JP2011047768A - Method and device for automatically measuring fluorine concentration - Google Patents

Method and device for automatically measuring fluorine concentration Download PDF

Info

Publication number
JP2011047768A
JP2011047768A JP2009195790A JP2009195790A JP2011047768A JP 2011047768 A JP2011047768 A JP 2011047768A JP 2009195790 A JP2009195790 A JP 2009195790A JP 2009195790 A JP2009195790 A JP 2009195790A JP 2011047768 A JP2011047768 A JP 2011047768A
Authority
JP
Japan
Prior art keywords
concentration
sample water
ion
measuring
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009195790A
Other languages
Japanese (ja)
Other versions
JP5260446B2 (en
Inventor
Takuya Kitazawa
琢也 北沢
Norihiro Shirato
典広 白土
Yukihiro Ooka
幸裕 大岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Ecology Management Co Ltd
Original Assignee
Kureha Ecology Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Ecology Management Co Ltd filed Critical Kureha Ecology Management Co Ltd
Priority to JP2009195790A priority Critical patent/JP5260446B2/en
Publication of JP2011047768A publication Critical patent/JP2011047768A/en
Application granted granted Critical
Publication of JP5260446B2 publication Critical patent/JP5260446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of automatically measuring a fluorine concentration for readily measuring the fluorine concentration, in sample water where magnesium ions coexist at a high concentration, for example, of not less than 7,000 mg/L using a simple operation. <P>SOLUTION: The method of automatically measuring fluorine concentration includes the dilution process for diluting sample water by water as diluted sample water, when fluorine concentration in the sample water is measured by ion electrode method, the measurement process for measuring the fluoride ion concentration of the diluted sample water by an ion electrode, and the operation process for performing dilution ratio correction to a measurement value measured by the ion electrode. Thus, the fluorine concentration of sample water having a high magnesium ion concentration can be measured readily and automatically. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、試料水中のふっ素濃度をイオン電極法により測定するふっ素濃度自動測定方法、およびふっ素濃度自動測定装置に関し、特に高濃度マグネシウム塩水溶液中のふっ素濃度をイオン電極法により測定するふっ素濃度自動測定方法、およびふっ素濃度自動測定装置に関する。   The present invention relates to a fluorine concentration automatic measurement method and a fluorine concentration automatic measurement apparatus for measuring a fluorine concentration in a sample water by an ion electrode method, and more particularly, to automatically measure a fluorine concentration in a high concentration magnesium salt aqueous solution by an ion electrode method. The present invention relates to a measuring method and a fluorine concentration automatic measuring apparatus.

工場では、一般に排水中に含まれる有害なふっ素化合物の水質基準を満たすためJIS K0102−34「ふっ素化合物」(非特許文献1)に準拠したイオン電極法による自動フッ素イオン測定装置を用いて、ふっ素化合物濃度を連続的にモニタリングしている。なお、上記JISによれば、ふっ素化合物の定量には、イオン電極法以外にランタン−アリザリンコンプレキソン吸光光度法、イオンクロマトグラフ法も挙げられているが、自動測定装置としてはイオン電極法が最も優れ、価格も安い。   In factories, in order to meet the water quality standards for harmful fluorine compounds generally contained in wastewater, an automatic fluorine ion measuring device based on the ion electrode method in accordance with JIS K0102-34 “Fluorine compounds” (Non-patent Document 1) is used. The compound concentration is continuously monitored. According to the above JIS, in addition to the ion electrode method, lanthanum-alizarin complexone absorptiometry and ion chromatographic methods are also mentioned for quantification of fluorine compounds, but the ion electrode method is the most automatic measuring device. Excellent and cheap.

JIS K0102−34記載のイオン電極法による測定方法は、具体的には以下の通りである。ふっ素化合物を前処理して蒸留分離した試料に緩衝液を加えてpHを5.2に調節し、ふっ化物イオン電極を指示電極として電位を測定し、ふっ化物イオンを定量する。ただし、妨害物質を含まない試料の場合には、蒸留分離操作を省くことができる。前記自動フッ素イオン測定装置は、蒸留分離装置を付帯せず、遊離ふっ化物イオンのみを測定対象とする。   The measuring method by the ion electrode method described in JIS K0102-34 is specifically as follows. A buffer solution is added to the sample which has been pre-treated with the fluorine compound and separated by distillation, the pH is adjusted to 5.2, the potential is measured using the fluoride ion electrode as an indicator electrode, and fluoride ions are quantified. However, in the case of a sample that does not contain interfering substances, the distillation separation operation can be omitted. The automatic fluorine ion measuring device does not include a distillation separation device, and only the free fluoride ions are measured.

ふっ化物イオンが試料水中の共存物質と錯体(イオン対、イオン会合体も含む)を形成する場合、低濃度であれば、添加する緩衝液(pH5.2)により錯体は解離し測定可能となるが、高濃度の場合、緩衝液を多量に添加しても錯体は完全には解離せず測定不能となる。
ふっ化物イオンと錯体を形成する物質としてマグネシウムイオンが知られている。試料水中にマグネシウムイオンが高濃度で共存すると、ふっ化物イオンはマグネシウムイオンと錯体(MgF+)を形成するため遊離ふっ化物イオン濃度が減少し、イオン電極での測定に大きな負の誤差を与える。
When fluoride ions form complexes (including ion pairs and ion aggregates) with coexisting substances in the sample water, the complex is dissociated by the added buffer solution (pH 5.2) and can be measured at a low concentration. However, at a high concentration, even if a large amount of buffer solution is added, the complex is not completely dissociated and measurement is impossible.
Magnesium ions are known as substances that form complexes with fluoride ions. When magnesium ions coexist in the sample water at a high concentration, the fluoride ions form a complex (MgF + ) with the magnesium ions, so that the free fluoride ion concentration decreases, giving a large negative error to the measurement at the ion electrode.

工場排水は一般的にマグネシウムイオン濃度が低い(例えば100mg/L以下)ため、前記自動フッ素イオン測定装置において緩衝液を添加すれば、錯体は解離し、イオン強度も検量線作成時の標準試料と同程度に調整される。   Since industrial wastewater generally has a low magnesium ion concentration (for example, 100 mg / L or less), if a buffer solution is added in the automatic fluorine ion measuring device, the complex dissociates, and the ionic strength is the same as that of the standard sample used when preparing the calibration curve. Adjusted to the same extent.

一方、有害物質として塩化水素、硫黄酸化物、フッ化水素、および煤塵を含む高温の焼却炉排ガスの処理、特に廃油、汚泥、廃酸、廃アルカリ、医療廃棄物、廃プラスチック等産業廃棄物の焼却炉排ガスの処理には、多量の有害物質を効率的に処理でき、中和剤が理論量の使用で済む湿式排ガス処理法が開発されている。
この中和剤として水酸化マグネシウムを用いることにより、水酸化ナトリウムを用いる場合の排水中のふっ素濃度が高くなる不都合が解消され、また消石灰を用いる場合の硫酸カルシウム二水塩の生成によるスケーリングトラブルの問題も解消するとされている。なかでも高温の焼却炉排ガスを水酸化マグネシウムを含む洗浄水と直接接触させる急冷工程、急冷された排ガスを無堰多孔板吸収塔で水酸化マグネシウムと粉末活性炭を含む洗浄液により向流洗浄する排ガスの洗浄工程よりなる焼却炉排ガスの高度処理方法が開発されている(特許文献1)。
この場合、排ガスの洗浄排水は水酸化マグネシウムを中和剤として用いるのでマグネシウムイオン濃度が例えば7000mg/L以上と高く、前記自動フッ素イオン測定装置において緩衝液の添加量を増やしても、マグネシウム−ふっ素錯体は十分に解離されず、ふっ化物イオンの測定値は大きな負の誤差を持つことになっていた。
On the other hand, treatment of high-temperature incinerator exhaust gas containing hydrogen chloride, sulfur oxide, hydrogen fluoride and soot as harmful substances, especially industrial waste such as waste oil, sludge, waste acid, waste alkali, medical waste, waste plastic, etc. In the treatment of exhaust gas from incinerators, a wet exhaust gas treatment method has been developed that can efficiently treat a large amount of harmful substances and uses a theoretical amount of neutralizing agent.
By using magnesium hydroxide as the neutralizing agent, the disadvantage of high fluorine concentration in the wastewater when using sodium hydroxide is eliminated, and scaling trouble due to the formation of calcium sulfate dihydrate when using slaked lime is eliminated. The problem is also resolved. Among them, a rapid cooling process in which the exhaust gas from the high temperature incinerator is brought into direct contact with the cleaning water containing magnesium hydroxide, and the exhaust gas subjected to countercurrent cleaning with the cleaning liquid containing magnesium hydroxide and powdered activated carbon in the no-damage perforated plate absorption tower. An advanced treatment method for incinerator exhaust gas comprising a cleaning process has been developed (Patent Document 1).
In this case, magnesium hydroxide is used as the neutralizing agent in the waste water for washing exhaust gas, so the magnesium ion concentration is as high as 7000 mg / L or more. Even if the amount of buffer solution added in the automatic fluoride ion measuring device is increased, magnesium-fluorine The complex was not fully dissociated and the measured fluoride ion had a large negative error.

このようなマグネシウム−ふっ素錯体形成による負の誤差を防止するためには、理論的にはイオン交換樹脂等であらかじめ排水中のマグネシウムイオンをナトリウムイオン等に変換する方法が考えられるが、測定毎のイオン交換操作、イオン交換樹脂溶離操作は煩雑で、現実には該方法は困難であり、マグネシウムイオン濃度が高い排水を測定対象とする際には、ふっ素濃度を正確にかつ簡易に測定することはできなかった。   In order to prevent such a negative error due to the formation of a magnesium-fluorine complex, theoretically, a method of converting magnesium ions in waste water into sodium ions or the like in advance with an ion exchange resin or the like can be considered. Ion exchange operation and ion exchange resin elution operation are complicated, and this method is difficult in practice. When wastewater with a high magnesium ion concentration is to be measured, it is not possible to measure the fluorine concentration accurately and simply. could not.

特開2000−79320号公報JP 2000-79320 A

JIS K0102−34(2008年版)JIS K0102-34 (2008 edition)

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、排水中のマグネシウム−ふっ素錯体からふっ化物イオンを遊離させ、イオン電極でふっ化物イオン濃度を測定するふっ素濃度自動測定方法、およびふっ素濃度自動測定装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and is a fluorine concentration automatic measurement method for measuring fluoride ion concentration with an ion electrode by releasing fluoride ions from a magnesium-fluorine complex in waste water, And it aims at providing a fluorine concentration automatic measuring device.

本発明者らは、マグネシウムイオンが高濃度で共存する工場排水を多量の水で希釈してマグネシウムイオン濃度を下げると、マグネシウム−ふっ素錯体からふっ化物イオンが遊離する結果イオン電極での測定が可能となり、得られたふっ化物イオン濃度に希釈率を乗じた値は、公定法(JIS K0102 34.1 蒸留分離前処理、ランタン−アリザリンコンプレキソン吸光光度法)で得られた測定値と遜色なく、実用上一致することを見出し、本発明を完成するに至った。   We can measure at the ion electrode as a result of fluoride ion liberation from the magnesium-fluorine complex when the magnesium ion concentration is lowered by diluting the industrial wastewater in which magnesium ion coexists at a high concentration with a large amount of water. The value obtained by multiplying the obtained fluoride ion concentration by the dilution rate is not inferior to the measured value obtained by the official method (JIS K0102 34.1 distillation separation pretreatment, lanthanum-alizarin complexone spectrophotometry), It was found that the values are practically consistent, and the present invention has been completed.

即ち、本発明は、
[1] 試料水中のふっ素濃度をイオン電極法により測定するにあたり、
該試料水を水で希釈し希釈試料水とする希釈工程、
該希釈試料水のふっ化物イオン濃度をイオン電極で測定する測定工程、
イオン電極で測定された測定値を希釈率補正する演算工程、
を含むことを特徴とするふっ素濃度自動測定方法。
[2] 前記希釈工程において、マグネシウムイオン濃度を50〜100mg/Lに希釈することを特徴とする上記[1]に記載のふっ素濃度自動測定方法。
[3] 試料水中のふっ素濃度をイオン電極法により測定するにあたり、
該試料水を水で希釈し希釈試料水とする希釈装置、
該希釈試料水のふっ化物イオン濃度をイオン電極で測定する測定装置、
イオン電極で測定された測定値を希釈率補正する演算装置、
を内蔵することを特徴とするふっ素濃度自動測定装置。
に関する。
That is, the present invention
[1] In measuring the fluorine concentration in the sample water by the ion electrode method,
A dilution step of diluting the sample water with water to obtain diluted sample water;
A measurement step of measuring the fluoride ion concentration of the diluted sample water with an ion electrode;
A calculation process for correcting the dilution rate of the measurement value measured with the ion electrode,
A method for automatically measuring fluorine concentration, comprising:
[2] The fluorine concentration automatic measurement method according to [1], wherein in the dilution step, the magnesium ion concentration is diluted to 50 to 100 mg / L.
[3] In measuring the fluorine concentration in the sample water by the ion electrode method,
A dilution apparatus for diluting the sample water with water to obtain diluted sample water;
A measuring device for measuring the fluoride ion concentration of the diluted sample water with an ion electrode;
An arithmetic unit that corrects the dilution rate of the measured value measured by the ion electrode,
Fluorine concentration automatic measuring device characterized by incorporating
About.

本発明によれば、マグネシウムイオンが高濃度で共存する排水中のふっ素濃度を測定する際に、水希釈によりマグネシウム−ふっ素錯体からふっ化物イオンを遊離させることができるため、イオン電極による測定が可能となった。   According to the present invention, when measuring the concentration of fluorine in wastewater in which magnesium ions coexist at a high concentration, fluoride ions can be liberated from the magnesium-fluorine complex by diluting with water, so measurement using an ion electrode is possible. It became.

本ふっ素濃度自動測定の工程を示す概念図。The conceptual diagram which shows the process of this fluorine concentration automatic measurement. 本ふっ素濃度自動測定装置の一例を示すフローシート。The flow sheet which shows an example of this fluorine concentration automatic measurement apparatus. 本発明と公定法との相関図。The correlation diagram of the present invention and the official method.

本発明が対象とするふっ素化合物含有排水としては、前記した焼却炉、特に産業廃棄物焼却炉の排ガス処理中和剤として水酸化マグネシウムを用いた排水があるが、これに限らずふっ化水素を含有する排ガスの湿式排ガス処理排水などであって、マグネシウムイオンが高濃度で共存するふっ素化合物含有排水ならばいかなる産業排水であっても対象とすることができる。例えば、石炭燃焼排ガスを対象とした石灰石石膏法排煙脱硫装置、水酸化マグネシウムを中和剤として用いる排煙脱硫装置の排水がある。   Fluorine compound-containing wastewater targeted by the present invention includes wastewater using magnesium hydroxide as an exhaust gas treatment neutralizing agent for the incinerators described above, particularly industrial waste incinerators, but is not limited to this. Any industrial wastewater can be used as long as it is a wastewater containing a fluorine compound containing magnesium ions in a high concentration, such as wet wastewater treatment wastewater for exhaust gas contained therein. For example, there are limestone and gypsum flue gas desulfurization devices targeting coal combustion exhaust gas, and waste gas desulfurization devices using magnesium hydroxide as a neutralizing agent.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明するが、本発明は図面に限定されるものではない。
本発明のふっ素濃度自動測定の工程を示す概念図を図1に示す。工場排水を試料水としてふっ素濃度を自動測定する場合について説明する。本発明は、計量された試料水を水で一定倍率に希釈する希釈工程、次いで、イオン電極によりふっ化物イオン濃度を測定する測定工程、測定された測定値を希釈率補正する演算工程を含むことから成る。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the drawings.
FIG. 1 is a conceptual diagram showing the fluorine concentration automatic measurement process of the present invention. The case where fluorine concentration is automatically measured using factory wastewater as sample water will be described. The present invention includes a dilution step of diluting the weighed sample water with water at a constant magnification, then a measurement step of measuring the fluoride ion concentration by the ion electrode, and an operation step of correcting the dilution rate of the measured measurement value. Consists of.

自動測定にあたり、まず量り取った試料水を水で希釈する。希釈は測定のために適切な希釈率に設定するが、試料水を数10倍から数100倍に希釈して、マグネシウムイオン濃度を50〜100mg/Lにすることが好ましい。マグネシウムイオン濃度が100mg/L超の場合、ふっ化物イオンへの解離が不十分であり、測定値が低くなってしまい、また、マグネシウムイオン濃度が50mg/L未満の場合、希釈率が大きくなり、希釈装置が過大となってしまい、好ましくない。   In the automatic measurement, the sample water weighed is first diluted with water. Dilution is set to an appropriate dilution ratio for measurement, but it is preferable to dilute the sample water several tens to several hundred times to make the magnesium ion concentration 50 to 100 mg / L. When the magnesium ion concentration exceeds 100 mg / L, dissociation into fluoride ions is insufficient, resulting in a low measurement value. When the magnesium ion concentration is less than 50 mg / L, the dilution rate increases. The dilution apparatus becomes excessive, which is not preferable.

更に詳しく本発明のふっ素濃度自動測定装置について、図2を用いて説明する。本発明の装置は、
(A)試料水を計量するための計量槽と、前記計量槽の下流に配置し、一定量の工業用水を量り取り、ついで試料水と混合するための攪拌機を備えた希釈槽を備える希釈装置、
(B)前記(A)希釈装置で得られた希釈試料水をイオン電極でふっ化物イオン濃度を測定する測定装置、
(C)前記(B)測定装置で測定された測定値を希釈率補正する演算装置、
を内蔵している。
The fluorine concentration automatic measuring apparatus of the present invention will be described in more detail with reference to FIG. The device of the present invention
(A) A diluting apparatus comprising a measuring tank for measuring sample water, and a diluting tank that is arranged downstream of the measuring tank, measures a certain amount of industrial water, and then includes a stirrer for mixing with the sample water. ,
(B) a measuring device for measuring fluoride ion concentration of diluted sample water obtained by the (A) dilution device with an ion electrode;
(C) (B) a calculation device that corrects the dilution rate of the measurement value measured by the measurement device;
Built in.

(A)希釈装置の計量槽で試料水を量り取り、あらかじめ工業用水を一定量量り取った希釈槽に流下し撹拌・希釈して、希釈試料水を調製する。試料水の計量・希釈は1時間に1回行い、希釈試料水をポンプで(B)測定装置内にあるイオン電極を設置した測定槽に連続的に通液する。同時にpH調整液を途中から希釈試料水に一定体積比で注入し、測定槽下部の攪拌器で撹拌しつつふっ化物イオン濃度を測定する。測定装置の測定槽内は1時間に1回洗浄液で洗浄処理され、また校正液で測定値の校正も自動的に行う。測定後の排液、および各槽でオーバーフローした排液は排出口から測定装置外へ排出する。前記測定装置で測定された測定値は、マグネシウムイオン濃度を50〜100mg/L程度とした希釈試料水での値であるので、希釈率補正する必要がある。そのための(C)演算装置において前記測定値は希釈率補正され、試料水中のふっ素濃度が算出される。
なお、本発明のふっ素濃度自動測定方法およびふっ素濃度自動測定装置について、図2に示す装置に基づいて説明したが、本発明はこの図2に示すものに限定されないことは言うまでもない。
(A) Sample water is weighed in a measuring tank of a diluting device, and is poured into a dilution tank in which a certain amount of industrial water has been previously weighed and stirred and diluted to prepare diluted sample water. The sample water is weighed and diluted once an hour, and the diluted sample water is continuously passed through a measurement tank provided with an ion electrode in the (B) measurement apparatus by a pump. At the same time, the pH adjusting solution is poured into the diluted sample water at a constant volume ratio from the middle, and the fluoride ion concentration is measured while stirring with a stirrer at the bottom of the measuring tank. The measuring tank of the measuring device is cleaned with a cleaning liquid once an hour, and the measured value is automatically calibrated with a calibration liquid. The drained liquid after measurement and the drained liquid overflowed in each tank are discharged from the outlet to the outside of the measuring device. Since the measured value measured by the measuring device is a value in diluted sample water with a magnesium ion concentration of about 50 to 100 mg / L, it is necessary to correct the dilution rate. In the (C) arithmetic unit for that purpose, the measurement value is corrected for the dilution rate, and the fluorine concentration in the sample water is calculated.
The fluorine concentration automatic measuring method and fluorine concentration automatic measuring apparatus of the present invention have been described based on the apparatus shown in FIG. 2, but it goes without saying that the present invention is not limited to the one shown in FIG.

従来の自動フッ素イオン測定方法は、マグネシウムイオン濃度が例えば7000mg/L以上と高い排水に対し、緩衝液の添加量を増やしても、マグネシウム−ふっ素錯体を十分に解離できず、測定値は大きな負の誤差を持つことになっていた。これに対し、本発明の多量の水で希釈するという簡易な方法によりマグネシウムイオン濃度を下げると、錯体が解離してふっ化物イオンを遊離するため、イオン電極での測定が可能となった。   In the conventional automatic fluorine ion measurement method, the magnesium-fluorine complex cannot be sufficiently dissociated even if the amount of the buffer solution added is increased with respect to wastewater having a high magnesium ion concentration of, for example, 7000 mg / L or more. It was supposed to have an error. On the other hand, when the magnesium ion concentration was lowered by the simple method of diluting with a large amount of water according to the present invention, the complex dissociated and liberated fluoride ions, so measurement with an ion electrode became possible.

このような自動フッ素イオン測定方法を適用したふっ素濃度自動測定装置は、広く廃棄物処理から製造業での工場排水などのふっ素濃度を自動測定するために使用されるものであり、特に、マグネシウムイオン濃度が高い溶液、例えば水酸化マグネシウムを中和剤として用いる産業廃棄物焼却炉排ガスの洗浄排水などのふっ素濃度を自動測定する場合により好ましく使用することができる。   Fluorine concentration automatic measuring equipment to which such an automatic fluorine ion measuring method is applied is widely used for automatic measurement of fluorine concentration such as industrial waste water from waste treatment to manufacturing industry. It can be more preferably used in the case of automatically measuring the fluorine concentration of a high concentration solution, for example, cleaning waste water of industrial waste incinerator exhaust gas using magnesium hydroxide as a neutralizing agent.

[実施例1]
図2に示すふっ素濃度自動測定装置を用いて産業廃棄物焼却炉排ガス洗浄排水のふっ素濃度を連続的に自動測定した。洗浄排水のpHは7〜8、主成分は塩化マグネシウムおよび硫酸マグネシウムであり、マグネシウム濃度は7000〜8000mg/Lであった。なお、焼却炉排ガスは、塩化水素数千ppm、硫黄酸化物数百ppm、フッ化水素数十ppm、煤塵数g/Nm3 を含み、温度850 〜950℃であった。
容量11Lの希釈槽に工業用水を7.8L供給し、試料水を計量槽で81.7mL量り取り希釈槽に供給攪拌した。試料水の希釈率は96.5倍である。希釈試料水をフッ素イオン濃度測定装置(商品名:自動フッ素イオン測定装置FLIA−101,(株)堀場製作所製)で、ふっ化物イオン濃度を測定し、測定値を演算装置で希釈率補正した。公定法による測定値との相関は、図3に示すとおりRが0.9107であり、良い相関を示した。
[Example 1]
The fluorine concentration of the industrial waste incinerator exhaust gas cleaning waste water was automatically and continuously measured using the fluorine concentration automatic measuring apparatus shown in FIG. The pH of the washing wastewater was 7 to 8, the main components were magnesium chloride and magnesium sulfate, and the magnesium concentration was 7000 to 8000 mg / L. The incinerator exhaust gas contained several thousand ppm of hydrogen chloride, several hundred ppm of sulfur oxide, several tens of ppm of hydrogen fluoride, and several g / Nm 3 of dust, and had a temperature of 850 to 950 ° C.
7.8 L of industrial water was supplied to a diluting tank having a capacity of 11 L, and 81.7 mL of sample water was weighed and stirred in the diluting tank. The dilution rate of sample water is 96.5 times. The diluted sample water was measured for fluoride ion concentration with a fluorine ion concentration measuring device (trade name: automatic fluorine ion measuring device FLIA-101, manufactured by Horiba, Ltd.), and the measured value was diluted with a calculation device. Correlation between the measured value by the official method, as R 2 shown in FIG. 3 is 0.9107, showing a good correlation.

[比較例1]
希釈槽に工業用水を供給せず、希釈率を補正しない以外は実施例1と同様にふっ化物イオン濃度を測定した。このときのふっ素濃度自動測定結果を図3に示す。測定値は公定値に対して大きな負の誤差を生じた。
[Comparative Example 1]
The fluoride ion concentration was measured in the same manner as in Example 1 except that industrial water was not supplied to the dilution tank and the dilution rate was not corrected. The fluorine concentration automatic measurement result at this time is shown in FIG. The measured value produced a large negative error relative to the official value.

本発明によれば、マグネシウムイオンが高濃度で共存する排水中のふっ素濃度を、イオン電極法により簡易な操作で自動測定できる。マグネシウムイオンが高濃度で共存するふっ素化合物含有排水としては、水酸化マグネシウムを中和剤として用いる焼却炉特に産業廃棄物焼却炉の排ガス処理排水が挙げられる。のみならず、有害物質としてふっ素を含有する排水であって、マグネシウムイオンが高濃度で共存するならばいかなる産業排水であっても測定対象とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the fluorine density | concentration in the waste_water | drain in which magnesium ion coexists with high concentration can be automatically measured by simple operation by the ion electrode method. Examples of the fluorine compound-containing wastewater in which magnesium ions coexist at a high concentration include exhaust gas treatment wastewater from incinerators using magnesium hydroxide as a neutralizing agent, particularly industrial waste incinerators. Not only wastewater containing fluorine as a harmful substance, but any industrial wastewater can be used as a measurement target as long as magnesium ions coexist in a high concentration.

Claims (3)

試料水中のふっ素濃度をイオン電極法により測定するにあたり、
該試料水を水で希釈し希釈試料水とする希釈工程、
該希釈試料水のふっ化物イオン濃度をイオン電極で測定する測定工程、
イオン電極で測定された測定値を希釈率補正する演算工程、
を含むことを特徴とするふっ素濃度自動測定方法。
In measuring the fluorine concentration in the sample water by the ion electrode method,
A dilution step of diluting the sample water with water to obtain diluted sample water;
A measurement step of measuring the fluoride ion concentration of the diluted sample water with an ion electrode;
A calculation process for correcting the dilution rate of the measurement value measured with the ion electrode,
A method for automatically measuring fluorine concentration, comprising:
前記希釈工程において、マグネシウムイオン濃度を50〜100mg/Lに希釈することを特徴とする請求項1に記載のふっ素濃度自動測定方法。   2. The fluorine concentration automatic measurement method according to claim 1, wherein in the dilution step, the magnesium ion concentration is diluted to 50 to 100 mg / L. 試料水中のふっ素濃度をイオン電極法により測定するにあたり、
該試料水を水で希釈し希釈試料水とする希釈装置、
該希釈試料水のふっ化物イオン濃度をイオン電極で測定する測定装置、
イオン電極で測定された測定値を希釈率補正する演算装置、
を内蔵することを特徴とするふっ素濃度自動測定装置。
In measuring the fluorine concentration in the sample water by the ion electrode method,
A dilution apparatus for diluting the sample water with water to obtain diluted sample water;
A measuring device for measuring the fluoride ion concentration of the diluted sample water with an ion electrode;
An arithmetic unit that corrects the dilution rate of the measured value measured by the ion electrode,
Fluorine concentration automatic measuring device characterized by incorporating
JP2009195790A 2009-08-26 2009-08-26 Fluorine concentration automatic measuring method and fluorine concentration automatic measuring device Active JP5260446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195790A JP5260446B2 (en) 2009-08-26 2009-08-26 Fluorine concentration automatic measuring method and fluorine concentration automatic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195790A JP5260446B2 (en) 2009-08-26 2009-08-26 Fluorine concentration automatic measuring method and fluorine concentration automatic measuring device

Publications (2)

Publication Number Publication Date
JP2011047768A true JP2011047768A (en) 2011-03-10
JP5260446B2 JP5260446B2 (en) 2013-08-14

Family

ID=43834251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195790A Active JP5260446B2 (en) 2009-08-26 2009-08-26 Fluorine concentration automatic measuring method and fluorine concentration automatic measuring device

Country Status (1)

Country Link
JP (1) JP5260446B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049654A (en) * 2021-03-17 2021-06-29 包头钢铁(集团)有限责任公司 Method for analyzing content of fluorine ions in dolomite, limestone and lime
CN114088791A (en) * 2021-11-11 2022-02-25 包头钢铁(集团)有限责任公司 Method for analyzing content of fluorine ions in slaked lime

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599062A (en) * 1979-01-25 1980-07-28 Nippon Steel Corp Concentration measurement of pickling solution containing hydrofluoric acid
JPS58211644A (en) * 1982-06-03 1983-12-09 Nippon Steel Corp Automatic control method and apparatus for concentration of fluoride in plating bath for electrolytic chromic acid treated steel plate
JPS62142265A (en) * 1985-12-17 1987-06-25 Seiko Instr & Electronics Ltd Method for measuring concentration of fluorine
JPH0351754A (en) * 1989-07-19 1991-03-06 Chubu Electric Power Co Inc Method and apparatus for measuring concentration of fluorine
JPH11104656A (en) * 1997-10-06 1999-04-20 Kurita Water Ind Ltd Apparatus for treating water containing inorganic contaminant
JPH11352098A (en) * 1998-06-05 1999-12-24 Mitsui Mining & Smelting Co Ltd Concentration measurement of fluorine in zinc electrolyte
JP2008175729A (en) * 2007-01-19 2008-07-31 Horiba Advanced Techno Co Ltd Specimen measurement system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599062A (en) * 1979-01-25 1980-07-28 Nippon Steel Corp Concentration measurement of pickling solution containing hydrofluoric acid
JPS58211644A (en) * 1982-06-03 1983-12-09 Nippon Steel Corp Automatic control method and apparatus for concentration of fluoride in plating bath for electrolytic chromic acid treated steel plate
JPS62142265A (en) * 1985-12-17 1987-06-25 Seiko Instr & Electronics Ltd Method for measuring concentration of fluorine
JPH0351754A (en) * 1989-07-19 1991-03-06 Chubu Electric Power Co Inc Method and apparatus for measuring concentration of fluorine
JPH11104656A (en) * 1997-10-06 1999-04-20 Kurita Water Ind Ltd Apparatus for treating water containing inorganic contaminant
JPH11352098A (en) * 1998-06-05 1999-12-24 Mitsui Mining & Smelting Co Ltd Concentration measurement of fluorine in zinc electrolyte
JP2008175729A (en) * 2007-01-19 2008-07-31 Horiba Advanced Techno Co Ltd Specimen measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049654A (en) * 2021-03-17 2021-06-29 包头钢铁(集团)有限责任公司 Method for analyzing content of fluorine ions in dolomite, limestone and lime
CN114088791A (en) * 2021-11-11 2022-02-25 包头钢铁(集团)有限责任公司 Method for analyzing content of fluorine ions in slaked lime

Also Published As

Publication number Publication date
JP5260446B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
TWI406820B (en) Treatment of chlorine - containing wastewater
JP5260446B2 (en) Fluorine concentration automatic measuring method and fluorine concentration automatic measuring device
JP2009072657A (en) Method for treating heavy metals in soil or soil slurry
JP4905397B2 (en) Method and apparatus for treating fluorine-containing water
JP4954131B2 (en) Treatment method of water containing borofluoride
TWI811365B (en) Fluorine concentration measuring method, fluorine concentration measuring device, water treatment method, and water treatment device
JP2017064569A (en) Method and apparatus for treating fluorine-containing wastewater
JP5565581B2 (en) Individual determination of hypochlorite and hypobromite
Borjigin et al. Determination of fluoride using ion-selective electrodes in the presence of aluminum
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
JP2000301101A (en) Treatment method of refuse incineration fly ash and acidic gas removing agent for refuse incineration exhaust gas
Wu et al. Reduction of nitrogen dioxide from etching vent gases by scrubbing with caustic sodium sulfide solution
TWI583634B (en) A method for reducing chemical oxygen demand of the waste water
TWI636006B (en) Capturing and concentration measuring methods of chlorine dioxide gas and chlorine dioxide gas scavenger
JP5871270B2 (en) Selenium-containing liquid treatment system, wet desulfurization apparatus, and selenium-containing liquid treatment method
WO2003080519A1 (en) Method of wastewater treatment
KR20210133983A (en) Methods for treating flue gases in combustion units
JP2008272580A (en) Treatment method for heavy metals in waste ash
JP3843551B2 (en) Determination method of required amount of liquid chelating agent for fly ash treatment
JP5467586B2 (en) Selenium-containing liquid treatment system, wet desulfurization apparatus, and selenium-containing liquid treatment method
JP2004170339A (en) Method for measuring concentration of sulfur oxide in mixed gas containing chlorine and sulfur oxide
JP3969157B2 (en) Method and apparatus for determining required amount of chelating heavy metal immobilizing agent
US20220204376A1 (en) Wastewater treatment method and wastewater treatment system
RU2006114995A (en) METHOD FOR DETERMINING CEMENT STONE CORROSION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250