JP6652697B2 - Residual chlorine measurement system and program - Google Patents

Residual chlorine measurement system and program Download PDF

Info

Publication number
JP6652697B2
JP6652697B2 JP2015155378A JP2015155378A JP6652697B2 JP 6652697 B2 JP6652697 B2 JP 6652697B2 JP 2015155378 A JP2015155378 A JP 2015155378A JP 2015155378 A JP2015155378 A JP 2015155378A JP 6652697 B2 JP6652697 B2 JP 6652697B2
Authority
JP
Japan
Prior art keywords
absorbance
wavelength
sample solution
concentration
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015155378A
Other languages
Japanese (ja)
Other versions
JP2017032502A (en
Inventor
美由貴 浦田
美由貴 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2015155378A priority Critical patent/JP6652697B2/en
Publication of JP2017032502A publication Critical patent/JP2017032502A/en
Application granted granted Critical
Publication of JP6652697B2 publication Critical patent/JP6652697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は残留塩素測定システム及びプログラムに関する。さらに詳しくは、吸光光度法により遊離塩素を測定する残留塩素測定システム、及び残留塩素測定システムに必要な処理を行わせるプログラムに関する。   The present invention relates to a residual chlorine measurement system and program. More specifically, the present invention relates to a residual chlorine measuring system for measuring free chlorine by an absorption spectrophotometric method, and a program for causing a residual chlorine measuring system to perform necessary processing.

塩素処理は、上水、下水、工業用水、排水、食品洗浄水、プール水等、種々の水に対して、これを消毒するために行われている。この塩素処理において使用される塩素剤は、消毒するために十分な量を消毒対象の水中に投入しなければならないが、あまり過剰に投入することは、環境に悪影響を及ぼしたり、人体に害を与えたりするため望ましくない。また、近年水道水を「おいしい水」にするためにカルキ臭の原因である残留塩素濃度の低減化に向けた取り組みが始まっている。そこで、塩素剤を投入した水の残留塩素濃度を測定することが行われている。   The chlorination is performed for disinfecting various kinds of water such as clean water, sewage, industrial water, wastewater, food washing water, pool water, and the like. The chlorinating agent used in this chlorination process must be put in the water to be disinfected in a sufficient amount to disinfect it. It is not desirable to give. In recent years, in order to make tap water “delicious water”, efforts have been started to reduce the concentration of residual chlorine, which is a cause of odor. Therefore, the measurement of the residual chlorine concentration of water into which a chlorinating agent is introduced has been performed.

残留塩素には、塩素剤が水に溶けて生成する次亜塩素酸(遊離塩素)と、これがアンモニア性窒素と結合して生じるクロロアミン(結合塩素)とがあり、遊離塩素濃度と結合塩素濃度とを合わせたものが、全残留塩素濃度である。
この残留塩素濃度を測定する手分析法としては、o−トリジン比色法(OT法)、ジエチル−p−フェニレンジアミン比色法(DPD法)、よう素滴定法等が用いられている。
Residual chlorine includes hypochlorous acid (free chlorine) generated by dissolving a chlorinating agent in water and chloroamine (bonded chlorine) generated by combining this with ammoniacal nitrogen. Is the total residual chlorine concentration.
As a manual analysis method for measuring the residual chlorine concentration, an o-tolidine colorimetric method (OT method), a diethyl-p-phenylenediamine colorimetric method (DPD method), an iodine titration method and the like are used.

しかし、手分析法は煩雑であると共に測定データが間欠的にしか得られないため、従来からポーラログラフ法による残留塩素測定装置が使用されている。このポーラログラフ法は、測定原理上、試料水の電気伝導率やpHの変動、結合塩素の共存などにより影響を受けやすい。また、ポーラログラフ法に用いる電極は研磨が必要であり、電極を研磨するための駆動部が必要になると共に研磨に用いるビーズのくずが発生する等の問題もある。   However, since the manual analysis method is complicated and measurement data can only be obtained intermittently, a residual chlorine measuring apparatus using a polarographic method has been conventionally used. This polarographic method is susceptible to fluctuations in electric conductivity and pH of sample water, coexistence of bound chlorine, and the like due to the measurement principle. In addition, the electrodes used for the polarographic method need to be polished, and there is a problem that a drive unit for polishing the electrodes is required and beads generated for the polishing are generated.

また、遊離塩素は290nm付近に、結合塩素は245nm付近に吸収があるため、吸光光度法による残留塩素測定方法も知られている。
しかし、290nm付近の吸光度により求めた遊離塩素濃度は、pHの影響を受ける。すなわち、290nm付近に吸収があるのは、遊離塩素の内でも次亜塩素酸イオン(ClO)の形態のものであり、次亜塩素酸(HClO)の形態のものは吸収がない。遊離塩素に占める次亜塩素酸イオンの割合はpHに依存するので、吸光光度法による残留塩素の測定はpHに依存することとなる。
Further, since free chlorine absorbs at around 290 nm and bound chlorine absorbs at around 245 nm, a method for measuring residual chlorine by an absorptiometry is also known.
However, the free chlorine concentration determined from the absorbance near 290 nm is affected by the pH. That is, the absorption at around 290 nm is that of free chlorine in the form of hypochlorite ion (ClO ), and that of the form of hypochlorous acid (HClO) does not absorb. Since the proportion of hypochlorite ion in the free chlorine depends on the pH, the measurement of residual chlorine by the absorptiometry will depend on the pH.

そこで、特許文献1では、別途pH計により測定したpH値に基づき、吸光光度法により求めた濃度を補正することが行われている。
また、特許文献2では、電解水製造装置で製造した強酸性水に含まれる次亜塩素酸の濃度を測定するために、強酸性水に陰極側に発生した強アルカリ水を混合して、次亜塩素酸イオン濃度がほぼ100%となる強アルカリ性に調整してから吸光光度法により測定することが行われている。
Then, in patent document 1, the density | concentration calculated | required by the absorptiometry method is performed based on the pH value separately measured with the pH meter.
Further, in Patent Document 2, in order to measure the concentration of hypochlorous acid contained in the strongly acidic water produced by the electrolytic water producing apparatus, strong alkaline water generated on the cathode side is mixed with the strongly acidic water, and It has been practiced to adjust the chlorite ion concentration to a strong alkalinity at which the concentration becomes almost 100%, and then to measure by a spectrophotometric method.

特公昭61−33605号公報JP-B-61-33605 特開2000−343080号公報JP 2000-343080 A

しかし、特許文献1の場合、吸光光度計の他に、別途pH電極を用いたpH計を用意してpHを測定しなければならない。
また、特許文献2のようにpHを調整することも考えられるが、pHを調整するためにはpH調整試薬が必要である。特許文献2では、電解水製造装置に係る発明のため、陰極側に発生した強アルカリ水を利用できるが、上水等の残留塩素を測定する場合は、pH調整試薬を別途用意しなければならない。
However, in the case of Patent Document 1, in addition to the absorption photometer, a pH meter using a pH electrode must be separately prepared to measure the pH.
It is also conceivable to adjust the pH as in Patent Document 2, but a pH adjusting reagent is required to adjust the pH. In Patent Literature 2, the strong alkaline water generated on the cathode side can be used for the invention relating to the electrolyzed water production apparatus. However, when measuring residual chlorine such as clean water, a pH adjusting reagent must be separately prepared. .

本発明は上記の点に鑑みてなされたものであり、pH調整試薬や電極式のpH計を用いることなく、吸光光度法によって遊離塩素濃度を求められる残留塩素測定システムを提供することを課題とする。
また、残留塩素測定システムに必要な処理を行わせるプログラムを提供することを課題とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a residual chlorine measurement system capable of determining the concentration of free chlorine by absorptiometry without using a pH adjusting reagent or an electrode type pH meter. I do.
Another object of the present invention is to provide a program for causing a residual chlorine measurement system to perform necessary processing.

本発明者は上記の課題について検討し、常時はpHと残留塩素濃度がコントロールされている試料液については、pH一定とみなして吸光度測定を行えることに着目し、以下の本発明に想到した。
[1]試料液の第1の波長λ1(但し、230nm≦λ1≦260nm)における吸光度A1と第2の波長λ2(但し、270nm≦λ2≦320nm)における吸光度A2を測定する吸光光度計と、
前記吸光光度計で得られる吸光度が入力される演算装置を備え、
前記演算装置は、吸光度A2、または吸光度A2と吸光度A1の比(A2/A1)に基づき試料液の遊離塩素濃度を求めると共に、吸光度A2と吸光度A1の比(A2/A1)の絶対値又は単位時間あたりの変動量が所定の範囲外となった際に、警報を発生することを特徴とする残留塩素測定システム。
The present inventor has studied the above problems, and has focused on the fact that a sample solution in which the pH and the residual chlorine concentration are always controlled can be measured assuming that the pH is constant, and arrived at the present invention described below.
[1] an absorptiometer that measures the absorbance A1 at a first wavelength λ1 (provided that 230 nm ≦ λ1 ≦ 260 nm) and the absorbance A2 at a second wavelength λ2 (provided that 270 nm ≦ λ2 ≦ 320 nm) of the sample solution;
An arithmetic unit to which the absorbance obtained by the absorptiometer is input,
The arithmetic unit determines the free chlorine concentration of the sample solution based on the absorbance A2 or the ratio of the absorbance A2 to the absorbance A1 (A2 / A1), and the absolute value or unit of the ratio of the absorbance A2 to the absorbance A1 (A2 / A1). A residual chlorine measurement system, wherein an alarm is generated when a fluctuation amount per time is out of a predetermined range.

[2]前記演算装置は、さらに、吸光度A1に基づき結合塩素濃度を求める[1]に記載の残留塩素測定システム。
[3]前記吸光光度計は、さらに試料液の第3の波長λ3(但し、600nm≦λ3≦700nm)における吸光度A3を測定するものであり、
前記演算装置は、吸光度A3に基づき吸光度A1及び吸光度A2を補正する[1]または[2]に記載の残留塩素測定システム。
[2] The residual chlorine measurement system according to [1], wherein the arithmetic unit further obtains a bound chlorine concentration based on the absorbance A1.
[3] The absorptiometer further measures the absorbance A3 of the sample solution at a third wavelength λ3 (provided that 600 nm ≦ λ3 ≦ 700 nm),
The residual chlorine measurement system according to [1] or [2], wherein the arithmetic unit corrects the absorbance A1 and the absorbance A2 based on the absorbance A3.

[4]試料液の第1の波長λ1(但し、230nm≦λ1≦260nm)における吸光度A1と第2の波長λ2(但し、270nm≦λ2≦320nm)における吸光度A2を測定する吸光光度計と、前記吸光光度計で得られる吸光度が入力される演算装置とを備える残留塩素測定システムに、以下の処理S1及び処理S3を実行させるプログラム。
処理S1:吸光度A2、または吸光度A2と吸光度A1の比(A2/A1)に基づき試料液の遊離塩素濃度を求める処理。
処理S3:吸光度A2と吸光度A1の比(A2/A1)の絶対値又は単位時間あたりの変動量が所定の範囲外となった際に、警報を発生する処理。
[4] an absorptiometer for measuring the absorbance A1 at a first wavelength λ1 (230 nm ≦ λ1 ≦ 260 nm) and the absorbance A2 at a second wavelength λ2 (270 nm ≦ λ2 ≦ 320 nm) of the sample solution; A program for causing a residual chlorine measurement system including an arithmetic device to which an absorbance obtained by an absorptiometer is input to execute the following processes S1 and S3.
Process S1: A process for determining the free chlorine concentration of the sample solution based on the absorbance A2 or the ratio (A2 / A1) of the absorbance A2 to the absorbance A1.
Process S3: a process of generating an alarm when the absolute value of the ratio (A2 / A1) of the absorbance A2 and the absorbance A1 or the amount of variation per unit time falls outside a predetermined range.

[5]前記演算装置に、前記処理S1及び処理S3に加えて、さらに、以下の処理S2を実行させる[4]に記載のプログラム。
処理S2:吸光度A1に基づき試料液の結合塩素濃度を求める処理。
[6]前記残留塩素測定システムの前記吸光光度計が、さらに試料液の第3の波長λ3(但し、600nm≦λ3≦700nm)における吸光度A3を測定するものであり、
前記演算装置に、吸光度A3に基づき補正した、吸光度A1及び吸光度A2を用いて各処理を実行させる[4]または[5]に記載のプログラム。
[5] The program according to [4], which causes the arithmetic device to execute the following process S2 in addition to the processes S1 and S3.
Process S2: A process for determining the concentration of bound chlorine in the sample solution based on the absorbance A1.
[6] The absorption spectrophotometer of the residual chlorine measurement system further measures absorbance A3 of the sample solution at a third wavelength λ3 (where 600 nm ≦ λ3 ≦ 700 nm),
The program according to [4] or [5], wherein the arithmetic unit executes each process using the absorbance A1 and the absorbance A2 corrected based on the absorbance A3.

本発明の残留塩素測定システムによれば、pH調整試薬や電極式のpH計を用いることなく、吸光光度法によって遊離塩素濃度を求められる。
また、本発明のプログラムによれば、本発明の残留塩素測定システムに必要な処理を行わせることができる。
According to the residual chlorine measurement system of the present invention, the concentration of free chlorine can be determined by an absorptiometry without using a pH adjusting reagent or an electrode type pH meter.
Further, according to the program of the present invention, it is possible to cause the residual chlorine measuring system of the present invention to perform necessary processing.

本発明の1実施形態に係る残留塩素測定システムの全体構成図である。1 is an overall configuration diagram of a residual chlorine measurement system according to an embodiment of the present invention. 種々のpHにおける遊離塩素と結合塩素の吸収スペクトル図である。FIG. 3 is an absorption spectrum diagram of free chlorine and bound chlorine at various pHs. 290nmにおける吸光度に対する遊離塩素濃度(DPD分析値)の関係を示す検量線である。5 is a calibration curve showing the relationship between the absorbance at 290 nm and the free chlorine concentration (DPD analysis value). 290nmにおける吸光度と245nmにおける吸光度の比に対する遊離塩素濃度(DPD分析値)の関係を示す検量線である。It is a calibration curve which shows the relationship of the free chlorine concentration (DPD analysis value) with respect to the ratio of the light absorbency in 290 nm and the light absorbency in 245 nm. pH6〜8の範囲における結合塩素濃度(DPD分析値)と245nmにおける吸光度の関係を示す検量線である。4 is a calibration curve showing the relationship between the concentration of bound chlorine (DPD analysis value) in the range of pH 6 to 8 and the absorbance at 245 nm.

<残留塩素測定システム>
本発明の1実施形態に係る残留塩素測定システムについて図1を用いて説明する。本実施形態の残留塩素測定システムは、吸光光度計10と、吸光光度計10で得られる吸光度が入力される演算装置20とから構成されている。
<Residual chlorine measurement system>
A residual chlorine measurement system according to one embodiment of the present invention will be described with reference to FIG. The residual chlorine measurement system according to the present embodiment includes an absorptiometer 10 and an arithmetic unit 20 to which absorbance obtained by the absorptiometer 10 is input.

吸光光度計10は、光源11と光源11から発せられた光を略平行光にするコリメートレンズ12と、該コリメートレンズ12により略平行光に変換された光を集光する集光レンズ13と、これらのレンズ12,13間の光路上に配置された測定セル14と、集光レンズ13の集光位置近傍に設けられたスリット15と、スリット15を通過した光を集光し、その波長に応じて特定の方向に回折させる凹面回折格子16と、該凹面回折格子16により分光された光のスペクトルを検出する光検出器17とから概略構成されている。   The absorptiometer 10 includes a light source 11, a collimating lens 12 for converting light emitted from the light source 11 into substantially parallel light, a condensing lens 13 for collecting light converted into substantially parallel light by the collimating lens 12, A measuring cell 14 arranged on the optical path between these lenses 12 and 13, a slit 15 provided in the vicinity of the converging position of the converging lens 13, and light passing through the slit 15 is condensed, It is roughly composed of a concave diffraction grating 16 for diffracting light in a specific direction in response thereto, and a photodetector 17 for detecting the spectrum of light separated by the concave diffraction grating 16.

光源11としては、以下の第1の波長λ1から第3の波長λ3までの光を含む光源を用いることが好ましい。例えば、キセノンフラッシュランプ、LED等を使用することができる。
230nm≦λ1≦260nm
270nm≦λ2≦320nm
600nm≦λ3≦700nm
As the light source 11, it is preferable to use a light source including light having the following first to third wavelengths λ1 to λ3. For example, a xenon flash lamp, LED, or the like can be used.
230 nm ≦ λ1 ≦ 260 nm
270 nm ≦ λ2 ≦ 320 nm
600 nm ≦ λ3 ≦ 700 nm

第1の波長λ1は、主として結合塩素が吸収を示す波長である。結合塩素による第1の波長λ1の吸光度は、pHの影響を殆ど受けない。遊離塩素による第1の波長λ1の吸光度は小さく、また、pHの影響も小さい。
第1の波長λ1は、240nm≦λ1≦250nmであることが好ましい。
The first wavelength λ1 is a wavelength at which the bound chlorine mainly absorbs. The absorbance of the first wavelength λ1 due to the bound chlorine is hardly affected by the pH. The absorbance of the first wavelength λ1 due to free chlorine is small, and the influence of pH is small.
The first wavelength λ1 preferably satisfies 240 nm ≦ λ1 ≦ 250 nm.

第2の波長λ2は、主として遊離塩素が吸収を示す波長である。遊離塩素による第2の波長λ2の吸光度は、pHの影響を大きく受ける。結合塩素による第2の波長λ2の吸光度は極めて小さい。
第2の波長λ2は、280nm≦λ2≦300nmであることが好ましい。
The second wavelength λ2 is a wavelength at which free chlorine mainly absorbs. The absorbance at the second wavelength λ2 due to free chlorine is greatly affected by pH. The absorbance of the second wavelength λ2 by the bound chlorine is extremely small.
The second wavelength λ2 preferably satisfies 280 nm ≦ λ2 ≦ 300 nm.

第3の波長λ3は、濁度に依存する吸収を示す波長である。濁質は、第1の波長λ1と第2の波長λ2においても吸収を示す。第3の波長λ3における吸光度により、第1の波長λ1と第2の波長λ2における濁度の影響を除く補正ができる。
第3の波長λ3は、650nm≦λ3≦670nmであることが好ましい。
The third wavelength λ3 is a wavelength showing absorption depending on turbidity. The turbid material also shows absorption at the first wavelength λ1 and the second wavelength λ2. By the absorbance at the third wavelength λ3, a correction excluding the influence of turbidity at the first wavelength λ1 and the second wavelength λ2 can be performed.
Preferably, the third wavelength λ3 is 650 nm ≦ λ3 ≦ 670 nm.

測定セル14は、試料液を収容可能な有底筒状のセルでもよいし、試料液が流通可能なフローセルであってもよい。測定セル14の光路上に配置される部分は、第1の波長から第3の波長までの光を透過可能な透明な材質で形成されている。
スリット15は、凹面回折格子16のブレーズ方向に直交する方向に延びる細長い隙間を有し、集光レンズ13によって集光された光の一部を通過させるようになっている。スリット15によって、測定されるスペクトルのスペクトル純度が決定される。
The measurement cell 14 may be a bottomed cylindrical cell capable of storing a sample liquid, or may be a flow cell through which the sample liquid can flow. The portion of the measurement cell 14 arranged on the optical path is formed of a transparent material that can transmit light from the first wavelength to the third wavelength.
The slit 15 has an elongated gap extending in a direction perpendicular to the blaze direction of the concave diffraction grating 16 and allows a part of the light collected by the condenser lens 13 to pass. The slit 15 determines the spectral purity of the measured spectrum.

凹面回折格子16は、スリット15を通過した光を集光し、その波長に応じて特定の方向に回折させるようになっている。光検出器17は、凹面回折格子16のブレーズ方向に平行に複数の検出チャネルを配列してなるマルチチャネル検出器である。
本実施形態の吸光光度計10によれば、複数の波長における吸光度を実質的に同時に得られる。本発明では、第1の波長λ1における吸光度を吸光度A1と称し、第2の波長λ2における吸光度を吸光度A2と称し、第3の波長λ3における吸光度を吸光度A3と称す。
The concave diffraction grating 16 condenses the light passing through the slit 15 and diffracts the light in a specific direction according to the wavelength. The photodetector 17 is a multi-channel detector in which a plurality of detection channels are arranged in parallel with the blaze direction of the concave diffraction grating 16.
According to the absorptiometer 10 of the present embodiment, absorbances at a plurality of wavelengths can be obtained substantially simultaneously. In the present invention, the absorbance at the first wavelength λ1 is referred to as absorbance A1, the absorbance at the second wavelength λ2 is referred to as absorbance A2, and the absorbance at the third wavelength λ3 is referred to as absorbance A3.

演算装置20は、記憶部21と演算部22を有している。記憶部21は、本発明の残留塩素測定システムが行う処理のために必要な検量線や閾値等を記憶している。なお、検量線は式の形に限らず、表の形で記憶されていてもよい。   The arithmetic device 20 has a storage unit 21 and an arithmetic unit 22. The storage unit 21 stores a calibration curve, a threshold, and the like necessary for the processing performed by the residual chlorine measurement system of the present invention. The calibration curve is not limited to the form of the equation, and may be stored in the form of a table.

記憶部21の記憶内容の全部または一部は、図示を省略する操作部によって、書き換え可能とされていることが好ましい。
演算部22には、本発明のプログラムが組み込まれており、当該プログラムに従い、吸光光度計10から入力される吸光度と記憶部21の情報に基づいて、本発明の残留塩素測定システムが行う処理を行うようになっている。
It is preferable that all or a part of the storage content of the storage unit 21 can be rewritten by an operation unit (not shown).
The arithmetic unit 22 incorporates the program of the present invention, and performs processing performed by the residual chlorine measurement system of the present invention based on the absorbance input from the absorptiometer 10 and the information in the storage unit 21 according to the program. It is supposed to do.

<試料液>
本発明における試料液は、測定対象液または校正液である。測定対象液は、本発明の残留塩素測定システムにより、残留塩素濃度を求めようとする試料液である。校正液は、本発明の残留塩素測定システムにおける検量線等を求めるための試料液である。
<Sample liquid>
The sample liquid in the present invention is a liquid to be measured or a calibration liquid. The measurement target liquid is a sample liquid whose residual chlorine concentration is to be determined by the residual chlorine measurement system of the present invention. The calibration liquid is a sample liquid for obtaining a calibration curve or the like in the residual chlorine measurement system of the present invention.

測定対象液としては、常時は残留塩素濃度とpHをコントロールされている試料が好ましい。例えば、水道水、下水放流水、越流水が挙げられる。
測定対象液のpHは6〜9の範囲であることが好ましい。また、次亜塩素酸イオンの濃度が、0.15mg/L以上であることが好ましい。本発明における吸光度の比の変動は、次亜塩素酸イオンが存在する条件でpHの変動を反映すると考えられるからである。次亜塩素酸イオン濃度は、pHに依存するので、例えば、pH7.3であれば、遊離塩素濃度は0.5mg/L以上であることが好ましい。測定対象液の遊離塩素濃度は、5mg/L以下であることが好ましい。
As the liquid to be measured, a sample whose residual chlorine concentration and pH are always controlled is preferable. For example, tap water, sewage discharge water, and overflow water are mentioned.
The pH of the liquid to be measured is preferably in the range of 6 to 9. Further, the concentration of hypochlorite ion is preferably 0.15 mg / L or more. This is because the change in the absorbance ratio in the present invention is considered to reflect the change in pH under the condition where hypochlorite ions are present. Since the hypochlorite ion concentration depends on the pH, for example, if the pH is 7.3, the free chlorine concentration is preferably 0.5 mg / L or more. The concentration of free chlorine in the liquid to be measured is preferably 5 mg / L or less.

校正液の残留塩素濃度範囲は、測定対象液が通常取り得る遊離塩素濃度範囲や結合塩素濃度範囲に分散していることが好ましい。
校正液は、測定対象液と同等のpHのものを使用することが好ましい。例えば、測定対象液がpH7.5前後に制御されている場合は、pH7.5程度に調整された校正液を用いることが好ましい。
なお、測定対象液と異なるpHの校正液を使用し、特許文献1の手法により補正することも可能である。
It is preferable that the residual chlorine concentration range of the calibration liquid is dispersed in a free chlorine concentration range and a bound chlorine concentration range which can be usually taken by the liquid to be measured.
It is preferable to use a calibration solution having the same pH as the solution to be measured. For example, when the solution to be measured is controlled at around pH 7.5, it is preferable to use a calibration solution adjusted to around pH 7.5.
It should be noted that it is also possible to use a calibration liquid having a pH different from that of the liquid to be measured and to perform the correction by the method of Patent Document 1.

校正液としては、少なくともゼロ液とスパン液を用いることが好ましい。ゼロ液は、ゼロ校正値を得るための校正液である。また、スパン液は、測定対象液が通常取り得る遊離塩素濃度ないしは結合塩素濃度の上限値付近の塩素濃度の校正液である。
また、共存成分の影響を考慮するため、校正液は、測定対象液と同等の試料液をベースに調製することが好ましい。例えば、測定対象液が水道水の場合、水道水の塩素分を除いた、脱塩素水をベースとし、これに次亜塩素酸塩やアンモニウム塩等を添加して調製することが好ましい。
塩素分の除去方法としては、塩素分を揮発させる方法や活性炭等に吸着させる方法が挙げられる。
ゼロ液としては、脱塩素水の他、純水を用いてもよい。
校正液の残留塩素濃度は、DPD法の他、o−トリジン比色法(OT法)、よう素滴定法等により確認することができる。
As the calibration liquid, it is preferable to use at least a zero liquid and a span liquid. The zero solution is a calibration solution for obtaining a zero calibration value. The span solution is a calibration solution having a chlorine concentration near the upper limit of the free chlorine concentration or the combined chlorine concentration that can be usually taken by the liquid to be measured.
In order to consider the influence of coexisting components, it is preferable that the calibration liquid is prepared based on a sample liquid equivalent to the liquid to be measured. For example, when the liquid to be measured is tap water, it is preferable to prepare the solution based on dechlorinated water from which the chlorine content of tap water has been removed and to which hypochlorite, ammonium salt, and the like are added.
Examples of the method for removing chlorine include a method for volatilizing chlorine and a method for causing chlorine to be adsorbed on activated carbon or the like.
As the zero liquid, pure water may be used in addition to dechlorinated water.
The residual chlorine concentration of the calibration solution can be confirmed by an o-tolidine colorimetric method (OT method), an iodometric method, or the like, in addition to the DPD method.

<システムが行う処理>
本発明の一実施形態に係る残留塩素測定方法は、以下の処理S1〜S3を行うようになっている。なお、処理S1〜S3を行う順番に限定はなく、同時並行で行われてもよい。
<Process performed by the system>
The method for measuring residual chlorine according to one embodiment of the present invention performs the following processes S1 to S3. The order in which the processes S1 to S3 are performed is not limited, and they may be performed simultaneously and in parallel.

[処理S1]
処理S1は、吸光度A2、または吸光度A2と吸光度A1の比(A2/A1)に基づき試料液の遊離塩素濃度Nfを求める処理である。試料液が測定対象液であるときは、下式(1)または下式(2)に基づき、測定対象液の遊離塩素濃度Nfを求める処理である。
[Processing S1]
The process S1 is a process for obtaining the free chlorine concentration Nf of the sample liquid based on the absorbance A2 or the ratio of the absorbance A2 to the absorbance A1 (A2 / A1). When the sample solution is measured fluid is a process based on the following formula (1) or the following formula (2), determine the free chlorine concentration Nf X of the liquid to be measured.

Nf=f(A2) ・・・(1)
Nf=f(A2/A1) ・・・(2)
A1:試料液が測定対象液であるときの吸光度A1。
A2:試料液が測定対象液であるときの吸光度A2。
A2/A1:試料液が測定対象液であるときの吸光度A2と吸光度A1の比(A2/A1)。
:校正液を試料液として求めた、吸光度A2を変数とする、遊離塩素濃度を示す関数。
:校正液を試料液として求めた、吸光度A2と吸光度A1の比(A2/A1)を変数とする、遊離塩素濃度の関数。
Nf X = f 1 (A2 X ) (1)
Nf X = f 2 (A2 X / A1 X) ··· (2)
A1 X : Absorbance A1 when the sample liquid is the liquid to be measured.
A2 X : Absorbance A2 when the sample liquid is the liquid to be measured.
A2 X / A1 X : ratio of the absorbance A2 and the absorbance A1 when the sample liquid is the liquid to be measured (A2 / A1).
f 1 : a function indicating the free chlorine concentration using the absorbance A2 as a variable, obtained using the calibration liquid as a sample liquid.
f 2 : a function of the free chlorine concentration using the ratio of the absorbance A2 and the absorbance A1 (A2 / A1) as a variable, obtained using the calibration liquid as a sample liquid.

としては、たとえば、以下の式(1−1)が挙げられる。
(A2)=e×(A2−g)・・・(1−1)
e:遊離塩素のスパン係数。
g:遊離塩素のゼロ校正値。
スパン係数e、ゼロ校正値gを得るためのデータとしては、校正液について、吸光光度計を用いて測定した吸光度A2と、手分析法により求めた遊離塩素濃度Nfとの組み合わせを用いる。
For example, f 1 includes the following formula (1-1).
f 1 (A2) = e × (A2-g) (1-1)
e: Span coefficient of free chlorine.
g: Zero calibration value of free chlorine.
As the data for obtaining the span coefficient e and the zero calibration value g, a combination of the absorbance A2 of the calibration liquid measured using an absorptiometer and the free chlorine concentration Nf obtained by a manual analysis method is used.

としては、たとえば、以下の式(2−1)が挙げられる。
(A2/A1)=h×{(A2/A1)−i} ・・・(2−1)
h:遊離塩素のスパン係数。
i:遊離塩素のゼロ校正値。
スパン係数h、ゼロ校正値iを得るためのデータとしては、校正液について、吸光光度計を用いて測定した吸光度A2及び吸光度A1と、手分析法により求めた遊離塩素濃度Nfを用いる。
スパン係数e、h、ゼロ校正値g、iは、固定値として記憶部21に記憶されていてもよいが、定期的な校正作業の都度、更新することが好ましい。
The f 2, for example, of the formula (2-1) can be mentioned below.
f 2 (A2 / A1) = h × {(A2 / A1) −i} (2-1)
h: Span coefficient of free chlorine.
i: Zero calibration value of free chlorine.
As the data for obtaining the span coefficient h and the zero calibration value i, the absorbance A2 and the absorbance A1 of the calibration liquid measured using an absorptiometer and the free chlorine concentration Nf obtained by a manual analysis method are used.
The span coefficients e and h and the zero calibration values g and i may be stored in the storage unit 21 as fixed values, but are preferably updated each time a periodic calibration operation is performed.

[処理S2]
処理S2は、吸光度A1に基づき試料液の結合塩素濃度Ncを求める処理である。試料液が測定対象液であるときは、下式(3)に基づき、測定対象液の結合塩素濃度Ncを求める処理である。
Nc=f(A1) ・・・(3)
:校正液を試料液として求めた、吸光度A1を変数とする、結合塩素濃度の関数。
[Processing S2]
The process S2 is a process for obtaining the bound chlorine concentration Nc of the sample solution based on the absorbance A1. When the sample solution is measured fluid is a process based on the following equation (3), obtaining the combined chlorine concentration Nc X of the liquid to be measured.
Nc X = f 3 (A1 X ) (3)
f 3 : a function of the concentration of bound chlorine using the absorbance A1 as a variable, obtained by using the calibration liquid as a sample liquid.

としては、たとえば、以下の式(3−1)が挙げられる。
(A1)=n×(A1−o) ・・・(3−1)
n:結合塩素のスパン係数。
o:結合塩素のゼロ校正値。
The f 3, for example, the following equation (3-1).
f 3 (A1) = n × (A1-o) (3-1)
n: span coefficient of bound chlorine.
o: Zero calibration value of bound chlorine.

スパン係数n、ゼロ校正値oを得るためのデータとしては、校正液について、吸光光度計を用いて測定した吸光度A1と、手分析法により求めた結合塩素濃度Ncを用いる。なお、吸光度と結合塩素濃度との関係はpHの影響を殆ど受けないため、係数n、oを得るための校正液のpHは特に考慮しなくてよい。
スパン係数n、ゼロ校正値oは、固定値として記憶部21に記憶されていてもよいが、定期的な校正作業の都度、更新することが好ましい。
As the data for obtaining the span coefficient n and the zero calibration value o, the absorbance A1 of the calibration liquid measured using an absorptiometer and the bound chlorine concentration Nc determined by a manual analysis method are used. Since the relationship between the absorbance and the concentration of bound chlorine is hardly affected by the pH, the pH of the calibration solution for obtaining the coefficients n and o does not need to be particularly considered.
The span coefficient n and the zero calibration value o may be stored in the storage unit 21 as fixed values, but are preferably updated each time periodic calibration work is performed.

[処理S3]
処理S3は、吸光度A2と吸光度A1の比(A2/A1)の絶対値又は単位時間あたりの変動量が所定の範囲外となった際に、警報を発生する処理である。
具体的には、下記の式(4−1)〜式(5−2)の何れかの式を満たした場合に警報を発するべきとの判断を行い、警報を発生させることができる。
なお、警報は、音、表示、伝送信号等、公知の一以上の方法で出力することができる。
[Processing S3]
The process S3 is a process for generating an alarm when the absolute value of the ratio (A2 / A1) of the absorbance A2 and the absorbance A1 or the amount of change per unit time is out of a predetermined range.
Specifically, when any one of the following equations (4-1) to (5-2) is satisfied, it is determined that an alarm should be issued, and an alarm can be issued.
Note that the alarm can be output by one or more known methods such as sound, display, and transmission signal.

A2/A1<K1・・・(4−1)
A2/A1≦K2・・・(4−2)
A2/A1>K3・・・(4−3)
A2/A1≧K4・・・(4−4)
Δ(A2/A1)>K5・・・(5−1)
Δ(A2/A1)≧K6・・・(5−2)
A2 / A1 <K1 (4-1)
A2 / A1 ≦ K2 (4-2)
A2 / A1> K3 (4-3)
A2 / A1 ≧ K4 (4-4)
Δ (A2 / A1)> K5 (5-1)
Δ (A2 / A1) ≧ K6 (5-2)

但し、K1〜K6は、任意に設定できる閾値である。また、Δ(A2/A1)は、吸光度A2と吸光度A1の比(A2/A1)の単位時間あたりの変動量である。
K1〜K4は、試料液の遊離塩素濃度の制御範囲を考慮し、当該制御範囲に対応した吸光度A2と吸光度A1の比(A2/A1)の範囲であれば警報を出さず、範囲外であれば警報を出すように値を設定すればよい。
また、K5、K6は、必要な制御の制度を考慮して値を設定すればよい。
However, K1 to K6 are thresholds that can be set arbitrarily. Δ (A2 / A1) is a fluctuation amount per unit time of the ratio (A2 / A1) of the absorbance A2 to the absorbance A1.
K1 to K4 take into account the control range of the free chlorine concentration of the sample solution, and if the ratio is within the ratio (A2 / A1) of the absorbance A2 and the absorbance A1 corresponding to the control range, no alarm is issued, and if it is out of the range. The value may be set so that an alarm is issued.
The values of K5 and K6 may be set in consideration of the required control system.

式(4−1)〜式(5−2)の何れか1つ又は2つを組み合わせて警報発生の要否を判断することができる。
式(4−1)と式(4−3)は組み合わせて要否判断に用いることが好ましい。また、式(4−2)と式(4−4)は組み合わせて要否判断に用いることが好ましい。
It is possible to determine the necessity of alarm generation by combining any one or two of Expressions (4-1) to (5-2).
It is preferable to use the expressions (4-1) and (4-3) in combination to determine the necessity. In addition, it is preferable to use the expressions (4-2) and (4-4) in combination to determine the necessity.

式(4−1)〜式(5−2)の何れかの式を満たすことは、試料液の遊離塩素濃度又はpHの少なくとも一方が,制御範囲を外れた可能性を示す。したがって、警報が出された場合、ユーザーはそのような可能性が生じたことを知ることができる。また、警報が出されない常時は、pHが所定の範囲に制御されているか否かを心配することなく、遊離塩素濃度の測定が可能である。   Satisfying any one of the formulas (4-1) to (5-2) indicates that at least one of the free chlorine concentration and the pH of the sample solution may be out of the control range. Therefore, when an alarm is issued, the user can know that such a possibility has occurred. In addition, when the alarm is not issued, the concentration of free chlorine can be measured without worrying about whether the pH is controlled in a predetermined range.

上記処理S1〜S3で使用される吸光度A1、A2は、試料液に濁質が含まれる場合に影響を受ける。そのため、吸光度A3を用いて、下式(6)、下式(7)により濁度補正することか好ましい。
A1=f(A1’,A3)・・・(6)
A2=f(A2’,A3)・・・(7)
A1’:吸光光度計が直接測定した、試料液が測定対象液であるときの波長λ1における吸光度。
A2’:吸光光度計が直接測定した、試料液が測定対象液であるときの波長λ2における吸光度。
A3:吸光光度計が直接測定した、試料液が測定対象液であるときの波長λ3における吸光度。
:吸光度A1’及び吸光度A3を変数とする、補正後の吸光度A1の関数。
:吸光度A2’及び吸光度A3を変数とする、補正後の吸光度A2の関数。
The absorbances A1 and A2 used in the above processes S1 to S3 are affected when the sample solution contains a turbid substance. Therefore, it is preferable to perform turbidity correction using the following formulas (6) and (7) using the absorbance A3.
A1 = f 4 (A1 ′, A3) (6)
A2 = f 5 (A2 ′, A3) (7)
A1 ′: Absorbance at wavelength λ1 when the sample liquid is the liquid to be measured, directly measured by the absorptiometer.
A2 ′: Absorbance at wavelength λ2 when the sample liquid is the liquid to be measured, directly measured by the absorptiometer.
A3: Absorbance at wavelength λ3 when the sample liquid is the liquid to be measured, directly measured by the absorptiometer.
f 4 : a function of the corrected absorbance A1 using the absorbance A1 ′ and the absorbance A3 as variables.
f 5 : function of the corrected absorbance A2 using the absorbance A2 ′ and the absorbance A3 as variables.

としては、たとえば、以下の式(6−1)が挙げられる。
(A1’,A3)=A1’−p×A3・・・(6−1)
p:補正係数。
としては、たとえば、以下の式(7−1)が挙げられる。
(A2’,A3)=A2’−q×A3・・・(7−1)
q:補正係数。
The f 4, for example, of the formula (6-1) can be mentioned below.
f 4 (A1 ′, A3) = A1′−p × A3 (6-1)
p: correction coefficient.
The f 5, for example, of the formula (7-1) can be mentioned below.
f 5 (A2 ′, A3) = A2′−q × A3 (7-1)
q: correction coefficient.

係数p、qを得るためのデータとしては、濁度標準液(カオリン、ホルマジン、PSL標準液等)を適宜希釈した溶液について、吸光光度計を用いて測定した吸光度A1と吸光度A3との組み合わせ、またはた吸光度A2と吸光度A3との組み合わせを用いる。
係数p、qは、それほど大きく変動することはないので、固定値として記憶部21に記憶されていてもよい。
係数pの値は0を超え1.0以下の範囲であり、係数qの値は0を超え1.0以下の範囲である。
Data for obtaining the coefficients p and q include a combination of an absorbance A1 and an absorbance A3 measured using an absorptiometer on a solution obtained by appropriately diluting a turbidity standard solution (such as kaolin, formazin, or PSL standard solution). Alternatively, a combination of the absorbances A2 and A3 is used.
Since the coefficients p and q do not change so much, they may be stored in the storage unit 21 as fixed values.
The value of the coefficient p is more than 0 and not more than 1.0, and the value of the coefficient q is more than 0 and not more than 1.0.

なお、本発明の残留塩素測定システムにおいて用いる吸光度は、純水や空気等の参照試料の吸光度を差し引いてゼロ補正した吸光度であることが好ましい。
そのため、本発明の残留塩素測定システムにおける吸光光度計は、測定試料と参照試料の吸光度を同時に測定できる、いわゆるダブルビーム型の分光光度計を用いてもよい。また、標準光束と測定光束の2光束を高速で切り換える自記分光光度計や、設定されたインターバルでゼロを定期的に補正するオンライン分光光度計を用いてもよい。
また、上記実施形態の残留塩素測定システムの吸光光度計は、測定セル14を通過した後の光を分光する態様としたが、測定セル14に入射する前に分光する態様であってもよい。また、分光する手段は回折格子に限定されず、例えば、金属干渉フィルター等を用いて波長を選択してもよい。また、光検出器はマルチチャネル検出器に限定されず、例えば、フォトダイオード、光電子増倍管を使用してもよい。
Note that the absorbance used in the residual chlorine measurement system of the present invention is preferably an absorbance that is zero-corrected by subtracting the absorbance of a reference sample such as pure water or air.
Therefore, the absorption spectrophotometer in the residual chlorine measurement system of the present invention may be a so-called double beam type spectrophotometer that can simultaneously measure the absorbance of the measurement sample and the reference sample. Further, a self-recording spectrophotometer that switches between the standard light beam and the measurement light beam at high speed, or an online spectrophotometer that periodically corrects zero at set intervals may be used.
Further, the absorption spectrophotometer of the residual chlorine measurement system of the above embodiment is configured to split the light after passing through the measurement cell 14, but may be split before the light enters the measurement cell 14. Further, the means for separating light is not limited to the diffraction grating, and the wavelength may be selected using, for example, a metal interference filter or the like. Further, the photodetector is not limited to the multi-channel detector, and for example, a photodiode or a photomultiplier may be used.

また、上記実施形態では、演算部22に各処理を実行させるためのプログラムが演算装置20内の演算部22に組み込まれている態様としたが、演算装置20の機能の一部または全部は、直接または通信システムを利用して接続された外部コンピュータに担わせてもよい。
その場合、プログラムは、予めコンピュータに記録されていてもよいし、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータに読み込ませてもよい。
また、予めコンピュータに記録されているプログラムと、コンピュータ読み取り可能な記録媒体に記録し、コンピュータに読み込ませるプログラムとを組み合わせてもよい。
また、上記実施形態の残留塩素測定システムでは処理S1〜S3を行う態様としたが、処理S2は省略してもよい。
In the above-described embodiment, the program for causing the arithmetic unit 22 to execute each process is incorporated in the arithmetic unit 22 in the arithmetic device 20. However, some or all of the functions of the arithmetic device 20 An external computer connected directly or using a communication system may be used.
In that case, the program may be recorded in a computer in advance, or may be recorded on a computer-readable recording medium, and the program recorded on this recording medium may be read by a computer.
Further, a program recorded in a computer in advance and a program recorded in a computer-readable recording medium and read by the computer may be combined.
Further, in the residual chlorine measurement system of the above embodiment, the processes S1 to S3 are performed, but the process S2 may be omitted.

<試料液の調製>
以下の実施例および実験例で用いた試料液は、以下の原液等を用いて調製した。
脱塩素水:水道水中の塩素を活性炭に吸着させた後に中空糸膜で濾過した水。
次亜塩素酸ナトリウム原液:約12質量%の次亜塩素酸ナトリウム溶液を純水で希釈して次亜塩素酸濃度1000mg/Lに調整したもの。
東亜ディーケーケー(株)製アンモニア標準液(1000mg/L)。
NaOH溶液:水酸化ナトリウムの約0.5質量%水溶液。
HCl溶液:約0.5質量%塩酸。
<Preparation of sample liquid>
The sample solutions used in the following Examples and Experimental Examples were prepared using the following stock solutions and the like.
Dechlorinated water: Water that has been filtered through a hollow fiber membrane after adsorbing chlorine in tap water on activated carbon.
Sodium hypochlorite stock solution: A solution of about 12% by mass of sodium hypochlorite diluted with pure water to adjust the concentration of hypochlorous acid to 1000 mg / L.
Ammonia standard solution (1000 mg / L) manufactured by Toa DKK Corporation.
NaOH solution: about 0.5% by weight aqueous solution of sodium hydroxide.
HCl solution: about 0.5% by weight hydrochloric acid.

<DPD法による残留塩素濃度の測定>
各試料液のDPD法による残留塩素濃度は、上水試験方法2011年版「30.3 ジエチル−p−フェニレンジアミンによる吸光光度法」の(14)標準塩素水に記載された「よう素滴定法」(以下「DPD法」という。)に従って求めた。具体的には以下のように測定した。
<Measurement of residual chlorine concentration by DPD method>
The residual chlorine concentration of each sample solution by the DPD method was determined by the "iodine titration method" described in (14) Standard chlorinated water in "30.3 Absorption spectrophotometry using diethyl-p-phenylenediamine" in the 2011 Clean Water Test Method. (Hereinafter referred to as "DPD method"). Specifically, it was measured as follows.

(a)DPD試薬の作製
N,N−ジエチル−フェニレンジアミン硫酸塩1.0gと無水硫酸ナトリウム24gを混合して、DPD(N,N−ジエチル−p−フェニレンジアミン)試薬を作製した。
(b)リン酸緩衝液(pH=6.5)の調製
0.2mol/Lリン酸二水素カリウム100mLに0.2mol/L水酸化ナトリウム溶液35.4mLを加え、これにtrans−1,2−シクロヘキサンジアミン四酢酸−水和物0.13gを溶解し、リン酸緩衝液(pH=6.5)を調製した。
(A) Preparation of DPD reagent 1.0 g of N, N-diethyl-phenylenediamine sulfate and 24 g of anhydrous sodium sulfate were mixed to prepare a DPD (N, N-diethyl-p-phenylenediamine) reagent.
(B) Preparation of phosphate buffer (pH = 6.5) To 100 mL of 0.2 mol / L potassium dihydrogen phosphate, 35.4 mL of a 0.2 mol / L sodium hydroxide solution was added, and trans-1,2 was added thereto. 0.13 g of cyclohexanediaminetetraacetic acid-hydrate was dissolved to prepare a phosphate buffer (pH = 6.5).

(c)遊離塩素濃度の測定
リン酸緩衝液2.5mLを共栓付き容器50mLに採り、これにDPD試薬0.5gを加え、次いで試料液を加えて全量を50mLとして、混和した。
得られた混和溶液の約3mLを吸収セルに採り、光電分光光度計を用いて、混和してから10秒後における波長528nmにおける吸光度を測定し、予め作成した検量線から、遊離塩素濃度を求めた。
(C) Measurement of Free Chlorine Concentration 2.5 mL of the phosphate buffer was placed in a 50-mL container with a stopper, and 0.5 g of the DPD reagent was added thereto, followed by adding a sample solution to make the total volume 50 mL, and mixing.
About 3 mL of the obtained mixed solution is taken in an absorption cell, and the absorbance at a wavelength of 528 nm is measured 10 seconds after mixing using a photoelectric spectrophotometer, and the free chlorine concentration is determined from a calibration curve prepared in advance. Was.

(d)結合塩素濃度の測定
リン酸緩衝液2.5mLを共栓付き容器50mLに採り、これにDPD試薬0.5gを加え、次いで試料液を加えて全量を50mLとして、混和した。
得られた混和溶液50mLに、ヨウ化カリウム約0.5gを加えて溶解した。次にヨウ化カリウム添加後の溶液の約3mLを吸収セルに採り、光電分光光度計を用いて、ヨウ化カリウム添加後2分後における波長528nmにおける吸光度を測定し、予め作成した検量線から、全残留塩素濃度を求めた。
この全残留塩素濃度から、(c)で求めた遊離塩素濃度を差し引いた値を、結合塩素濃度とした。
(D) Measurement of Concentration of Bound Chlorine 2.5 mL of phosphate buffer was placed in a 50 mL container with a stopper, and 0.5 g of DPD reagent was added thereto.
About 50 g of potassium iodide was added to and dissolved in 50 mL of the obtained mixed solution. Next, about 3 mL of the solution after the addition of potassium iodide was taken into an absorption cell, and the absorbance at a wavelength of 528 nm was measured 2 minutes after the addition of potassium iodide using a photoelectric spectrophotometer. The total residual chlorine concentration was determined.
The value obtained by subtracting the free chlorine concentration obtained in (c) from the total residual chlorine concentration was defined as the bound chlorine concentration.

<pHの測定>
東亜ディーケーケー株式会社製WM−22P型pH計を用いて、各試料液のpH測定値を得た。
<吸収スペクトル、吸光度の測定>
日立ハイテクノロジーズ社製U−3200型自記分光光度計を用いて測定した。
<Measurement of pH>
Using a WM-22P pH meter manufactured by TOA KK, pH measurement values of each sample solution were obtained.
<Measurement of absorption spectrum and absorbance>
The measurement was performed using a U-3200 self-recording spectrophotometer manufactured by Hitachi High-Technologies Corporation.

<実験例1>
下記の試料液について、吸収スペクトルを得た。結果を図2に示す。
・「F0.76mg/L pH7.35」
次亜塩素酸ナトリウム原液約0.8mLを脱塩素水で希釈して1000mLとした。得られた試料液の遊離塩素濃度(DPD法)は0.76mg/L、pHは7.35であった。
・「F0.76mg/L pH4.15」
pH電極によりpHを測定しながら、「F0.76mg/L pH7.35」の試料液に、pHが約4となるようにHCl溶液を添加した。得られた試料液のpHは4.15であった。
・「F0.76mg/L pH8.06」
pH電極によりpHを測定しながら、「F0.76mg/L pH7.35」の試料液に、pHが約8となるようにNaOH溶液を添加した。得られた試料液のpHは8.06であった。
<Experimental example 1>
Absorption spectra were obtained for the following sample solutions. The results are shown in FIG.
-"F0.76mg / L pH7.35"
About 0.8 mL of sodium hypochlorite stock solution was diluted with dechlorinated water to 1000 mL. The free chlorine concentration (DPD method) of the obtained sample solution was 0.76 mg / L, and the pH was 7.35.
-"F0.76mg / L pH4.15"
While measuring the pH with a pH electrode, an HCl solution was added to the sample solution of “F 0.76 mg / L pH 7.35” so that the pH became about 4. The pH of the obtained sample solution was 4.15.
-"F0.76mg / L pH8.06"
While measuring the pH with a pH electrode, a NaOH solution was added to the sample solution of “F 0.76 mg / L pH 7.35” so that the pH became about 8. The pH of the obtained sample solution was 8.06.

・「C0.8mg/L pH6.89」
東亜ディーケーケー(株)製アンモニア標準液(1000mg/L)の約0.2mLと次亜塩素酸ナトリウム原液約0.8mLを脱塩素水で希釈して1000mLとした。得られた試料液の遊離塩素濃度(DPD法)は約0.04mg/L、結合塩素濃度(DPD法)は0.76mg/L、pHは6.89であった。
・「C0.8mg/L pH4.37」
pH電極によりpHを測定しながら、「C0.8mg/L pH6.89」の試料液に、pHが約4となるようにHCl溶液を添加した。得られた試料液のpHは4.37であった。
・「C0.8mg/L pH8.07」
pH電極によりpHを測定しながら、「C0.8mg/L pH6.89」の試料液に、pHが約8となるようにNaOH溶液を添加した。得られた試料液のpHは8.07であった。
-"C0.8mg / L pH6.89"
About 0.2 mL of an ammonia standard solution (1000 mg / L) manufactured by Toa DKK Corporation and about 0.8 mL of a sodium hypochlorite stock solution were diluted with dechlorinated water to 1000 mL. The obtained sample solution had a free chlorine concentration (DPD method) of about 0.04 mg / L, a bound chlorine concentration (DPD method) of 0.76 mg / L, and a pH of 6.89.
-"C 0.8 mg / L pH 4.37"
While measuring the pH with a pH electrode, an HCl solution was added to the sample solution of “C 0.8 mg / L pH 6.89” so that the pH became about 4. The pH of the obtained sample solution was 4.37.
-"C 0.8 mg / L pH 8.07"
While measuring the pH with a pH electrode, a NaOH solution was added to the sample solution of “C 0.8 mg / L pH 6.89” so that the pH became about 8. The pH of the obtained sample solution was 8.07.

図2に示すように、290nm付近に遊離塩素の吸収が見られた。また、245nm付近に結合塩素の吸収が見られた。245nm付近の結合塩素の吸収は、pHにかかわらずほぼ同等であったが、290nm付近の遊離塩素の吸収は、pHにより大きく変動することが確認できた。290nm付近の遊離塩素の吸収は、pHが高い程大きい。これは、290nm付近の吸収は、次亜塩素酸イオンに感度を有し、次亜塩素酸に感度を有しないためである。   As shown in FIG. 2, absorption of free chlorine was observed at around 290 nm. Further, absorption of bound chlorine was observed at around 245 nm. The absorption of bound chlorine around 245 nm was almost the same irrespective of the pH, but it was confirmed that the absorption of free chlorine around 290 nm varied greatly depending on the pH. The absorption of free chlorine around 290 nm increases as the pH increases. This is because the absorption around 290 nm has sensitivity to hypochlorite ion and has no sensitivity to hypochlorous acid.

<実験例2>
脱塩素水に、次亜塩素酸ナトリウム原液と、必要に応じてNaOH溶液またはHCl溶液を添加し、pHが6〜8で遊離塩素濃度が様々な試料液を各種調製した。調製した各試料液について、DPD法による遊離塩素濃度とpH電極によるpHを確認した。また、各々の試料液について、290nmの吸光度(290nm Abs)を測定した。図3に、pHが6である試料液、pHが7である試料液、pHが8である試料液の各々について、290nmの吸光度とDPD法による遊離塩素濃度との関係を示す。
図3に示すように、pHが一定であれば、290nmの吸光度とDPD法による遊離塩素濃度とは、良好な相関関係を示すことが確認できた。
<Experimental example 2>
To the dechlorinated water, a sodium hypochlorite stock solution and, if necessary, a NaOH solution or an HCl solution were added to prepare various sample solutions having a pH of 6 to 8 and various free chlorine concentrations. About each prepared sample solution, the free chlorine concentration by the DPD method and the pH by the pH electrode were confirmed. In addition, the absorbance at 290 nm (290 nm Abs) of each sample solution was measured. FIG. 3 shows the relationship between the absorbance at 290 nm and the free chlorine concentration by the DPD method for each of the sample solution having a pH of 6, the sample solution having a pH of 7, and the sample solution having a pH of 8.
As shown in FIG. 3, when the pH was constant, it was confirmed that the absorbance at 290 nm and the free chlorine concentration by the DPD method showed a good correlation.

<実験例3>
脱塩素水に、次亜塩素酸ナトリウム原液と、必要に応じてNaOH溶液またはHCl溶液を添加し、pHが6〜8で遊離塩素濃度が様々な試料液を各種調製した。調製した各試料液について、DPD法による遊離塩素濃度とpH電極によるpHを確認した。また、各々の試料液について、245nmの吸光度と290nmの吸光度とを測定し、245nmの吸光度に対する290nmの吸光度の比(290/245nm Abs)を求めた。図4に、pHが6である試料液、pHが7である試料液、pHが8である試料液の各々について、245nmの吸光度に対する290nmの吸光度の比と、DPD法による遊離塩素濃度との関係を示す。
図4に示すように、pHが一定であれば、245nmの吸光度に対する290nmの吸光度の比とDPD法による遊離塩素濃度とは、良好な相関関係を示すことが確認できた。
<Experimental example 3>
To the dechlorinated water, a sodium hypochlorite stock solution and, if necessary, a NaOH solution or an HCl solution were added to prepare various sample solutions having a pH of 6 to 8 and various free chlorine concentrations. About each prepared sample solution, the free chlorine concentration by the DPD method and the pH by the pH electrode were confirmed. Further, the absorbance at 245 nm and the absorbance at 290 nm of each sample solution were measured, and the ratio of the absorbance at 290 nm to the absorbance at 245 nm (290/245 nm Abs) was determined. FIG. 4 shows the relationship between the ratio of the absorbance at 290 nm to the absorbance at 245 nm and the free chlorine concentration according to the DPD method for each of the sample solution having a pH of 6, the sample solution having a pH of 7, and the sample solution having a pH of 8. Show the relationship.
As shown in FIG. 4, when the pH was constant, it was confirmed that a good correlation was exhibited between the ratio of the absorbance at 290 nm to the absorbance at 245 nm and the free chlorine concentration by the DPD method.

<実験例4>
脱塩素水に、次亜塩素酸ナトリウム原液と、東亜ディーケーケー(株)製アンモニア標準液(1000mg/L)と、必要に応じてNaOH溶液またはHCl溶液を添加し、pHが6〜8で結合塩素濃度が様々な試料液を各種調製した。調製した各試料液について、DPD法による結合塩素濃度とpH電極によるpHを確認した。また、各々の試料液について、245nmの吸光度を求めた。図5に、pHが6である試料液、pHが7である試料液、pHが8である試料液の各々について、245nmの吸光度と、DPD法による結合塩素濃度との関係を示す。
図5に示すように、pHにかかわらず、245nmの吸光度とDPD法による結合塩素濃度とは、良好な相関関係を示すことが確認できた。
<Experimental example 4>
To the dechlorinated water, add a sodium hypochlorite stock solution, an ammonia standard solution (1000 mg / L) manufactured by Toa DKK Inc., and if necessary, a NaOH solution or an HCl solution. Various sample solutions having various concentrations were prepared. For each of the prepared sample solutions, the bound chlorine concentration by the DPD method and the pH by the pH electrode were confirmed. Further, the absorbance at 245 nm was determined for each sample solution. FIG. 5 shows the relationship between the absorbance at 245 nm and the concentration of bound chlorine by the DPD method for each of the sample solution having a pH of 6, the sample solution having a pH of 7, and the sample solution having a pH of 8.
As shown in FIG. 5, it was confirmed that regardless of pH, the absorbance at 245 nm and the concentration of bound chlorine by the DPD method showed a good correlation.

10…吸光光度計、11…光源、12…コリメートレンズ、13…集光レンズ、
14…測定セル、15…スリット、16…凹面回折格子、17…光検出器、
20…演算装置、21…記憶部、22…演算部
10: Absorbance photometer, 11: Light source, 12: Collimating lens, 13: Condensing lens,
14 measurement cell, 15 slit, 16 concave diffraction grating, 17 photodetector,
20 arithmetic unit, 21 storage unit, 22 arithmetic unit

Claims (6)

試料液の第1の波長λ1(但し、230nm≦λ1≦260nm)における吸光度A1と第2の波長λ2(但し、270nm≦λ2≦320nm)における吸光度A2を測定する吸光光度計と、
前記吸光光度計で得られる吸光度が入力される演算装置を備え、
前記演算装置は、吸光度A2、または吸光度A2と吸光度A1の比(A2/A1)に基づき試料液の遊離塩素濃度を求めると共に、吸光度A2と吸光度A1の比(A2/A1)の絶対値又は単位時間あたりの変動量が所定の範囲外となった際に、警報を発生することを特徴とする残留塩素測定システム。
An absorptiometer that measures absorbance A1 at a first wavelength λ1 (provided that 230 nm ≦ λ1 ≦ 260 nm) and absorbance A2 at a second wavelength λ2 (provided that 270 nm ≦ λ2 ≦ 320 nm) of the sample solution;
An arithmetic unit to which the absorbance obtained by the absorptiometer is input,
The arithmetic unit determines the free chlorine concentration of the sample solution based on the absorbance A2 or the ratio of the absorbance A2 to the absorbance A1 (A2 / A1), and the absolute value or unit of the ratio of the absorbance A2 to the absorbance A1 (A2 / A1). A residual chlorine measurement system, wherein an alarm is generated when a fluctuation amount per time is out of a predetermined range.
前記演算装置は、さらに、吸光度A1に基づき結合塩素濃度を求める請求項1に記載の残留塩素測定システム。   The residual chlorine measurement system according to claim 1, wherein the arithmetic unit further obtains a concentration of bound chlorine based on the absorbance A1. 前記吸光光度計は、さらに試料液の第3の波長λ3(但し、600nm≦λ3≦700nm)における吸光度A3を測定するものであり、
前記演算装置は、吸光度A3に基づき吸光度A1及び吸光度A2を補正する請求項1または2に記載の残留塩素測定システム。
The absorptiometer further measures the absorbance A3 of the sample solution at a third wavelength λ3 (where 600 nm ≦ λ3 ≦ 700 nm),
The residual chlorine measurement system according to claim 1 or 2, wherein the arithmetic unit corrects the absorbance A1 and the absorbance A2 based on the absorbance A3.
試料液の第1の波長λ1(但し、230nm≦λ1≦260nm)における吸光度A1と第2の波長λ2(但し、270nm≦λ2≦320nm)における吸光度A2を測定する吸光光度計と、前記吸光光度計で得られる吸光度が入力される演算装置とを備える残留塩素測定システムに、以下の処理S1及び処理S3を実行させるプログラム。
処理S1:吸光度A2、または吸光度A2と吸光度A1の比(A2/A1)に基づき試料液の遊離塩素濃度を求める処理。
処理S3:吸光度A2と吸光度A1の比(A2/A1)の絶対値又は単位時間あたりの変動量が所定の範囲外となった際に、警報を発生する処理。
An absorptiometer that measures the absorbance A1 at a first wavelength λ1 (230 nm ≦ λ1 ≦ 260 nm) and an absorbance A2 at a second wavelength λ2 (270 nm ≦ λ2 ≦ 320 nm) of the sample solution, and the absorptiometer A program for causing a residual chlorine measurement system including an arithmetic unit to which the absorbance obtained in step 1 is input to execute the following processes S1 and S3.
Process S1: A process for determining the free chlorine concentration of the sample solution based on the absorbance A2 or the ratio (A2 / A1) of the absorbance A2 to the absorbance A1.
Process S3: a process of generating an alarm when the absolute value of the ratio (A2 / A1) of the absorbance A2 and the absorbance A1 or the amount of variation per unit time falls outside a predetermined range.
前記演算装置に、前記処理S1及び処理S3に加えて、さらに、以下の処理S2を実行させる請求項4に記載のプログラム。
処理S2:吸光度A1に基づき試料液の結合塩素濃度を求める処理。
The program according to claim 4, wherein the program causes the arithmetic device to execute the following process S <b> 2 in addition to the processes S <b> 1 and S <b> 3.
Process S2: A process for determining the concentration of bound chlorine in the sample solution based on the absorbance A1.
前記残留塩素測定システムの前記吸光光度計が、さらに試料液の第3の波長λ3(但し、600nm≦λ3≦700nm)における吸光度A3を測定するものであり、
前記演算装置に、吸光度A3に基づき補正した、吸光度A1及び吸光度A2を用いて各処理を実行させる請求項4または5に記載のプログラム。
The absorption spectrophotometer of the residual chlorine measurement system further measures the absorbance A3 of the sample solution at a third wavelength λ3 (where 600 nm ≦ λ3 ≦ 700 nm),
The computer-readable storage medium according to claim 4, wherein the computer is configured to execute each process using the absorbance A <b> 1 and the absorbance A <b> 2 corrected based on the absorbance A <b> 3.
JP2015155378A 2015-08-05 2015-08-05 Residual chlorine measurement system and program Active JP6652697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015155378A JP6652697B2 (en) 2015-08-05 2015-08-05 Residual chlorine measurement system and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015155378A JP6652697B2 (en) 2015-08-05 2015-08-05 Residual chlorine measurement system and program

Publications (2)

Publication Number Publication Date
JP2017032502A JP2017032502A (en) 2017-02-09
JP6652697B2 true JP6652697B2 (en) 2020-02-26

Family

ID=57988748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015155378A Active JP6652697B2 (en) 2015-08-05 2015-08-05 Residual chlorine measurement system and program

Country Status (1)

Country Link
JP (1) JP6652697B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231814B2 (en) * 2018-10-04 2023-03-02 東亜ディーケーケー株式会社 Calibration method of residual chlorine measuring device
KR102258375B1 (en) * 2020-06-19 2021-05-31 대한민국(농촌진흥청장) Method of measuring for water soluble chlorine ion having improved precision

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855839A (en) * 1981-09-30 1983-04-02 Kawasaki Steel Corp Method of measuring amount of free available chlorine in water
JPH01223345A (en) * 1988-03-02 1989-09-06 Osaka Prefecture Determination of free chlorine in solution
JPH09155358A (en) * 1995-10-06 1997-06-17 Kinousui Kenkyusho:Kk Sterilized water, method and apparatus for preparing the same, and apparatus for measuring concentration of hypochlorous acid of sterilized water
JP2003080257A (en) * 2001-09-11 2003-03-18 Shimadzu Corp Apparatus for producing electrolytic water
JP2011158355A (en) * 2010-02-01 2011-08-18 Dkk Toa Corp Ultraviolet absorbance measuring instrument
JP5565581B2 (en) * 2010-10-20 2014-08-06 三浦工業株式会社 Individual determination of hypochlorite and hypobromite
US10746653B2 (en) * 2011-04-26 2020-08-18 Ecolab Usa Inc. Fluid property determination based on partial least squares analysis

Also Published As

Publication number Publication date
JP2017032502A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6663097B2 (en) Determination of water treatment parameters based on absorbance and fluorescence
WO2017199511A1 (en) Water quality analyzer
JP3185875U (en) Near ultraviolet absorption spectrometer
US20160313239A1 (en) Spectrophotometric Sensors and Methods of Using Same
US10746653B2 (en) Fluid property determination based on partial least squares analysis
JP6652697B2 (en) Residual chlorine measurement system and program
JP2022118709A (en) Real-time byproduct quantitative measurement device using sodium hypochlorite optical density analysis
JP6547507B2 (en) Residual chlorine measurement system, residual chlorine measurement method, and program
KR102297617B1 (en) Multi-wavelength real-time concentration analyser capable of on-site calibration and measurement using optical system-specific visible light transmission characteristics
US20190302084A1 (en) Method, device and apparatus for monitoring halogen levels in a body of water
JP4722513B2 (en) Apparatus and method for measuring the concentration of an acid solution containing peracetic acid
CN106680228A (en) Method for quickly determining available chlorine in water by using ultraviolet-visible spectrophotometry
JP2005214863A (en) Method of measuring water and aqueous solution by ultraviolet ray
US8847163B2 (en) Method and apparatus for absorption spectra analysis
JP4944740B2 (en) Chlorite ion measurement method
JPH03175341A (en) Method and apparatus for determining chemical agent for semiconductor process
WO2012162498A1 (en) Oxidation/ reduction measurement
CA2299881C (en) Method and apparatus for photometric analysis of chlorine dioxide solutions
JP2006170897A (en) Method and apparatus for measuring chemical oxygen demand (cod)
Kinani et al. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 2: Sampling, Sample Preparation and Non-Chromatographic and Mass Spectrometric-Based Methods
AU2012211358A1 (en) Method for detecting a concentration of chlorate-ions in an aqueous solution, apparatus for detecting a concentration of chlorate-ions and control unit
EP0885986A2 (en) Electrolysis apparatus with monitoring device
Canelli Evaluation of a portable bare-electrode amperometric analyzer for determining free chlorine in potable and swimming-pool waters
JPH10311790A (en) Equipment for measuring concentration of chlorine dioxide
KR101244614B1 (en) A method of measuring ammonium nitrogen in solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6652697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250