separating adsorbent |
JPS6128491A (en) * | 1984-07-17 | 1986-02-08 | Agency Of Ind Science & Technol | Dephosphorization treatment |
JPH02207890A (en) * | 1989-02-03 | 1990-08-17 | Toagosei Chem Ind Co Ltd | Method for removing arsenic in aqueous iron chloride solution |
JPH05137905A (en) * | 1991-09-26 | 1993-06-01 | Touen:Kk | Method and material for purifying sewage |
JPH0631282A (en) * | 1992-07-17 | 1994-02-08 | Nittetsu Cement Co Ltd | Preventing agent for water pollution |
JPH0780290A (en) * | 1993-09-11 | 1995-03-28 | Catalysts & Chem Ind Co Ltd | Waste water treatment agent |
JPH10113674A (en) * | 1996-10-11 | 1998-05-06 | Kansai Electric Power Co Inc:The | Processing agent of metal-containing waste liquid and its treatment |
JPH10165922A (en) * | 1996-12-06 | 1998-06-23 | Yoichi Nishimura | Industrial waste treating method |
JPH10263501A (en) * | 1997-03-21 | 1998-10-06 | Nippon Kayaku Co Ltd | Treating agent for heavy metal-containing waste and stabilizing method of heavy metal-containing waste |
JPH1128475A (en) * | 1997-07-09 | 1999-02-02 | Kurita Water Ind Ltd | Treatment of selenium-containing water |
JPH11501574A (en) * | 1995-10-31 | 1999-02-09 | ロディア シミ | Agents containing sulfur compounds for removing heavy metals |
JPH11104656A (en) * | 1997-10-06 | 1999-04-20 | Kurita Water Ind Ltd | Apparatus for treating water containing inorganic contaminant |
JP2000204542A (en) * | 1999-01-11 | 2000-07-25 | Kyokado Eng Co Ltd | Method for immobilizing harmful substance |
JP2001025777A (en) * | 1999-07-15 | 2001-01-30 | Kurita Water Ind Ltd | Water treating method |
JP2001259414A (en) * | 2000-03-23 | 2001-09-25 | Mitsubishi Materials Corp | Phosphorus recovering material |
JP2002326819A (en) * | 2001-01-26 | 2002-11-12 | Tosoh Corp | Iron sulfide, its production method, iron sulfide composition, heavy metal treatment agent and treatment method using the same |
JP2002361266A (en) * | 2001-06-04 | 2002-12-17 | Jidosha Imono Kk | Chemicals for water treatment and method for using the same |
JP2003334526A (en) * | 2002-05-21 | 2003-11-25 | Konoike Constr Ltd | Method for solidifying and insolubilizing polluted soil, or the like |
JP2004169590A (en) * | 2002-11-19 | 2004-06-17 | Mitsubishi Materials Corp | Silica containing geothermal water treatment method and silica containing granular material |
JP2004283767A (en) * | 2003-03-24 | 2004-10-14 | Mitsubishi Materials Corp | Method and apparatus for treating geothermal water |
-
2006
- 2006-01-30 JP JP2006020029A patent/JP4827541B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5235449A (en) * | 1975-09-16 | 1977-03-18 | Giken Kogyo Kk | Disposal method for industrial waste containing compound chromium |
JPS6078639A (en) * | 1983-09-29 | 1985-05-04 | Nippon Petrochem Co Ltd | Mercury separating adsorbent |
JPS6128491A (en) * | 1984-07-17 | 1986-02-08 | Agency Of Ind Science & Technol | Dephosphorization treatment |
JPH02207890A (en) * | 1989-02-03 | 1990-08-17 | Toagosei Chem Ind Co Ltd | Method for removing arsenic in aqueous iron chloride solution |
JPH05137905A (en) * | 1991-09-26 | 1993-06-01 | Touen:Kk | Method and material for purifying sewage |
JPH0631282A (en) * | 1992-07-17 | 1994-02-08 | Nittetsu Cement Co Ltd | Preventing agent for water pollution |
JPH0780290A (en) * | 1993-09-11 | 1995-03-28 | Catalysts & Chem Ind Co Ltd | Waste water treatment agent |
JPH11501574A (en) * | 1995-10-31 | 1999-02-09 | ロディア シミ | Agents containing sulfur compounds for removing heavy metals |
JPH10113674A (en) * | 1996-10-11 | 1998-05-06 | Kansai Electric Power Co Inc:The | Processing agent of metal-containing waste liquid and its treatment |
JPH10165922A (en) * | 1996-12-06 | 1998-06-23 | Yoichi Nishimura | Industrial waste treating method |
JPH10263501A (en) * | 1997-03-21 | 1998-10-06 | Nippon Kayaku Co Ltd | Treating agent for heavy metal-containing waste and stabilizing method of heavy metal-containing waste |
JPH1128475A (en) * | 1997-07-09 | 1999-02-02 | Kurita Water Ind Ltd | Treatment of selenium-containing water |
JPH11104656A (en) * | 1997-10-06 | 1999-04-20 | Kurita Water Ind Ltd | Apparatus for treating water containing inorganic contaminant |
JP2000204542A (en) * | 1999-01-11 | 2000-07-25 | Kyokado Eng Co Ltd | Method for immobilizing harmful substance |
JP2001025777A (en) * | 1999-07-15 | 2001-01-30 | Kurita Water Ind Ltd | Water treating method |
JP2001259414A (en) * | 2000-03-23 | 2001-09-25 | Mitsubishi Materials Corp | Phosphorus recovering material |
JP2002326819A (en) * | 2001-01-26 | 2002-11-12 | Tosoh Corp | Iron sulfide, its production method, iron sulfide composition, heavy metal treatment agent and treatment method using the same |
JP2002361266A (en) * | 2001-06-04 | 2002-12-17 | Jidosha Imono Kk | Chemicals for water treatment and method for using the same |
JP2003334526A (en) * | 2002-05-21 | 2003-11-25 | Konoike Constr Ltd | Method for solidifying and insolubilizing polluted soil, or the like |
JP2004169590A (en) * | 2002-11-19 | 2004-06-17 | Mitsubishi Materials Corp | Silica containing geothermal water treatment method and silica containing granular material |
JP2004283767A (en) * | 2003-03-24 | 2004-10-14 | Mitsubishi Materials Corp | Method and apparatus for treating geothermal water |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010088991A (en) * | 2008-10-07 | 2010-04-22 | Waseda Univ | Water treatment agent and water treatment method |
JP4440323B1 (en) * | 2008-12-26 | 2010-03-24 | 株式会社富士クリーン | Leached water purification method and purification device |
JP2010149076A (en) * | 2008-12-26 | 2010-07-08 | Fuji Clean:Kk | Method and apparatus for purifying leachate |
CN102557221A (en) * | 2012-02-15 | 2012-07-11 | 中国科学院地球化学研究所 | Preparation method and application of eutrophic water body sediment phosphor in-situ passivating agent |
JP2015178064A (en) * | 2014-03-19 | 2015-10-08 | 富士シリシア化学株式会社 | Treatment agent of waste water containing phosphate, and treatment method of waste water containing phosphate |
JP2016022406A (en) * | 2014-07-17 | 2016-02-08 | 株式会社ワールド・リンク | Method for treating heavy metal-contaminated water |
JP2016169587A (en) * | 2015-03-11 | 2016-09-23 | 鹿島建設株式会社 | Disposal method and disposal system of excavated soil |
JP2017177012A (en) * | 2016-03-30 | 2017-10-05 | 住友大阪セメント株式会社 | Insolubilizing material for heavy metals and the like, and method for producing the same |
JP2018051451A (en) * | 2016-09-27 | 2018-04-05 | 太平洋セメント株式会社 | Chlorine-containing powder treating method and chlorine-containing powder treating system |
JP6147403B1 (en) * | 2016-09-29 | 2017-06-14 | ワールド・リンク株式会社 | Purification material and purification system for heavy metals eluted in water such as harbors and waterways |
WO2018061498A1 (en) * | 2016-09-29 | 2018-04-05 | ワールド・リンク株式会社 | Purification material and purification system for heavy metals eluted in water in harbor, conduit, and the like |
JP2018051499A (en) * | 2016-09-29 | 2018-04-05 | ワールド・リンク株式会社 | Purification material and purification system for heavy metals eluted in water in harbor, conduit, and the like |
JP7134658B2 (en) | 2017-05-30 | 2022-09-12 | Jx金属株式会社 | Sb removal method and valuable metal recovery method |
Also Published As
Publication number | Publication date |
---|---|
JP4827541B2 (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4827541B2 (en) | Immobilizing agent for harmful components and immobilizing method | |
Chen et al. | Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide | |
JP5905669B2 (en) | Hazardous material treatment material and method | |
CN104312591A (en) | Stabilized curing agent for heavy metal contaminated soil or solid waste treatment and treatment method | |
JP4076510B2 (en) | Environmental purification method | |
JP4870423B2 (en) | Heavy metal treatment material and heavy metal treatment method using the same | |
TWI646994B (en) | Hazardous substance treatment agent | |
JP2013177575A (en) | Treatment agent, and method for treating polluted water or polluted soil | |
JP2011136311A (en) | Development of adsorbent-insolubilizer for arsenic and heavy metals using natural zeolite as main raw material, and contaminated-soil reforming method | |
WO2006080587A1 (en) | Immobilizing agent and immobilization method for harmful component | |
CN110902792A (en) | Treatment method of wastewater containing pentavalent arsenic | |
JP2001121132A (en) | Insolubilizing method of soil and industrial waste containing cyan compound and soluble heavy metals | |
JP2000093927A (en) | Material for fixing hazardous substance | |
JP3897727B2 (en) | Hazardous material collector | |
JP3818446B2 (en) | Heavy metal fixing agent | |
JP3724062B2 (en) | Waste treatment material and waste treatment method | |
JP2005349349A (en) | Material for disposing of heavy metal | |
JP3047833B2 (en) | Hexavalent chromium treatment method | |
JP4061253B2 (en) | Method for producing heavy metal treatment agent | |
CN118403616B (en) | Method for preparing efficient heavy metal adsorption activated carbon by cooperatively utilizing waste incineration fly ash and landfill leachate and application | |
JP4557666B2 (en) | Method for reducing elution of heavy metals | |
JP6227879B2 (en) | Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same | |
JP3804950B2 (en) | Hazardous heavy metal collector | |
JP3960947B2 (en) | Hazardous substance reducing material and method for reducing harmful substance using the same | |
KR960003920B1 (en) | Method and material for treatment of waste water including heavy metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070921 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080122 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080428 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110913 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4827541 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |