JP5565581B2 - Individual determination of hypochlorite and hypobromite - Google Patents

Individual determination of hypochlorite and hypobromite Download PDF

Info

Publication number
JP5565581B2
JP5565581B2 JP2010235842A JP2010235842A JP5565581B2 JP 5565581 B2 JP5565581 B2 JP 5565581B2 JP 2010235842 A JP2010235842 A JP 2010235842A JP 2010235842 A JP2010235842 A JP 2010235842A JP 5565581 B2 JP5565581 B2 JP 5565581B2
Authority
JP
Japan
Prior art keywords
absorbance
hypochlorite
hypobromite
aqueous solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010235842A
Other languages
Japanese (ja)
Other versions
JP2012088203A (en
Inventor
純一 中島
勝 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2010235842A priority Critical patent/JP5565581B2/en
Publication of JP2012088203A publication Critical patent/JP2012088203A/en
Application granted granted Critical
Publication of JP5565581B2 publication Critical patent/JP5565581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、次亜塩素酸塩および次亜臭素酸塩の個別定量法、特に、次亜塩素酸塩と次亜臭素酸塩とを同時に含む水溶液について、次亜塩素酸塩と次亜臭素酸塩とを個別に定量するための方法に関する。   The present invention relates to a method for individual determination of hypochlorite and hypobromite, and particularly to an aqueous solution containing hypochlorite and hypobromite at the same time, hypochlorite and hypobromite. It relates to a method for individually quantifying salt.

工場やビル等の循環冷却水および浴場や水泳プールなどの循環用水の処理設備においては、水の循環により微生物および藻類等の水棲生物による障害、例えば、増殖した微生物の大気への拡散、微生物や水棲生物により生成するスライムによる配管の閉塞や処理設備の機能不全の防止が求められる。このため、循環水の処理設備においては、通常、循環水に次亜塩素酸塩を添加することで微生物や水棲生物の増殖を抑え、障害の発生を抑制している。しかし、次亜塩素酸塩は、処理水中の有機物と反応することで有害な有機塩素化合物を生成することから、それにより処理された循環水をそのまま排水すると環境汚染を招く可能性がある。また、処理水がアルカリ性の場合、次亜塩素酸塩は解離が進行して殺菌効果が減退する。さらに、処理水がアンモニアを含む場合、次亜塩素酸塩はアンモニアとの反応によりクロラミンを生成し、活性が低下する。   In processing equipment for circulating cooling water such as factories and buildings, and circulating water such as baths and swimming pools, damage caused by aquatic organisms such as microorganisms and algae due to the circulation of water, such as diffusion of propagated microorganisms to the atmosphere, Prevention of blockage of piping and malfunction of processing equipment due to slime produced by aquatic organisms is required. For this reason, in the treatment facility for circulating water, usually, hypochlorite is added to the circulating water to suppress the growth of microorganisms and aquatic organisms and to suppress the occurrence of obstacles. However, hypochlorite generates harmful organochlorine compounds by reacting with organic substances in the treated water, and if the treated circulating water is drained as it is, environmental pollution may be caused. In addition, when the treated water is alkaline, the hypochlorite dissociates and the bactericidal effect decreases. Furthermore, when treated water contains ammonia, hypochlorite produces chloramine by reaction with ammonia, and its activity is reduced.

そこで、このような問題の解決法として、次亜塩素酸塩と次亜臭素酸塩との併用が提案されている。例えば、特許文献1には、次亜塩素酸塩と臭化物とを処理水への添加直前に混合することで処理水中で次亜塩素酸塩と次亜臭素酸塩との混合物を生成させ、この混合物によって処理水を殺菌処理することが記載されている。   Thus, as a solution to such a problem, the combined use of hypochlorite and hypobromite has been proposed. For example, Patent Document 1 generates a mixture of hypochlorite and hypobromite in the treated water by mixing hypochlorite and bromide immediately before addition to the treated water. It is described that the treated water is sterilized with a mixture.

この場合、特許文献1に記載のように、次亜塩素酸塩と臭化物との比率を制御しないと目的の混合物が生成せず、また、混合物は次亜塩素酸塩と次亜臭素酸塩との相乗効果により処理水の処理効果が高まることから、処理水における次亜塩素酸塩および次亜臭素酸塩のそれぞれの濃度を個別に測定して管理する必要がある。   In this case, as described in Patent Document 1, if the ratio of hypochlorite and bromide is not controlled, the target mixture is not formed, and the mixture is composed of hypochlorite and hypobromite. Therefore, it is necessary to individually measure and manage the concentrations of hypochlorite and hypobromite in the treated water.

次亜塩素酸塩および次亜臭素酸塩を同時に含む水溶液については、紫外線吸収スペクトルを測定した場合において、次亜塩素酸塩および次亜臭素酸塩の吸収ピークがそれぞれ観測されることが知られている(例えば、非特許文献1)。このため、紫外線吸収スペクトルの測定により、処理水における次亜塩素酸塩および次亜臭素酸塩の存在を定性的に判定することができる。しかし、次亜塩素酸塩および次亜臭素酸塩の双方が高濃度の場合、両者の極大吸収波長が接近していることから両者の吸収ピークが重なるため、各極大吸収波長の吸光度から次亜塩素酸塩および次亜臭素酸塩のそれぞれの濃度を正確に個別に求めるためにはフーリエ変換法等の複雑な処理が必要になる。また、処理水は、水道水のように塩素を含むものや、蒸留水のような精製水等、処理水によって水質が異なることがあるため、紫外線吸収スペクトルに基づく定量は、水質の異なる処理水毎に検量線を作成する必要があり、非常に煩雑である。   For aqueous solutions containing hypochlorite and hypobromite at the same time, absorption peaks of hypochlorite and hypobromite are known to be observed when the ultraviolet absorption spectrum is measured. (For example, Non-Patent Document 1). For this reason, the presence of hypochlorite and hypobromite in the treated water can be qualitatively determined by measuring the ultraviolet absorption spectrum. However, when both hypochlorite and hypobromite are in high concentrations, the absorption peaks of the two absorption peaks overlap because the maximum absorption wavelengths of both are close to each other. In order to accurately and individually determine the concentrations of chlorate and hypobromite, complicated processing such as Fourier transform is required. In addition, the quality of treated water may vary depending on the treated water, such as water containing chlorine such as tap water, purified water such as distilled water, etc. It is necessary to create a calibration curve every time, which is very complicated.

特開昭60−129182号公報JP-A-60-129182

渡辺紀子、次亜塩素酸ナトリウム漂白における臭化ナトリウム添加の影響、日本家政学会誌、第50巻、第6号、1999年、587−593頁Noriko Watanabe, Effect of Sodium Bromide Addition on Sodium Hypochlorite Bleaching, Journal of the Japan Society for Home Economics, Vol. 50, No. 6, 1999, 587-593

本発明の目的は、次亜塩素酸塩と次亜臭素酸塩とを同時に含む水溶液について、次亜塩素酸塩と次亜臭素酸塩とを簡単にかつ正確に個別に定量できるようにすることにある。   An object of the present invention is to enable simple and accurate determination of hypochlorite and hypobromite individually for an aqueous solution containing hypochlorite and hypobromite simultaneously. It is in.

本発明は、次亜塩素酸塩と次亜臭素酸塩とを同時に含む水溶液について、次亜塩素酸塩と次亜臭素酸塩とを個別に定量するための方法に関するものであり、この定量方法は、水溶液の紫外線吸収スペクトルを測定して次亜塩素酸塩による極大吸収波長の吸光度A、次亜臭素酸塩による極大吸収波長の吸光度Bおよび等吸収点の吸光度Cを求め、吸光度Cに対する吸光度Aの吸光度比X(吸光度A/吸光度C)と、吸光度Cに対する吸光度Bの吸光度比Y(吸光度B/吸光度C)とを算出する工程と、吸光度比Xから予め作成した検量線に基づいて水溶液における次亜塩素酸塩の濃度を求めるとともに、吸光度比Yから予め作成した検量線に基づいて水溶液における次亜臭素酸塩の濃度を求める工程とを含む。   The present invention relates to a method for individually quantifying hypochlorite and hypobromite in an aqueous solution containing hypochlorite and hypobromite simultaneously. Measured the ultraviolet absorption spectrum of an aqueous solution to determine the absorbance A at the maximum absorption wavelength by hypochlorite, the absorbance B at the maximum absorption wavelength by hypobromite, and the absorbance C at the isosbestic point. A step of calculating an absorbance ratio X (absorbance A / absorbance C) of A and an absorbance ratio Y (absorbance B / absorbance C) of absorbance B to absorbance C, and an aqueous solution based on a calibration curve prepared in advance from the absorbance ratio X And determining the concentration of hypobromite in the aqueous solution based on a calibration curve prepared in advance from the absorbance ratio Y.

ここで、水溶液は、例えば、次亜塩素酸塩水溶液に臭化物を溶解することで調製されたものである。   Here, the aqueous solution is prepared, for example, by dissolving bromide in a hypochlorite aqueous solution.

この定量方法は、紫外線吸収スペクトルの測定において、光路長が少なくとも1cmのセルを使用するのが好ましい。   This quantification method preferably uses a cell having an optical path length of at least 1 cm in the measurement of the ultraviolet absorption spectrum.

本発明に係る定量方法は、次亜塩素酸塩と次亜臭素酸塩とを同時に含む水溶液の紫外線吸収スペクトルにおいて、次亜塩素酸塩による極大吸収波長の吸光度A、次亜臭素酸塩による極大吸収波長の吸光度Bおよび等吸収点の吸光度Cを利用しているため、水溶液の次亜塩素酸塩と次亜臭素酸塩とを容易にかつ正確に個別に定量することができる。   In the ultraviolet absorption spectrum of an aqueous solution containing hypochlorite and hypobromite simultaneously, the quantification method according to the present invention is based on the absorbance A of the maximum absorption wavelength by hypochlorite and the maximum by hypobromite. Since the absorbance B at the absorption wavelength and the absorbance C at the isosbestic point are used, the hypochlorite and hypobromite in the aqueous solution can be easily and accurately quantified individually.

実験例1で測定した紫外線吸収スペクトルを示す図。The figure which shows the ultraviolet absorption spectrum measured in Experimental example 1. FIG. 実験例2で測定した紫外線吸収スペクトルを示す図。The figure which shows the ultraviolet absorption spectrum measured in Experimental example 2. FIG. 検量線の作成1で作成した検量線を示す図。The figure which shows the calibration curve created by preparation 1 of the calibration curve. 検量線の作成2で作成した検量線を示す図。The figure which shows the calibration curve created by preparation 2 of the calibration curve.

本発明の定量方法を適用可能な水溶液(以下、「検査水」という場合がある。)は、次亜塩素酸塩と次亜臭素酸塩とを同時に含むものまたはその可能性があるものであり、例えば、工場やビル等の循環冷却水および浴場や水泳プールなどの循環用水などである。検査水に含まれる次亜塩素酸塩は、通常、次亜塩素酸のナトリウム塩のようなアルカリ金属塩やカルシウム塩のようなアルカリ土類金属塩である。また、水溶液に含まれる次亜臭素酸塩は、通常、次亜臭素酸のナトリウム塩のようなアルカリ金属塩やカルシウム塩のようなアルカリ土類金属塩である。次亜塩素酸塩および次亜臭素酸塩は、それぞれ2種類以上のものであってもよい。   An aqueous solution to which the quantification method of the present invention can be applied (hereinafter sometimes referred to as “test water”) contains or may contain hypochlorite and hypobromite simultaneously. For example, circulating cooling water for factories and buildings, and circulating water for baths and swimming pools. The hypochlorite contained in the inspection water is usually an alkali metal salt such as a sodium salt of hypochlorous acid or an alkaline earth metal salt such as a calcium salt. The hypobromite contained in the aqueous solution is usually an alkali metal salt such as a sodium salt of hypobromite or an alkaline earth metal salt such as a calcium salt. Two or more types of hypochlorite and hypobromite may be used.

次亜塩素酸塩および次亜臭素酸塩を含む検査水は、通常、検査水へ次亜塩素酸塩および次亜臭素酸塩を添加して溶解したものである。また、検査水は、次亜塩素酸塩を含むもの(すなわち、次亜塩素酸塩水溶液)に臭化物、例えば、臭化ナトリウム、臭化カリウム若しくは臭化リチウム等のアルカリ金属臭化物または臭化カルシウム若しくは臭化マグネシウム等のアルカリ土類金属臭化物を添加して溶解し、この臭化物と次亜塩素酸塩の一部との反応で生成した次亜臭素酸塩を含むものであってもよい。   The inspection water containing hypochlorite and hypobromite is usually obtained by adding hypochlorite and hypobromite to the inspection water and dissolving it. In addition, the inspection water contains hypochlorite (ie, hypochlorite aqueous solution), bromide, for example, an alkali metal bromide such as sodium bromide, potassium bromide or lithium bromide, calcium bromide or An alkaline earth metal bromide such as magnesium bromide may be added and dissolved, and it may contain hypobromite formed by reaction of this bromide with a portion of hypochlorite.

本発明の定量方法においては、検査水の次亜塩素酸塩濃度および次亜臭素酸塩濃度を定量するための検量線を予め作成する。この検量線の作成では、先ず、蒸留水や水道水に次亜塩素酸塩および次亜臭素酸塩を溶解することで調製した、次亜塩素酸塩および次亜臭素酸塩の濃度が異なる複数の種類の標準液を用意する。次に、各濃度の標準液について、紫外線吸収スペクトルを測定し、次亜塩素酸塩による極大吸収波長の吸光度A、次亜臭素酸塩による極大吸収波長の吸光度Bおよび等吸収点の吸光度Cを求める。そして、吸光度Cに対する吸光度Aの吸光度比X(吸光度A/吸光度C)と、吸光度Cに対する吸光度Bの吸光度比Y(吸光度B/吸光度C)とを算出し、標準液の次亜塩素酸塩濃度と吸光度比Xとの関係による次亜塩素酸塩の定量用の検量線を作成し、また、標準液の次亜臭素酸塩濃度と吸光度比Yとの関係による次亜臭素酸塩の定量用の検量線を作成する。   In the quantification method of the present invention, a calibration curve for quantifying the hypochlorite concentration and hypobromite concentration of test water is prepared in advance. In preparing this calibration curve, first, a plurality of hypochlorite and hypobromite concentrations prepared by dissolving hypochlorite and hypobromite in distilled water and tap water are different. Prepare the standard solution. Next, the ultraviolet absorption spectrum of each standard solution is measured, and the absorbance A at the maximum absorption wavelength by hypochlorite, the absorbance B at the maximum absorption wavelength by hypobromite, and the absorbance C at the isosbestic point are obtained. Ask. Then, an absorbance ratio X of absorbance A to absorbance C (absorbance A / absorbance C) and an absorbance ratio Y of absorbance B to absorbance C (absorbance B / absorbance C) are calculated, and the hypochlorite concentration of the standard solution A calibration curve for the determination of hypochlorite based on the relationship between X and the absorbance ratio X, and for the determination of hypobromite based on the relationship between the hypobromite concentration in the standard solution and the absorbance ratio Y Create a calibration curve for.

因みに、次亜塩素酸塩および次亜臭素酸塩を同時に含む水溶液において、次亜塩素酸塩による極大吸収波長は290nm付近、次亜臭素酸塩による極大吸収波長は330nm付近、等吸収点は315nm付近にそれぞれ現れる。   Incidentally, in an aqueous solution containing hypochlorite and hypobromite simultaneously, the maximum absorption wavelength by hypochlorite is around 290 nm, the maximum absorption wavelength by hypobromite is around 330 nm, and the isosbestic point is 315 nm. Appears in the vicinity.

検量線は、後記の実験例においてより詳しく説明するように、蒸留水や水道水等の水質が異なる検査水毎に作成する必要がなく、通常は蒸留水のような精製水または水道水を用いて作成したものを各種の水質の検査水について次亜塩素酸塩および次亜臭素酸塩を個別に定量するための汎用的なものとして用いることができる。   The calibration curve does not need to be prepared for each test water with different water quality, such as distilled water or tap water, as will be explained in more detail in the experimental examples described later. Usually, purified water or tap water such as distilled water is used. Can be used as a general purpose for individually quantifying hypochlorite and hypobromite for various types of water.

本発明の定量方法により検査水の次亜塩素酸塩および次亜臭素酸塩を個別に定量するときは、検査水の紫外線吸収スペクトルを測定し、次亜塩素酸塩による極大吸収波長の吸光度A、次亜臭素酸塩による極大吸収波長の吸光度Bおよび等吸収点の吸光度Cを求める。そして、吸光度Cに対する吸光度Aの吸光度比X(吸光度A/吸光度C)と、吸光度Cに対する吸光度Bの吸光度比Y(吸光度B/吸光度C)とを算出し、算出した吸光度比Xおよび吸光度比Yをそれぞれ予め作成した次亜塩素酸塩用の検量線および次亜臭素酸塩用の検量線に適用することで次亜塩素酸塩および次亜臭素酸塩の濃度を個別に判定する。   When quantifying hypochlorite and hypobromite individually for the test water by the quantification method of the present invention, the ultraviolet absorption spectrum of the test water is measured, and the absorbance A at the maximum absorption wavelength by hypochlorite. Then, the absorbance B at the maximum absorption wavelength and the absorbance C at the isosbestic point due to hypobromite are determined. Then, an absorbance ratio X of absorbance A to absorbance C (absorbance A / absorbance C) and an absorbance ratio Y of absorbance B to absorbance C (absorbance B / absorbance C) are calculated, and the calculated absorbance ratio X and absorbance ratio Y are calculated. Are applied to a calibration curve for hypochlorite and a calibration curve for hypobromite prepared in advance, respectively, thereby determining the concentrations of hypochlorite and hypobromite individually.

なお、検量線作成用の標準液および検査水の紫外線吸収スペクトルを測定するときに、光路長が1cmよりも短いセルを用いると、次亜塩素酸塩および次亜臭素酸塩の定量可能範囲が高濃度に偏り、1mg/L程度の低濃度の範囲での定量が困難になる。このため、紫外線吸収スペクトルの測定時には、低濃度での定量を可能にするため、光路長が少なくとも1cm、好ましくは5〜10cm程度の長いセルを用いるのが好ましい。   In addition, when measuring the ultraviolet absorption spectrum of the standard solution for preparing the calibration curve and the test water, if a cell having an optical path length shorter than 1 cm is used, the quantifiable range of hypochlorite and hypobromite is increased. The concentration tends to be high, and quantification in a low concentration range of about 1 mg / L becomes difficult. For this reason, when measuring the ultraviolet absorption spectrum, it is preferable to use a long cell having an optical path length of at least 1 cm, preferably about 5 to 10 cm, in order to enable quantification at a low concentration.

実験例1
蒸留水に次亜塩素酸ナトリウム(和光純薬工業株式会社製)を溶解し、濃度が60mgCl/Lの次亜塩素酸ナトリウム水溶液を調製した。また、蒸留水に臭化ナトリウム(汎アジア貿易株式会社製)を溶解し、濃度が12,880mg/L(臭化物イオン(Br-)換算濃度として10,000mg/L)の臭化ナトリウム水溶液を調製した。
Experimental example 1
Sodium hypochlorite (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in distilled water to prepare a sodium hypochlorite aqueous solution having a concentration of 60 mgCl 2 / L. Also, sodium bromide (manufactured by Pan Asia Trading Co., Ltd.) is dissolved in distilled water to prepare an aqueous solution of sodium bromide having a concentration of 12,880 mg / L (10,000 mg / L as bromide ion (Br ) equivalent concentration). did.

次亜塩素酸ナトリウム水溶液3mLに対して臭化ナトリウム水溶液を5μLずつ添加し、臭化ナトリウム水溶液の添加量の合計が25μLになるまで分光光度計(株式会社日立製作所の商品名「U−2010」)で250〜400nmの波長の紫外線吸収スペクトルを測定した。紫外線吸収スペクトルの測定では、光路長が1cmのセルを用いた。結果を表1および図1に示す。表1に記載の濃度は計算値である。   5 μL of sodium bromide aqueous solution is added to 3 mL of sodium hypochlorite aqueous solution, and the spectrophotometer (trade name “U-2010”, Hitachi, Ltd.) is added until the total amount of sodium bromide aqueous solution is 25 μL. ), An ultraviolet absorption spectrum having a wavelength of 250 to 400 nm was measured. In the measurement of the ultraviolet absorption spectrum, a cell having an optical path length of 1 cm was used. The results are shown in Table 1 and FIG. Concentrations listed in Table 1 are calculated values.

Figure 0005565581
Figure 0005565581

実験例2
蒸留水に替えて水道水(愛媛県松山市の水道水)を用い、実験例1と同様に操作して紫外線吸収スペクトルを測定した。結果を表2および図2に示す。表2に記載の濃度は計算値である。
Experimental example 2
An ultraviolet absorption spectrum was measured in the same manner as in Experimental Example 1, using tap water (tap water in Matsuyama City, Ehime Prefecture) instead of distilled water. The results are shown in Table 2 and FIG. Concentrations listed in Table 2 are calculated values.

Figure 0005565581
Figure 0005565581

検量線の作成1
表1および表2に示した次亜塩素酸ナトリウムの極大吸収波長(290nm)の吸光度と次亜塩素酸ナトリウム濃度(mgCl/L)との対応関係をプロットし、次亜塩素酸ナトリウム水溶液における次亜塩素酸ナトリウムの定量用の検量線を作成した。また、表1および表2に示した次亜臭素酸ナトリウムの極大吸光波長(330nm)の吸光度と次亜臭素酸ナトリウム濃度(mgBr/L)との対応関係をプロットし、次亜塩素酸ナトリウム水溶液における次亜臭素酸ナトリウムの定量用の検量線を作成した。これらの検量線を図3に示す。
Creating a calibration curve 1
The correspondence between the absorbance at the maximum absorption wavelength (290 nm) of sodium hypochlorite shown in Table 1 and Table 2 and the sodium hypochlorite concentration (mgCl 2 / L) is plotted, and the sodium hypochlorite aqueous solution A calibration curve for determination of sodium hypochlorite was prepared. In addition, the correspondence between the absorbance at the maximum absorption wavelength (330 nm) of sodium hypobromite shown in Table 1 and Table 2 and the sodium hypobromite concentration (mgBr 2 / L) was plotted, and sodium hypochlorite A calibration curve for the determination of sodium hypobromite in aqueous solution was prepared. These calibration curves are shown in FIG.

図3から明らかなように、次亜塩素酸ナトリウムの極大吸収波長の吸光度および次亜臭素酸ナトリウムの極大吸収波長の吸光度をそれぞれ用いて作成した検量線は、蒸留水を用いた次亜塩素酸ナトリウム水溶液に関するものと水道水を用いた次亜塩素酸ナトリウム水溶液に関するものとが別々に成立する。これによると、次亜塩素酸ナトリウムの極大吸収波長の吸光度のみに基づいて次亜塩素酸ナトリウムを定量し、また、次亜臭素酸ナトリウムの極大吸収波長の吸光度のみに基づいて次亜臭素酸ナトリウムを定量する場合は、次亜塩素酸ナトリウム水溶液の水質毎に検量線を作成する必要がある。   As is clear from FIG. 3, the calibration curves prepared using the absorbance at the maximum absorption wavelength of sodium hypochlorite and the absorbance at the maximum absorption wavelength of sodium hypobromite are hypochlorous acid using distilled water. The thing about the sodium aqueous solution and the thing about the sodium hypochlorite aqueous solution using tap water are formed separately. According to this, sodium hypochlorite was quantified based only on the absorbance at the maximum absorption wavelength of sodium hypochlorite, and sodium hypobromite was determined based only on the absorbance at the maximum absorption wavelength of sodium hypobromite. When quantifying the amount of water, it is necessary to create a calibration curve for each water quality of the sodium hypochlorite aqueous solution.

検量線の作成2
表1および表2に示した吸光度比Xと次亜塩素酸ナトリウム濃度(mgCl/L)との対応関係をプロットし、次亜塩素酸ナトリウム水溶液における次亜塩素酸ナトリウムの定量用の検量線を作成した。また、表1および表2に示した吸光度比Yと次亜臭素酸ナトリウム濃度(mgBr/L)との対応関係をプロットし、次亜塩素酸ナトリウム水溶液における次亜臭素酸ナトリウムの定量用の検量線を作成した。これらの検量線を図4に示す。
Calibration curve creation 2
A calibration curve for quantifying sodium hypochlorite in an aqueous sodium hypochlorite solution, plotting the correspondence between the absorbance ratio X and the sodium hypochlorite concentration (mgCl 2 / L) shown in Table 1 and Table 2. It was created. In addition, the correspondence relationship between the absorbance ratio Y and the sodium hypobromite concentration (mgBr 2 / L) shown in Table 1 and Table 2 is plotted, and used for the determination of sodium hypobromite in an aqueous sodium hypochlorite solution. A calibration curve was created. These calibration curves are shown in FIG.

図4よると、吸光度比Xおよび吸光度比Yをそれぞれ用いて作成した検量線は、蒸留水を用いた次亜塩素酸ナトリウム水溶液に関するものと水道水を用いた次亜塩素酸ナトリウム水溶液に関するものとで共通したものが成立する。したがって、吸光度比Xに基づいて次亜塩素酸ナトリウムを定量し、また、吸光度比Yに基づいて次亜臭素酸ナトリウムを定量する場合は、次亜塩素酸ナトリウム水溶液の水質に依存しない検量線を作成することができる。   According to FIG. 4, the calibration curves created using the absorbance ratio X and the absorbance ratio Y are respectively related to a sodium hypochlorite aqueous solution using distilled water and a sodium hypochlorite aqueous solution using tap water. The same thing holds true. Therefore, when quantifying sodium hypochlorite based on the absorbance ratio X and quantifying sodium hypobromite based on the absorbance ratio Y, a calibration curve that does not depend on the water quality of the sodium hypochlorite aqueous solution is used. Can be created.

Claims (3)

次亜塩素酸塩と次亜臭素酸塩とを同時に含む水溶液について、前記次亜塩素酸塩と前記次亜臭素酸塩とを個別に定量するための方法であって、
前記水溶液の紫外線吸収スペクトルを測定して前記次亜塩素酸塩による極大吸収波長の吸光度A、前記次亜臭素酸塩による極大吸収波長の吸光度Bおよび等吸収点の吸光度Cを求め、吸光度Cに対する吸光度Aの吸光度比X(吸光度A/吸光度C)と、吸光度Cに対する吸光度Bの吸光度比Y(吸光度B/吸光度C)とを算出する工程と、
吸光度比Xから予め作成した検量線に基づいて前記水溶液における前記次亜塩素酸塩の濃度を求めるとともに、吸光度比Yから予め作成した検量線に基づいて前記水溶液における前記次亜臭素酸塩の濃度を求める工程と、
を含む次亜塩素酸塩および次亜臭素酸塩の個別定量法。
A method for individually quantifying the hypochlorite and the hypobromite for an aqueous solution containing hypochlorite and hypobromite simultaneously,
The ultraviolet absorption spectrum of the aqueous solution was measured to determine the absorbance A at the maximum absorption wavelength by the hypochlorite, the absorbance B at the maximum absorption wavelength by the hypobromite, and the absorbance C at the isosbestic point. Calculating an absorbance ratio X of absorbance A (absorbance A / absorbance C) and an absorbance ratio Y of absorbance B to absorbance C (absorbance B / absorbance C);
The concentration of the hypochlorite in the aqueous solution based on a calibration curve prepared in advance from the absorbance ratio X and the concentration of the hypobromite in the aqueous solution based on the calibration curve prepared in advance from the absorbance ratio Y The process of seeking
Quantitative determination of hypochlorite and hypobromite containing.
前記水溶液は、次亜塩素酸塩水溶液に臭化物を溶解することで調製されたものである、請求項1に記載の次亜塩素酸塩および次亜臭素酸塩の個別定量法。   The method for individually determining hypochlorite and hypobromite according to claim 1, wherein the aqueous solution is prepared by dissolving bromide in a hypochlorite aqueous solution. 前記紫外線吸収スペクトルの測定において、光路長が少なくとも1cmのセルを使用する、請求項1または2に記載の次亜塩素酸塩および次亜臭素酸塩の個別定量法。
The method for individually quantifying hypochlorite and hypobromite according to claim 1 or 2, wherein a cell having an optical path length of at least 1 cm is used in the measurement of the ultraviolet absorption spectrum.
JP2010235842A 2010-10-20 2010-10-20 Individual determination of hypochlorite and hypobromite Expired - Fee Related JP5565581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235842A JP5565581B2 (en) 2010-10-20 2010-10-20 Individual determination of hypochlorite and hypobromite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235842A JP5565581B2 (en) 2010-10-20 2010-10-20 Individual determination of hypochlorite and hypobromite

Publications (2)

Publication Number Publication Date
JP2012088203A JP2012088203A (en) 2012-05-10
JP5565581B2 true JP5565581B2 (en) 2014-08-06

Family

ID=46259975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235842A Expired - Fee Related JP5565581B2 (en) 2010-10-20 2010-10-20 Individual determination of hypochlorite and hypobromite

Country Status (1)

Country Link
JP (1) JP5565581B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928361B (en) * 2012-10-10 2015-01-07 上海大学 Separation detection method for mixture of hypobromous acid and bromine amine
JP6652697B2 (en) * 2015-08-05 2020-02-26 東亜ディーケーケー株式会社 Residual chlorine measurement system and program
JP2018141651A (en) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 Functional water concentration sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129182A (en) * 1983-12-17 1985-07-10 Hakutou Kagaku Kk Method for preventing biological fault of service and waste water system
JP3290982B2 (en) * 1989-09-20 2002-06-10 倉敷紡績株式会社 Determination of inorganic electrolytes for semiconductor processing
US5094958A (en) * 1990-08-30 1992-03-10 Fiberchem Inc. Method of self-compensating a fiber optic chemical sensor
JP5172467B2 (en) * 2008-05-22 2013-03-27 日本電信電話株式会社 Quantitative spectroscopic analysis of blood components
JP2008275638A (en) * 2008-06-23 2008-11-13 Daicen Membrane Systems Ltd Simple instrument for measuring concentration of endotoxin

Also Published As

Publication number Publication date
JP2012088203A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
Shah et al. Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters
Ohno et al. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions
JP5565581B2 (en) Individual determination of hypochlorite and hypobromite
Powers et al. Tracking the formation of new brominated disinfection by-products during the seawater desalination process
Duranceau Determination of the total iodide content in desalinated seawater permeate
US20170089860A1 (en) Residual chlorine measuring apparatus and method of measuring residual chlorine
JP2022118709A (en) Real-time byproduct quantitative measurement device using sodium hypochlorite optical density analysis
Kralles et al. Assessing disinfection byproduct risks for algal impacted surface waters and the effects of peracetic acid pre-oxidation
Yin et al. Controlling contaminants using a far-UVC-based advanced oxidation process for potable reuse
Kinani et al. A critical review on chemical speciation of chlorine-produced oxidants (CPOs) in seawater. Part 1: Chlorine chemistry in seawater and its consequences in terms of biocidal effectiveness and environmental impact
Younas et al. Chlorfenapyr containing anions uptake from industrial wastewater by ethylene glycol functionalized benzyl dimethyl tetradecyl ammonium bromide membrane
Oh et al. Application of chlorine dioxide (ClO2) to reverse osmosis (RO) membrane for seawater desalination
Peng et al. Advances and research needs for disinfection byproducts control strategies in swimming pools
Fabbricino et al. Modelling disinfection by-products formation in bromide-containing waters
Guo et al. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide
Liu et al. Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination
US20190194047A1 (en) Method and composition for use in the cyclic process for the efficient generation of chlorine dioxide in dilute solutions
JP2019194159A (en) Generation method of bonded chlorine compound
JP2011208953A (en) Method for color development and quantification of phosphate ion
JP2011237193A (en) Color development method and quantitative determination method of phosphate ion
KR20070096818A (en) Composition for measuring concentration of residual chlorine
US10836660B2 (en) Method and composition for use in the cyclic process for the efficient generation of chlorine dioxide in dilute solutions
JP5445639B2 (en) Quantitative method for total nitrogen
JP5510066B2 (en) Determination of total phosphorus
US9677980B2 (en) Method of entrapping chlorine dioxide gas, method of determining concentration of chlorine dioxide and entrapping agent for chlorine dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5565581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees