JPH11104656A - Apparatus for treating water containing inorganic contaminant - Google Patents

Apparatus for treating water containing inorganic contaminant

Info

Publication number
JPH11104656A
JPH11104656A JP27264397A JP27264397A JPH11104656A JP H11104656 A JPH11104656 A JP H11104656A JP 27264397 A JP27264397 A JP 27264397A JP 27264397 A JP27264397 A JP 27264397A JP H11104656 A JPH11104656 A JP H11104656A
Authority
JP
Japan
Prior art keywords
alkali
sludge
tank
amount
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27264397A
Other languages
Japanese (ja)
Other versions
JP3348636B2 (en
Inventor
Isamu Kato
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP27264397A priority Critical patent/JP3348636B2/en
Publication of JPH11104656A publication Critical patent/JPH11104656A/en
Application granted granted Critical
Publication of JP3348636B2 publication Critical patent/JP3348636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To utilize an original treatment apparatus to calculate the amt. of alkali used at a time of the calculation of the concn. of SS formed by the neutralization of raw water from the use amt. of alkali in order to control a sludge return ratio without requiring separate exclusive machinery in treating water containing an inorg. contaminate by an alkali sludge method. SOLUTION: The raw water from a raw water tank 1 is preliminarily neutralized by a preparatory neutralization tank 2 and subsequently neutralized by alkali sludge in a neutralization tank 3 to form insoluble matter. This insoluble matter is subjected to flocculation treatment in a flocculation tank 4 and subsequently subjected to solid-liquid separation treatment in a sedimentation tank 5 to take out treated water. A part of separated sludge is returned to a reaction tank 6 and alkali is added to this sludge to form alkali sludge. The addition amt. of this alkali is calculated from the opening time of an alkali injection valve 9 in a recording/control part 10 and the amt. of formed SS is calculated on the basis of the calculated value to properly control the sludge return ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は無機系汚染物含有水
の処理装置に係り、特に、無機系汚染物含有水をアルカ
リで中和して不溶化物を生成させ、これを汚泥として処
理水と分離し、分離汚泥の一部を中和工程に返送する無
機系汚染物含有水の処理装置において、返送汚泥量を適
正に制御して、汚泥濃度を高め、汚泥発生量の低減を図
る無機系汚染物含有水の処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating inorganic contaminant-containing water, and more particularly, to neutralizing inorganic contaminant-containing water with an alkali to form an insolubilized product, and converting the resulting water into sludge and treating water. Inorganic contaminant-containing water treatment equipment that separates and returns part of the separated sludge to the neutralization process. Inorganic system that properly controls the amount of returned sludge, increases sludge concentration, and reduces sludge generation. The present invention relates to an apparatus for treating pollutant-containing water.

【0002】[0002]

【従来の技術】金属イオン含有排水の処理において、濃
縮性に富み、脱水性に優れた高濃度金属水酸化物汚泥を
得る方法として、アルカリ汚泥法がある。この方法は、
金属イオン含有排水にアルカリを直接添加せずに、排水
の処理で分離される汚泥の一部と混合して添加する方法
である(特公昭61−156号公報)。
2. Description of the Related Art In the treatment of metal ion-containing wastewater, there is an alkali sludge method as a method for obtaining high-concentration metal hydroxide sludge which is rich in concentration and excellent in dehydration. This method
This is a method in which an alkali is not directly added to a metal ion-containing wastewater but is mixed with a part of sludge separated in the treatment of the wastewater and added (Japanese Patent Publication No. 61-156).

【0003】アルカリ汚泥法では、高濃度で脱水性に優
れた汚泥を安定して得ると共に、良好な処理水の水質を
維持するために、原水の中和によって生成する不溶化物
量(SS量)と返送汚泥量の比を一定の範囲に維持する
ことが必要である。しかして、本出願人は、先にアルカ
リと混合する返送汚泥の固形分量を、アルカリと原水と
が反応して生成する不溶化物の量の15〜40倍とする
重金属含有廃水の処理方法を提案した(特開平5−57
292号公報)。
[0003] In the alkaline sludge method, in order to stably obtain high-concentration sludge having excellent dehydration properties and maintain good quality of treated water, the amount of insolubilized matter (SS amount) generated by neutralization of raw water is reduced. It is necessary to maintain the ratio of returned sludge within a certain range. Thus, the present applicant has proposed a method for treating heavy metal-containing wastewater in which the amount of solid content of returned sludge previously mixed with alkali is set to 15 to 40 times the amount of insolubilized substances produced by the reaction between alkali and raw water. (Japanese Patent Laid-Open No. 5-57)
292).

【0004】なお、本明細書において、原水である金属
イオン含有排水の中和によって生成するSS量(以下、
単に「生成SS」と称する場合がある。)と返送汚泥量
の比を「返送比」と表記する。具体的には、下記式
(1)に示す因子を計測して返送比を算出する。
[0004] In the present specification, the amount of SS (hereinafter, referred to as “SS”) generated by neutralizing wastewater containing metal ions as raw water is referred to as “SS”.
It may be simply referred to as “generation SS”. ) And the amount of returned sludge are referred to as “return ratio”. Specifically, the return ratio is calculated by measuring a factor shown in the following equation (1).

【0005】[0005]

【数1】 (Equation 1)

【0006】上記式(1)からも明らかなように、この
返送比を一定の範囲内に維持するためには、生成SS濃
度変化に対応して、即ち、SSを生成させる原水中の金
属イオンの濃度変化に対応して返送汚泥の量を制御する
ことが必要である。
As is apparent from the above equation (1), in order to maintain this return ratio within a certain range, it is necessary to respond to the change in the concentration of generated SS, that is, to adjust the metal ions in the raw water for generating SS. It is necessary to control the amount of returned sludge according to the change in the concentration of sludge.

【0007】本出願人は、アルカリ汚泥法により金属イ
オン含有排水を処理するにあたり、測定誤差やメンテナ
ンスの点で問題の多い汚泥濃度計を用いることなく、生
成SS量を容易に算出することにより返送比を所定の値
に維持して良好な処理を行う方法として、原水をpH3
から8.5付近にするに要したアルカリ使用量から原水
の金属イオン濃度を求め、この値に基づいて中和時に原
水中から生成するSS濃度を求める方法を先に提案した
(特開平8−24877号公報)。
[0007] In treating the metal ion-containing wastewater by the alkaline sludge method, the present applicant easily returns the amount of generated SS without using a sludge concentration meter having many problems in terms of measurement error and maintenance. As a method of performing good treatment while maintaining the ratio at a predetermined value, raw water is adjusted to pH 3
A method was previously proposed in which the metal ion concentration of raw water was determined from the amount of alkali required to bring the concentration to around 8.5, and the concentration of SS generated from raw water during neutralization was determined based on this value (Japanese Patent Laid-Open No. Hei 8- No. 24877).

【0008】即ち、処理対象とされる金属イオン含有排
水としては、例えば、鉄鋼の酸洗排水、鋼板の電気亜鉛
メッキ排水やそれらの工程からの洗浄排水などが挙げら
れるが、これらの排水は金属イオンの他に、酸洗浄やメ
ッキ工程で完全に使用されずに残留した硫酸や塩酸など
が遊離酸の形で含まれており、単にpH滴定に使用され
るアルカリ量のみでは金属イオンの量は求められない。
That is, examples of the metal ion-containing wastewater to be treated include pickling wastewater for steel, electrogalvanizing wastewater for steel sheets, and washing wastewater from those processes. In addition to the ions, sulfuric acid and hydrochloric acid remaining without being completely used in the acid washing and plating steps are contained in the form of free acids, and the amount of metal ions can be determined only by the alkali amount used for pH titration. I can't ask.

【0009】そこで、原水の一定量を採取し、まず、そ
のpHを3.0まで調節するのに要したアルカリ量を求
める(以下、このpH3に調整する処理を「予備滴定」
と称する場合がある。)。この予備滴定に要したアルカ
リ消費量を、原水中に含まれる遊離酸の中和に使用され
るものとする。
Therefore, a certain amount of raw water is collected, and the amount of alkali required to adjust the pH to 3.0 is first determined (hereinafter, the process of adjusting the pH to 3 is referred to as “preliminary titration”).
In some cases. ). The alkali consumption required for this preliminary titration shall be used for neutralizing the free acid contained in the raw water.

【0010】遊離酸として硫酸を980mg/Lの濃度
で含む合成排水のNaOHによるpH滴定曲線を図2に
示す。図2の曲線の立ち上がりの状態から、pH3で遊
離酸の中和反応(H2 SO4 +2NaOH→Na2 SO
4 +2H2 O)が終了していることが判る。
FIG. 2 shows a pH titration curve of synthetic effluent containing sulfuric acid as a free acid at a concentration of 980 mg / L with NaOH. From the rising state of the curve in FIG. 2, neutralization reaction of free acid at pH 3 (H 2 SO 4 + 2NaOH → Na 2 SO
4 + 2H 2 O) is completed.

【0011】従って、pH3から8.5付近に到る中和
処理に使用されたアルカリ量が、金属イオンと反応して
その不溶化に使用された量となる(例えば、FeSO4
+2NaOH→Fe(OH)2 +2H2 O)。
Therefore, the amount of alkali used for the neutralization treatment from pH 3 to around 8.5 becomes the amount used for insolubilizing the metal ions by reacting with them (for example, FeSO 4).
+ 2NaOH → Fe (OH) 2 + 2H 2 O).

【0012】この不溶化のための、中和処理に使用され
たアルカリ量は、当該アルカリの種類、不溶化する金属
イオン等により定まり、不溶化対象イオンとアルカリ使
用量が分かれば、生成SS量を容易に求めることができ
る。
The amount of alkali used in the neutralization treatment for this insolubilization is determined by the type of the alkali, the metal ion to be insolubilized, and the like. You can ask.

【0013】例えば、原水中の不溶化対象イオンがFe
2+であれば、苛性ソーダ(NaOH)による中和で生成
するSS量は、pH3から8.5付近に到る中和処理に
使用されたアルカリ量から次のような反応式のもとに、
下記式(2)より求めることができる。
For example, the ion to be insolubilized in raw water is Fe
If it is 2+ , the amount of SS generated by neutralization with caustic soda (NaOH) is calculated from the amount of alkali used in the neutralization treatment from pH 3 to around 8.5 by the following reaction formula:
It can be obtained from the following equation (2).

【0014】[0014]

【数2】 (Equation 2)

【0015】以下、この生成SS濃度の算出のためにN
aOH等のアルカリの必要量(単位は、mg−NaOH
/L等)に乗ずる数を「SS係数」と称する場合があ
る。このSS係数は、アルカリ及び不溶化対象イオンの
種類によって異なり、上記の如く、NaOHを用いたF
2+の不溶化の場合は0.89であるが、アルカリとし
てNaOH又はCa(OH)2 を用いた場合のその他の
主な不溶化対象イオンのSS係数は下記表1の通りであ
る。
In the following, N is calculated for calculating the generated SS concentration.
Required amount of alkali such as aOH (unit is mg-NaOH
/ L) may be referred to as “SS coefficient”. This SS coefficient differs depending on the type of the alkali and the ion to be insolubilized.
In the case of e 2+ insolubilization, the value is 0.89. The SS coefficients of other main ions to be insolubilized when NaOH or Ca (OH) 2 is used as the alkali are as shown in Table 1 below.

【0016】[0016]

【表1】 [Table 1]

【0017】このようにして算出した生成SS濃度に対
応して、汚泥返送ポンプの吐出量を制御して、返送比が
8〜40となるように必要な量の汚泥を返送することに
より、常に安定かつ確実に高濃度で脱水性に優れた汚泥
を得ると共に、良好な処理水の水質を維持することがで
きる。
By controlling the discharge amount of the sludge return pump in accordance with the calculated SS concentration calculated in this way and returning the required amount of sludge so that the return ratio is 8 to 40, the sludge is always returned. It is possible to stably and surely obtain sludge having a high concentration and excellent dewatering properties, and to maintain good quality of treated water.

【0018】この特開平8−24877号公報記載の方
法において、原水のpHが3から8.5付近になるまで
に要するアルカリ使用量は、具体的には次のようにして
測定される。
In the method described in JP-A-8-24877, the amount of alkali used until the pH of the raw water becomes from 3 to about 8.5 is measured specifically as follows.

【0019】アルカリとの反応で不溶化物を生成させる
中和槽の前段に予備中和槽を設置し、この予備中和層で
pHを予めpH3に調節した原水の一定量を滴定槽に採
取し、濃度既知のアルカリを用いてpH滴定を行い、p
H8.5まで調節するのに要したアルカリ量を求める。
A pre-neutralization tank is installed in front of the neutralization tank for producing an insolubilized product by reaction with an alkali, and a certain amount of raw water whose pH has been adjusted to pH 3 in advance by this pre-neutralization layer is collected in a titration tank. , PH titration using an alkali of known concentration, p
The amount of alkali required to adjust to H8.5 is determined.

【0020】[0020]

【発明が解決しようとする課題】上記特開平8−248
77号公報記載の方法によれば、原水の中和によって発
生するSS量を簡単に算出することができ、この生成S
S量の計算値に基いて汚泥返送比を容易に所定の値に維
持することができるが、上述の如く、予備中和槽から予
備中和された水を一定量採集してpH滴定することによ
り必要アルカリ量を求めているため、本来の処理装置と
は別にアルカリ量を測定するための容器や配管などの専
用の滴定機器を必要とし、装置が複雑化する、センサや
容器の洗浄、滴定薬品(アルカリ)の補充といったメン
テナンスが必要となり、運転管理が煩雑化するといった
不具合があった。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 8-248 is disclosed.
According to the method described in Japanese Patent No. 77, the amount of SS generated by neutralization of raw water can be easily calculated, and the generated S
The sludge return ratio can be easily maintained at a predetermined value based on the calculated value of the amount of S. However, as described above, a predetermined amount of pre-neutralized water is collected from the pre-neutralization tank and subjected to pH titration. Requires a dedicated titration device such as a container or piping to measure the alkali amount separately from the original processing equipment, which complicates the equipment.Washing and titration of sensors and containers Maintenance such as replenishment of chemicals (alkali) is required, and there is a problem that operation management becomes complicated.

【0021】本発明はこの問題を解決し、アルカリ汚泥
法により無機系汚染物含有水を処理するに当り、汚泥返
送比の制御のために、アルカリ使用量から原水の中和に
より生成するSS濃度を算出する際の当該アルカリ使用
量を、別途専用機器を必要とすることなく、本来の処理
装置を利用して求めることができる無機系汚染物含有水
の処理装置を提供することを目的とする。
The present invention solves this problem, and when treating water containing inorganic pollutants by the alkali sludge method, to control the sludge return ratio, the concentration of SS generated by neutralizing raw water from the amount of alkali used to control the sludge return ratio. It is an object of the present invention to provide an inorganic contaminant-containing water treatment apparatus that can calculate the amount of the alkali used when calculating the water without using a dedicated device separately and using the original treatment apparatus. .

【0022】[0022]

【課題を解決するための手段】本発明の無機系汚染物含
有水の処理装置は、無機系汚染物含有水が導入される第
1pH調整槽と、該第1pH調整槽からの水に含有され
る無機系汚染物をアルカリ又はアルカリ及び汚染物不溶
化剤と反応させて該汚染物を不溶化する第2pH調整槽
と、該第2pH調整槽からの水に含有される不溶化物を
汚泥として処理水と分離する固液分離槽と、該固液分離
槽で分離された汚泥の一部を前記第2pH調整槽に返送
する汚泥返送手段と、該第2pH調整槽又は第2pH調
整槽に返送する汚泥にアルカリを添加するアルカリ供給
手段と、該アルカリ供給手段によるアルカリ添加量から
前記不溶化物の生成量を算出し、算出したアルカリ添加
量に基いて汚泥返送手段による返送汚泥量を演算して制
御する記録・制御部と、を備える無機系汚染物含有水の
処理装置において、前記アルカリ供給手段はアルカリ注
入弁を有し、前記記録・制御部は、該アルカリ注入弁の
開時間に基いてアルカリ添加量を算出することを特徴と
する。
According to the present invention, there is provided an apparatus for treating water containing inorganic contaminants, a first pH adjusting tank into which the water containing inorganic contaminants is introduced, and water contained in the water from the first pH adjusting tank. A second pH adjustment tank for insolubilizing the inorganic contaminants with the alkali or alkali and the contaminant insolubilizing agent to insolubilize the contaminants; A solid-liquid separation tank to be separated, sludge return means for returning a part of the sludge separated in the solid-liquid separation tank to the second pH adjustment tank, and sludge returned to the second pH adjustment tank or the second pH adjustment tank. An alkali supply unit for adding an alkali, and calculating the amount of the insolubilized product from the amount of alkali added by the alkali supply unit, and calculating and controlling the amount of sludge returned by the sludge return unit based on the calculated amount of alkali added. ·control Wherein the alkali supply means has an alkali injection valve, and the recording / control unit calculates an alkali addition amount based on the opening time of the alkali injection valve. It is characterized by the following.

【0023】本発明では、アルカリ供給手段に設置した
アルカリ注入弁の開時間に基いてアルカリ添加量を求め
るため、別途専用機器を必要とすることなく、本来の処
理装置を利用してアルカリ添加量を求め、この結果に基
いて生成SS量を算出し、算出した生成SS量とその他
のデータから返送汚泥量を容易に制御することができ
る。
In the present invention, the amount of alkali addition is determined based on the opening time of the alkali injection valve installed in the alkali supply means. Is calculated, and the generated SS amount is calculated based on the result, and the returned sludge amount can be easily controlled from the calculated generated SS amount and other data.

【0024】[0024]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態について詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】図1は本発明の無機系汚染物含有水の処理
装置の実施の形態を示す系統図である。図1において、
1は原水槽、2は予備中和槽(第1pH調整槽)、3は
中和槽(第2pH調整槽)、4は凝集槽、5は沈殿槽、
6は反応槽、7はアルカリ貯槽、8はポリマー槽、9は
アルカリ注入弁、10は記録・制御部、30は汚泥濃度
計である。また、2A,3A,4A,6Aは攪拌機、2
B,3BはpH計、P1 ,P2 ,P3 ,P4 ,P5 はポ
ンプ、Vはバルブ、F1 ,F2 は流量計、11〜23の
各符号は配管である。
FIG. 1 is a system diagram showing an embodiment of an apparatus for treating water containing inorganic pollutants of the present invention. In FIG.
1 is a raw water tank, 2 is a preliminary neutralization tank (first pH adjustment tank), 3 is a neutralization tank (second pH adjustment tank), 4 is a coagulation tank, 5 is a sedimentation tank,
Reference numeral 6 denotes a reaction tank, 7 denotes an alkali storage tank, 8 denotes a polymer tank, 9 denotes an alkali injection valve, 10 denotes a recording / control unit, and 30 denotes a sludge concentration meter. In addition, 2A, 3A, 4A and 6A are stirrers,
B, 3B is a pH meter, P 1, P 2, P 3, P 4, P 5 the pump, V is valve, F 1, F 2 is a flow meter, the code of 11 to 23 is a piping.

【0026】本実施例の方法において、原水である無機
系汚染物含有水は、配管11、原水槽1及び配管12を
経て予備中和槽2に導入される。この原水槽1は必ずし
も必要とはされないが、原水槽1を設けることにより、
後述の如く、原水水質を均一化して原水の水質変動によ
る汚泥返送量の制御のタイムラグを緩和すると共に、供
給原水量を安定化することができる。
In the method of this embodiment, water containing inorganic contaminants, which is raw water, is introduced into the pre-neutralization tank 2 via the pipe 11, the raw water tank 1, and the pipe 12. This raw water tank 1 is not always necessary, but by providing the raw water tank 1,
As described later, the raw water quality can be made uniform, the time lag of the control of the sludge return amount due to the fluctuation of the raw water quality can be reduced, and the supplied raw water amount can be stabilized.

【0027】この原水の流入量は流量計F1 で計測さ
れ、測定値は記録・制御部10に入力される。即ち、前
述の汚泥返送比を算出するためには処理水量(原水流入
量)を把握しておく必要がある。そのため、任意の位置
に流量計を設けておき、常時原水の流入量を測定するの
が好ましい。しかし、通常、ポンプによる送水量はほぼ
一定しており、一方で、汚泥返送比には多少の幅が許容
されることから、処理水量として記録・制御部に予め設
定したポンプ送水量の値を記録させておくことにより、
流量計F1 を省略しても良い。
The flow rate of the raw water is measured by the flow meter F 1 , and the measured value is input to the recording / control unit 10. That is, in order to calculate the sludge return ratio described above, it is necessary to know the amount of treated water (the amount of raw water inflow). Therefore, it is preferable to provide a flow meter at an arbitrary position and always measure the inflow of raw water. However, normally, the amount of water supplied by the pump is almost constant, while the sludge return ratio is allowed to have a certain width. Therefore, the value of the amount of pump water supplied in advance to the recording / control unit as the amount of treated water is used. By recording it,
A flow meter F 1 may be omitted.

【0028】予備中和槽2において、原水は、アルカリ
貯槽7より配管21を経て注入される消石灰等のアルカ
リによりpH2.5〜3に調整される。この予備中和槽
2の調整pH値は、原水中の遊離の酸(例えば、硫酸、
塩酸、硝酸など)を中和するpH又は原水中に含まれる
固形物を溶解するpHであり、いずれの場合も通常、
2.5〜3の範囲で良く、従って、予備中和槽2のpH
計2Bは、アルカリ供給ポンプP2 に連動し、槽内液の
pHが2.5〜3になるように、配管21よりアルカリ
が注入される。なお、この予備中和槽2のアルカリの注
入制御は記録・制御部10により行うようにしても良
い。
In the pre-neutralization tank 2, the raw water is adjusted to pH 2.5 to 3 by alkali such as slaked lime injected from the alkali storage tank 7 through the pipe 21. The adjusted pH value of the pre-neutralization tank 2 is determined by the amount of free acid (for example, sulfuric acid,
Hydrochloric acid, nitric acid, etc.) or a pH that dissolves solids contained in raw water.
It may be in the range of 2.5 to 3, and therefore the pH of the pre-neutralization tank 2
Meter. 2B, in conjunction with the alkali supply pump P 2, pH of the bath in the liquid so that 2.5 to 3, the alkali is injected from the pipe 21. The injection of alkali into the preliminary neutralization tank 2 may be controlled by the recording / control unit 10.

【0029】また、原水のpHが例えば4以上と高い場
合には、この予備中和槽2では、硫酸、塩酸等の酸を添
加して同様にpH2.5〜3に調整する。これは、既に
原水中で析出している不溶化物は汚泥返送を行っても所
期の減容化効果が得られないためであり、原水中に存在
する不溶化物は予備中和槽2でpH2.5〜3.0に調
整することにより、一旦イオン化(例えば、Al(O
H)3 →Al3+,Zn(OH)2 →Zn2+,CaF2
- ,Ca3 (PO4 2 →PO4 3- )する。
When the pH of the raw water is as high as, for example, 4 or more, an acid such as sulfuric acid or hydrochloric acid is added to the pre-neutralization tank 2 to adjust the pH to 2.5 to 3 in the same manner. This is because the insolubilized material that has already precipitated in the raw water does not have the expected volume-reducing effect even if the sludge is returned. By adjusting to 0.5 to 3.0, once ionization (for example, Al (O
H) 3 → Al 3+ , Zn (OH) 2 → Zn 2+ , CaF 2
F -, Ca 3 (PO 4 ) 2 → PO 4 3-) to.

【0030】一般に、遊離酸の中和は実験レベルでは瞬
時に終了するが、実装置において瞬時中和は不可能であ
るため、予備中和槽2における滞留時間は3〜5分程度
とするのが好ましい。
Generally, neutralization of free acid is instantaneously completed at the experimental level, but instantaneous neutralization is impossible in an actual apparatus. Therefore, the residence time in the pre-neutralization tank 2 is set to about 3 to 5 minutes. Is preferred.

【0031】予備中和槽2の流出水は、配管13より中
和槽3に導入される。この中和槽3には、反応槽6にて
配管17からの返送汚泥と配管20を経てアルカリ貯槽
7から送給されるアルカリとが混合されて調製された混
合物(以下「アルカリ汚泥」と称す。)が、配管22よ
り供給されている。この中和槽3のpH計3Bの測定値
は記録・制御部10に入力され、記録・制御部10でア
ルカリ注入弁9の開閉を制御して反応槽6へのアルカリ
添加量を調整することにより、アルカリ汚泥の添加で槽
内液が無機系汚泥物の不溶化に好適なpHに制御される
ように構成されている。
The effluent from the pre-neutralization tank 2 is introduced into the neutralization tank 3 through a pipe 13. In the neutralization tank 3, a mixture prepared by mixing return sludge from the pipe 17 in the reaction tank 6 and alkali supplied from the alkali storage tank 7 through the pipe 20 (hereinafter referred to as “alkali sludge”) .) Is supplied from the pipe 22. The measured value of the pH meter 3B in the neutralization tank 3 is input to the recording / control unit 10, and the recording / control unit 10 controls the opening and closing of the alkali injection valve 9 to adjust the amount of alkali added to the reaction tank 6. Thereby, the tank liquid is controlled to a pH suitable for insolubilizing inorganic sludge by adding alkali sludge.

【0032】この中和槽3における不溶化処理に当って
は、必要に応じて無機系汚染物の不溶化剤を添加する。
即ち、本発明に係る原水に含まれる無機系汚染物には、
アルカリのみで不溶化できる金属イオンの他、フッ素、
リン酸、炭酸、亜硫酸などのように、pH調整のための
アルカリと共にアルカリ土類金属化合物のような不溶化
剤を必要とするものもあり、この場合には、適宜必要量
の不溶化剤を添加する。
In the insolubilization treatment in the neutralization tank 3, if necessary, an insolubilizing agent for inorganic contaminants is added.
That is, the inorganic contaminants contained in the raw water according to the present invention include:
In addition to metal ions that can be insolubilized only with alkali, fluorine,
Some, such as phosphoric acid, carbonic acid, and sulfurous acid, require an insolubilizing agent such as an alkaline earth metal compound together with an alkali for pH adjustment. In this case, a necessary amount of the insolubilizing agent is appropriately added. .

【0033】中和槽3の調整pH値は、原水中の無機系
汚染物の種類や不溶化剤の種類等によっても異なるが、
概ね6〜11の範囲である。具体的には、不溶化対象イ
オンがAl3+,Fe3+の場合は好ましくはpH6〜7、
- ,PO4 3- の場合は好ましくはpH8〜10、Ni
2+,Cd2+の場合は好ましくはpH10〜11である。
The adjusted pH value of the neutralization tank 3 varies depending on the type of inorganic contaminants in the raw water, the type of insolubilizing agent, and the like.
It is generally in the range of 6-11. Specifically, when the ions to be insolubilized are Al 3+ and Fe 3+ , the pH is preferably 6 to 7,
F -, PO 4 3- case is preferably pH 8-10, Ni
In the case of 2+ and Cd 2+, the pH is preferably 10 to 11.

【0034】従って、この調整pH値となるように、反
応槽6へアルカリを供給する配管20に設けられた、電
磁弁又はエア作動弁等のアルカリ注入弁9の開閉が制御
される。
Accordingly, the opening and closing of the alkali injection valve 9 such as a solenoid valve or an air-operated valve provided in the pipe 20 for supplying alkali to the reaction tank 6 is controlled so that the adjusted pH value is obtained.

【0035】このアルカリ注入弁9は、一般に、作動を
開始した後所定pHになるまで連続的に「開」の状態と
されるのではなく、所定pHになるまで「開」/「閉」
を繰り返して注入される。この「開」/「閉」時間比
は、タイマにより任意に設定される。
In general, the alkaline injection valve 9 is not continuously opened until the predetermined pH is reached after the operation is started, but is opened / closed until the predetermined pH is reached.
Is repeatedly injected. The “open” / “close” time ratio is arbitrarily set by a timer.

【0036】本発明では、このアルカリ注入弁9の
「開」の時間又は「開」/「閉」のサイクル数(実際に
はこのサイクル数から求められる「開」時間)を記録・
制御部10に記録する。
In the present invention, the “open” time or the number of “open” / “close” cycles of the alkali injection valve 9 (actually, the “open” time obtained from this cycle number) is recorded.
Recorded in the control unit 10.

【0037】一方で、アルカリ注入弁9が「開」のとき
の、当該注入弁固有の単位時間当りのアルカリ注入量
(以下「固有アルカリ注入量」と称す。)を予め求めて
おき、この記録・制御部10に記録しておく。記録・制
御部10では、この固有アルカリ流入量と、「開」時間
又は「開」/「閉」サイクルから、反応槽6へのアルカ
リ添加量を算出し、算出したアルカリ添加量から前述の
SS係数を用いる計算式により生成SS濃度を算出し、
更に算出した生成SS濃度と、後述の汚泥濃度計30か
ら入力される返送汚泥濃度と、流量計F2 から入力され
る返送汚泥流量と、前述の流量計F1 から入力される原
水流量とを、前記式(1)に入力して返送比を算出し、
この返送比が所定値となるように汚泥返送ポンプP4
吐出量の制御信号を出力する。あるいは、調整弁をとり
つけ、その開度調整により流量を制御しても良い。この
返送比は、原水水質(原水中の不溶化対象イオンの種
類、共存イオン)によって異なるが、通常の場合、金属
イオンの処理では返送比15〜40、特に、Fe,Cr
等の重金属の場合は返送比15〜20,Alの場合は返
送比20〜30とされ、また、不溶化物がCaF2 の場
合は返送比30〜50,Ca3 (PO4 2 の場合は返
送比30〜100とされる。
On the other hand, when the alkali injection valve 9 is "open", an alkali injection amount per unit time unique to the injection valve (hereinafter referred to as "intrinsic alkali injection amount") is obtained in advance, and this record is made. -Record it in the control unit 10. The recording / control unit 10 calculates the amount of alkali added to the reaction tank 6 based on the specific alkali inflow amount and the “open” time or “open” / “closed” cycle. The generated SS concentration is calculated by a calculation formula using a coefficient,
A generation SS concentrations further calculated, and the return sludge concentration inputted from the sludge concentration meter 30 will be described later, the return sludge flow rate inputted from the flow meter F 2, and a raw water flow rate inputted from the flow meter F 1 of the aforementioned , Input to the above equation (1) to calculate the return ratio,
The return ratio to output a control signal of the discharge amount of the sludge return pump P 4 to a predetermined value. Alternatively, a flow rate may be controlled by adjusting a degree of opening of a regulating valve. The return ratio depends on the quality of the raw water (the type of ions to be insolubilized in the raw water, coexisting ions), but usually, the return ratio is 15 to 40 in the treatment of metal ions, particularly Fe, Cr.
The return ratio is 15 to 20 for heavy metals such as Al, the return ratio is 20 to 30 for Al, and the return ratio is 30 to 50 when the insolubilized material is CaF 2 , and the return ratio is 30 for Ca 3 (PO 4 ) 2 . The return ratio is set to 30 to 100.

【0038】なお、アルカリ注入弁9にかかる圧力が変
動し、注入流量の変動が懸念される場合には、アルカリ
注入弁9の流入側或いは流出側に定流量弁を設け、開状
態でのアルカリ流量を一定とすることで、アルカリ注入
弁の開時間からのアルカリ添加量の算出精度を良くする
ことができる。
If the pressure applied to the alkali injection valve 9 fluctuates and the flow rate of the injection is fluctuated, a constant flow valve is provided on the inflow side or the outflow side of the alkali injection valve 9 so that the alkali in the open state is opened. By making the flow rate constant, it is possible to improve the calculation accuracy of the alkali addition amount from the opening time of the alkali injection valve.

【0039】ところで、中和槽3では、上述の如く、常
時、無機系汚染物を不溶化するのに好適なpHとなるよ
うにアルカリ汚泥を注入しているが、このアルカリ汚泥
調整のための反応槽6へのアルカリ注入量は、原水の水
質変動に応じて変動する。本発明では、この変動するア
ルカリ注入量をアルカリ注入弁の作動状態から求めるの
であるが、一般にアルカリ注入弁9の「開」/「閉」時
間サイクルは、当該注入弁の規格により種々設定可能で
あり、例えば「開」/「閉」=10秒/30秒、30秒
/20秒、20秒/10秒、20秒/60秒である。こ
のような「開」/「閉」時間サイクルに対して、原水の
水質変動に対応して適正な測定を行うためには、実用的
には、5分以上、通常の場合10分〜20分程度の任意
の時間の間のアルカリ注入弁の開時間(「開」時間又は
「開」/「閉」サイクル)を計測し、この計測値からア
ルカリ注入量を把握し、単位時間当たりの平均値に換算
するのが好ましい。なお、原水の水質変動を吸収して、
原水水質を安定化させる点からも原水槽1の設置が重要
であるが、このような計測時間に対応して原水水質の変
動の影響を小さくするためには、原水槽の容量は、上記
計測時間の3倍以上の滞留時間を確保できる容量、例え
ば、アルカリ注入弁9の「開」/「閉」サイクルを20
分毎の平均値で求める場合、原水槽1の滞留時間は60
分以上となるように設計するのが好ましい。
As described above, in the neutralization tank 3, alkali sludge is always injected so as to have a pH suitable for insolubilizing inorganic contaminants. The amount of alkali injected into the tank 6 fluctuates according to the water quality fluctuation of the raw water. In the present invention, the fluctuating alkali injection amount is obtained from the operation state of the alkali injection valve. In general, the "open" / "close" time cycle of the alkali injection valve 9 can be variously set according to the standard of the injection valve. For example, “open” / “closed” = 10 seconds / 30 seconds, 30 seconds / 20 seconds, 20 seconds / 10 seconds, 20 seconds / 60 seconds. For such “open” / “closed” time cycle, in order to perform appropriate measurement in response to water quality fluctuation of raw water, practically 5 minutes or more, usually 10 minutes to 20 minutes Measure the opening time ("open" time or "open" / "close" cycle) of the alkali injection valve during any given time, grasp the alkali injection amount from this measured value, and average the value per unit time It is preferable to convert to In addition, absorb water quality fluctuation of raw water,
It is important to install the raw water tank 1 from the viewpoint of stabilizing the raw water quality, but in order to reduce the influence of the fluctuation of the raw water quality corresponding to such a measurement time, the capacity of the raw water tank must be measured as described above. Capacity that can ensure a residence time of at least three times the time, for example, 20 cycles of the “open” / “close” cycle of the alkali injection valve 9
When the average value per minute is obtained, the residence time of the raw water tank 1 is 60
It is preferred that the design is made to be at least minutes.

【0040】中和槽3の流出液は、配管14より凝集槽
4に導入され、ポリマー槽8より配管23を経て注入さ
れるポリマーにより凝集処理される。このポリマー注入
量は通常の場合1〜5ppm程度とされる。なお、この
凝集槽4は必ずしも必要とされないが、沈殿槽5の前段
に凝集槽4を設けて不溶化物の粗大化を図るのが実用的
である。
The effluent from the neutralization tank 3 is introduced into the coagulation tank 4 from the pipe 14, and is subjected to coagulation by the polymer injected from the polymer tank 8 through the pipe 23. This polymer injection amount is usually about 1 to 5 ppm. Although the flocculation tank 4 is not always necessary, it is practical to provide the flocculation tank 4 before the precipitation tank 5 to increase the size of the insolubilized material.

【0041】凝集処理液は次いで配管15より沈殿槽5
に導入され、固液分離される。分離水は処理水として配
管16より系外へ排出される。また、沈降汚泥の一部は
配管18を経て系外へ排出され、残部は配管17より反
応槽6に返送される。
The coagulation solution is then supplied from the pipe 15 to the sedimentation tank 5.
And separated into solid and liquid. The separated water is discharged out of the system from the pipe 16 as treated water. A part of the settled sludge is discharged out of the system through a pipe 18, and the remaining part is returned to the reaction tank 6 through a pipe 17.

【0042】この汚泥返送の濃度は汚泥返送配管17か
ら分岐した配管18に設けられた汚泥濃度計30で測定
される。即ち、汚泥返送配管17より、返送汚泥の一部
が配管18より抜き出され、汚泥濃度計30で濃度測定
された後、配管19より反応槽6に注入される。
The sludge return concentration is measured by a sludge concentration meter 30 provided on a pipe 18 branched from the sludge return pipe 17. That is, a part of the returned sludge is extracted from the sludge return pipe 17 through the pipe 18, the concentration thereof is measured by the sludge concentration meter 30, and then injected into the reaction tank 6 through the pipe 19.

【0043】この汚泥濃度計の測定値は記録・制御部1
0に入力される。また、返送汚泥流量は汚泥返送配管1
7に設けられた流量計F2 で測定され、この測定値も記
録・制御部10に入力される。
The measured value of the sludge densitometer is stored in the recording / control unit 1
Input to 0. In addition, the return sludge flow rate is the sludge return pipe 1
Measured in the flow meter F 2 provided at 7, the measured value is also input to the recording and control unit 10.

【0044】本発明において、処理対象となる無機系汚
染物含有水としては、銅、亜鉛、ニッケル、カドミウ
ム、マンガン、鉛、鉄等の重金属イオンや、重金属とキ
レート剤との重金属錯体等を含む金属イオン含有排水、
例えばメッキ排水やその他、フッ素含有排水、リン含有
排水のように、アルカリ、又は、アルカリと不溶化剤の
添加で不溶化することが可能な、金属イオン、フッ素イ
オン、リン酸イオン等の各種の無機系汚染物を含む排水
が挙げられる。
In the present invention, the water containing inorganic contaminants to be treated includes heavy metal ions such as copper, zinc, nickel, cadmium, manganese, lead and iron, and heavy metal complexes of heavy metals and chelating agents. Wastewater containing metal ions,
Various inorganic systems such as metal ions, fluorine ions, and phosphate ions that can be insolubilized by the addition of an alkali or an alkali and an insolubilizing agent, such as plating wastewater and other fluorine-containing wastewater and phosphorus-containing wastewater. Wastewater containing pollutants.

【0045】また、これらの排水に添加するアルカリと
しては、水酸化ナトリウム、消石灰、水酸化マグネシウ
ム、水酸化バリウム、水酸化ストロンチウム等のアルカ
リ金属又はアルカリ土類金属の水酸化物が挙げられ、不
溶化剤としては、塩化カルシウム、塩化マグネシウム等
が挙げられる。また、ポリマーとしてはポリアクリルア
ミド、その部分加水分解物等が挙げられる。
Examples of the alkali to be added to these wastewaters include alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, slaked lime, magnesium hydroxide, barium hydroxide, and strontium hydroxide. Examples of the agent include calcium chloride and magnesium chloride. Examples of the polymer include polyacrylamide and a partial hydrolyzate thereof.

【0046】図1に示す処理装置は本発明の実施の形態
の一例であって、本発明はその要旨を超えない限り、何
ら図示のものに限定されるものではない。
The processing apparatus shown in FIG. 1 is an example of the embodiment of the present invention, and the present invention is not limited to the one shown in the drawings unless it exceeds the gist.

【0047】例えば、中和槽(第2pH調整槽)3への
アルカリは、返送汚泥に混合して添加する他、中和槽3
に直接添加しても良い。この場合には、反応槽6は不要
となり、沈殿槽5からの返送汚泥は直接中和槽3に添加
される。
For example, the alkali to the neutralization tank (second pH adjusting tank) 3 is added to the returned sludge by mixing it.
May be added directly. In this case, the reaction tank 6 becomes unnecessary, and the sludge returned from the precipitation tank 5 is directly added to the neutralization tank 3.

【0048】このような本発明の無機系汚染物含有水の
処理装置によれば、アルカリ添加量測定のための専用の
機器を必要とせず、当該処理装置からアルカリ添加量を
算出するための測定値を得、この測定値に基いて生成S
S量を算出し、この生成SS量をもとに返送比を所定の
値に維持して、脱水性に優れた高濃度汚泥を得ると共
に、清澄な高水質処理水を安定かつ確実に得ることがで
きる。
According to the apparatus for treating inorganic contaminant-containing water of the present invention, a dedicated apparatus for measuring the amount of added alkali is not required, and the measurement for calculating the amount of added alkali from the treatment apparatus is not required. Value, and based on this measurement the generated S
Calculate the amount of S, maintain the return ratio at a predetermined value based on the amount of generated SS, obtain high-concentration sludge with excellent dehydration properties, and obtain clear and high-quality treated water stably and reliably. Can be.

【0049】[0049]

【発明の効果】以上詳述した通り、本発明の無機系汚染
物含有水の処理装置によれば、アルカリ汚泥法により無
機系汚染物含有水を処理するに当り、汚泥返送比の制御
のために、アルカリ使用量から原水の中和により生成す
るSS濃度を算出する際の当該アルカリ使用量を、別途
専用機器を必要とすることなく、本来の処理装置を利用
して求めることができ、設備の簡略化、メンテナンスや
運転管理の軽減を図ることができる。
As described above in detail, according to the apparatus for treating inorganic contaminant-containing water of the present invention, in treating the inorganic contaminant-containing water by the alkali sludge method, the sludge return ratio is controlled. In addition, the amount of alkali used when calculating the SS concentration generated by the neutralization of raw water from the amount of alkali used can be obtained by using the original processing apparatus without the need for a special device separately. And maintenance and operation management can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の無機系汚染物含有水の処理装置の実施
の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a treatment apparatus for water containing inorganic pollutants of the present invention.

【図2】合成排水のpH滴定曲線を示すグラフである。FIG. 2 is a graph showing a pH titration curve of synthetic wastewater.

【符号の説明】[Explanation of symbols]

1 原水槽 2 予備中和槽 3 中和槽 4 凝集槽 5 沈殿槽 6 反応槽 7 アルカリ貯槽 8 ポリマー槽 9 アルカリ注入弁 10 記録・制御部 30 汚泥濃度計 DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Preliminary neutralization tank 3 Neutralization tank 4 Coagulation tank 5 Sedimentation tank 6 Reaction tank 7 Alkaline storage tank 8 Polymer tank 9 Alkaline injection valve 10 Recording / control part 30 Sludge concentration meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機系汚染物含有水が導入される第1p
H調整槽と、 該第1pH調整槽からの水に含有される無機系汚染物を
アルカリ又はアルカリ及び汚染物不溶化剤と反応させて
該汚染物を不溶化する第2pH調整槽と、 該第2pH調整槽からの水に含有される不溶化物を汚泥
として処理水と分離する固液分離槽と、 該固液分離槽で分離された汚泥の一部を前記第2pH調
整槽に返送する汚泥返送手段と、 該第2pH調整槽又は第2pH調整槽に返送する汚泥に
アルカリを添加するアルカリ供給手段と、 該アルカリ供給手段によるアルカリ添加量から前記不溶
化物の生成量を算出し、算出したアルカリ添加量に基い
て汚泥返送手段による返送汚泥量を演算して制御する記
録・制御部と、 を備える無機系汚染物含有水の処理装置において、 前記アルカリ供給手段はアルカリ注入弁を有し、 前記記録・制御部は、該アルカリ注入弁の開時間に基い
てアルカリ添加量を算出することを特徴とする無機系汚
染物含有水の処理装置。
1. The first p into which water containing inorganic contaminants is introduced.
An H-adjustment tank; a second pH-adjustment tank for reacting inorganic contaminants contained in water from the first pH-adjustment tank with alkali or an alkali and a contaminant-insolubilizing agent to insolubilize the contaminants; A solid-liquid separation tank that separates insoluble material contained in the water from the tank as sludge from the treated water, and a sludge return unit that returns a part of the sludge separated in the solid-liquid separation tank to the second pH adjustment tank. An alkali supply means for adding alkali to the second pH adjustment tank or sludge returned to the second pH adjustment tank; and an amount of the insolubilized product calculated from the amount of alkali added by the alkali supply means. A recording / control unit that calculates and controls the amount of sludge returned by the sludge return means based on the sludge return means. The alkali supply means has an alkali injection valve. Recording and control unit, the processing unit of the inorganic contaminants containing water and calculates the alkali addition amount based on the opening time of the alkali injection valve.
JP27264397A 1997-10-06 1997-10-06 Water treatment equipment containing inorganic pollutants Expired - Fee Related JP3348636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27264397A JP3348636B2 (en) 1997-10-06 1997-10-06 Water treatment equipment containing inorganic pollutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27264397A JP3348636B2 (en) 1997-10-06 1997-10-06 Water treatment equipment containing inorganic pollutants

Publications (2)

Publication Number Publication Date
JPH11104656A true JPH11104656A (en) 1999-04-20
JP3348636B2 JP3348636B2 (en) 2002-11-20

Family

ID=17516791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27264397A Expired - Fee Related JP3348636B2 (en) 1997-10-06 1997-10-06 Water treatment equipment containing inorganic pollutants

Country Status (1)

Country Link
JP (1) JP3348636B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070951A (en) * 1999-09-01 2001-03-21 Kurita Water Ind Ltd Method for treating phosphorus-containing water
JP2004174386A (en) * 2002-11-27 2004-06-24 Kurita Water Ind Ltd Treatment method for phosphoric acid-containing wastewater
JP2006122817A (en) * 2004-10-28 2006-05-18 Kurita Water Ind Ltd Treatment method of copper-containing solution
JP2006167633A (en) * 2004-12-16 2006-06-29 Japan Organo Co Ltd Treating method of fluorine-containing water
JP2007125536A (en) * 2005-01-31 2007-05-24 Egs:Kk Immobilizing agent and method for harmful component
JP2008229572A (en) * 2007-03-23 2008-10-02 Nippon Steel Corp Treatment method of facility wastewater from hot-dip galvanized steel sheet manufacture
JP2010069416A (en) * 2008-09-18 2010-04-02 Japan Organo Co Ltd Treatment device for phosphoric acid-containing water
JP2010234300A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method for treating wastewater containing inorganic ion
JP2011047768A (en) * 2009-08-26 2011-03-10 Kureha Ecology Management Co Ltd Method and device for automatically measuring fluorine concentration
JP2011083707A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid matter separation system
JP2012050947A (en) * 2010-09-02 2012-03-15 Tekken Constr Co Ltd Turbid water treatment apparatus
KR102068437B1 (en) * 2019-04-12 2020-02-11 정세영 Package of inclined clarifier with acceleating floculation in adding sweep coagulation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070951A (en) * 1999-09-01 2001-03-21 Kurita Water Ind Ltd Method for treating phosphorus-containing water
JP2004174386A (en) * 2002-11-27 2004-06-24 Kurita Water Ind Ltd Treatment method for phosphoric acid-containing wastewater
JP4626268B2 (en) * 2004-10-28 2011-02-02 栗田工業株式会社 Method for treating copper-containing liquid
JP2006122817A (en) * 2004-10-28 2006-05-18 Kurita Water Ind Ltd Treatment method of copper-containing solution
JP2006167633A (en) * 2004-12-16 2006-06-29 Japan Organo Co Ltd Treating method of fluorine-containing water
JP2007125536A (en) * 2005-01-31 2007-05-24 Egs:Kk Immobilizing agent and method for harmful component
JP4632372B2 (en) * 2007-03-23 2011-02-16 新日本製鐵株式会社 Treatment method of waste water from hot-dip galvanized steel sheet manufacturing equipment
JP2008229572A (en) * 2007-03-23 2008-10-02 Nippon Steel Corp Treatment method of facility wastewater from hot-dip galvanized steel sheet manufacture
JP2010069416A (en) * 2008-09-18 2010-04-02 Japan Organo Co Ltd Treatment device for phosphoric acid-containing water
JP2010234300A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method for treating wastewater containing inorganic ion
JP2011047768A (en) * 2009-08-26 2011-03-10 Kureha Ecology Management Co Ltd Method and device for automatically measuring fluorine concentration
JP2011083707A (en) * 2009-10-15 2011-04-28 Toshiba Corp Solid matter separation system
JP2012050947A (en) * 2010-09-02 2012-03-15 Tekken Constr Co Ltd Turbid water treatment apparatus
KR102068437B1 (en) * 2019-04-12 2020-02-11 정세영 Package of inclined clarifier with acceleating floculation in adding sweep coagulation

Also Published As

Publication number Publication date
JP3348636B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
AU2013308317B2 (en) Method for removing sulphate, calcium and/or other soluble metals from waste water
JP3348636B2 (en) Water treatment equipment containing inorganic pollutants
NO301536B1 (en) Process for removing heavy metal ions from wastewater and its use
KR920002811B1 (en) Method of improving langelier index of city water and apparatus therefor
JP2001340874A (en) Method for determining necessary addition amount of chelate type metal collector, and method and apparatus for controlling chemical injection
JPH043280B2 (en)
JP4678599B2 (en) Treatment method for wastewater containing phosphoric acid
JP2003164886A (en) Method of determining necessary amount of chelate-base metal treating agent to be added and method of controlling chemical feeding
JP5338432B2 (en) Treatment method of inorganic ion-containing wastewater
JP3981843B2 (en) Method for treating selenium-containing water
JP5073354B2 (en) Waste liquid treatment method and treatment equipment using iron-oxidizing bacteria
JP4821173B2 (en) Treatment method for waste water containing fluoride ions
JP3567506B2 (en) Treatment method for metal-containing wastewater
JP3658775B2 (en) Treatment method for wastewater containing metal ions
JPH07124574A (en) Plating waste liquid treatment process
JPH091154A (en) Treatment of phosphoric acid-containing waste water
JP2021037449A (en) Method for treating fluorine-containing waste water
JP3256606B2 (en) High-density sludge treatment method and apparatus
JP2001129560A (en) Method and apparatus for treating phosphorus- containing water
JPH06304578A (en) Treatment of hexavalent chromium-containing waste liquid
JP2000288585A (en) Injection control method of sodium carbonate and calcium ion-containing water treatment equipment using the same
KR100291899B1 (en) METHOD OF ELIMINATING FLUORINE ION(F¬-) AND HEXAVALENT CHROMIUM ION(Cr¬6+) FROM INDUSTRIAL WASTEWATER
JP2906521B2 (en) Chromium-containing wastewater treatment method
JP3475453B2 (en) Treatment of chromium-containing wastewater
JP3674062B2 (en) Treatment method of iron-containing metal wastewater

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140913

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees