KR101244614B1 - A method of measuring ammonium nitrogen in solution - Google Patents

A method of measuring ammonium nitrogen in solution Download PDF

Info

Publication number
KR101244614B1
KR101244614B1 KR1020100124990A KR20100124990A KR101244614B1 KR 101244614 B1 KR101244614 B1 KR 101244614B1 KR 1020100124990 A KR1020100124990 A KR 1020100124990A KR 20100124990 A KR20100124990 A KR 20100124990A KR 101244614 B1 KR101244614 B1 KR 101244614B1
Authority
KR
South Korea
Prior art keywords
monochloramine
content
aqueous solution
ammonia nitrogen
dichloramine
Prior art date
Application number
KR1020100124990A
Other languages
Korean (ko)
Other versions
KR20120063838A (en
Inventor
조평대
장현성
Original Assignee
서울특별시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울특별시 filed Critical 서울특별시
Priority to KR1020100124990A priority Critical patent/KR101244614B1/en
Publication of KR20120063838A publication Critical patent/KR20120063838A/en
Application granted granted Critical
Publication of KR101244614B1 publication Critical patent/KR101244614B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/188Determining the state of nitrification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/04Apparatus for or methods of weighing material of special form or property for weighing fluids, e.g. gases, pastes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

본 발명은 수용액내 암모니아성질소의 측정방법에 관한 것이다. 보다 상세하게는, 본 발명은 수용액내 모노클로라민과 디클로라민의 양을 측정하는 것에 의해 암모니아성질소의 함량을 빠르고 정확하게 측정하는 방법에 관한 것이다. 본 발명에 따르면, 염소 사용량을 줄이고, 소독부산물 제거에 투입되는 약품 및 시설에 대한 투자를 줄임으로써 비용 절감의 효과를 기대할 수 있다. The present invention relates to a method for measuring ammonia nitrogen in an aqueous solution. More specifically, the present invention relates to a method for quickly and accurately measuring the content of ammonia nitrogen by measuring the amounts of monochloramine and dichloramine in aqueous solution. According to the present invention, it is possible to expect the effect of reducing the cost by reducing the amount of chlorine used, the investment in the chemicals and facilities that are put into the removal of disinfection by-products.

Description

수용액내 암모니아성질소의 측정방법{A METHOD OF MEASURING AMMONIUM NITROGEN IN SOLUTION}Method for measuring ammonia nitrogen in aqueous solution {A METHOD OF MEASURING AMMONIUM NITROGEN IN SOLUTION}

본 발명은 수용액내 암모니아성질소의 측정방법에 관한 것이다. 보다 상세하게는, 본 발명은 수용액내 모노클로라민과 디클로라민의 양을 측정하는 것에 의해 암모니아성질소의 함량을 빠르고 정확하게 측정하는 방법에 관한 것이다.
The present invention relates to a method for measuring ammonia nitrogen in an aqueous solution. More specifically, the present invention relates to a method for quickly and accurately measuring the content of ammonia nitrogen by measuring the amounts of monochloramine and dichloramine in aqueous solution.

암모니아성질소는 수중에 용해되어 있는 암모늄염을 질소량으로 나타낸 것으로, 자연계에 존재하는 암모니아성질소는 유기물이 부패하면서 동시에 발생하는 CO2와 결합하여 (NH4)2CO3형으로 존재하고, 빗물 등의 암모니아성질소는 미량의 탄산염으로 존재하며, 또한 대기오염지역에서 SO2의 양이 많은 경우에는 (NH4)2SO4의 형을 포함하기도 한다. 일반적으로, 물이 유기성 질소로 오염된 경우 점차 부패, 발효, 산화 등에 의하여 분해되어 우선 암모니아를 생성하므로 암모니아성질소는 물의 오염도를 나타내는 하나의 지표로 쓰이고 있다.Ammonia nitrogen represents the ammonium salt dissolved in water as the amount of nitrogen. Ammonia nitrogen present in nature is present in the form of (NH 4 ) 2 CO 3 by combining with CO 2 which occurs simultaneously with decay of organic matter. ammonia Nitrogen is present in a small amount of carbonates, and may also, if a large amount of SO 2 in air polluted areas include (NH 4) type 2 SO 4. In general, when water is contaminated with organic nitrogen, it is gradually decomposed by decay, fermentation, oxidation, and the like to first generate ammonia, so ammonia nitrogen is used as an index indicating water pollution.

최근, 갈수기에 초기강우에 의한 암모니아성질소가 원수로 유입되는 일이 빈번하게 발생하므로, 급변하는 원수수질에 즉각적인 대처가 필요하다. 원수내 암모니아성질소를 제거하기 위하여 일반적으로 파과점 염소주입(Breakpoint Chlorination) 방법이 사용되고 있다. 파과점 염소주입 방법은 원수에 파과점 이상으로 염소를 주입하여 암모니아성질소를 산화시켜 질소 가스나 기타 안정된 화합물로 바꾸는 방법이다. 따라서, 암모니아성질소의 완전파과처리를 위한 염소요구량을 정확하게 산정하기 위하여, 수중 암모니아성질소의 농도를 빠르고 정확하게 측정할 것이 요구되고 있다. Recently, since ammonia nitrogen is frequently introduced into raw water by early rainfall during the dry season, it is necessary to immediately deal with the rapidly changing raw water quality. In order to remove ammonia nitrogen in raw water, breakpoint chlorination is generally used. Breakthrough point chlorine injection is a method of injecting chlorine above the breakthrough point in raw water to oxidize ammonia nitrogen to convert it into nitrogen gas or other stable compounds. Therefore, in order to accurately calculate the chlorine requirements for complete breakthrough of ammonia nitrogen, it is required to measure the concentration of ammonia nitrogen in water quickly and accurately.

현재 널리 이용되고 있는 암모니아성질소의 분석방법으로는 흡광광도법(인도페놀법) 및 이온전극법이 있다. 흡광광도법은 암모니아성질소가 차아염소산나트륨의 존재하에 모노클로라민과 반응한 후, 페놀과 반응하여 생성되는 인도 페놀의 청색을 640nm에서 측정하는 방법이며, 비교적 깨끗한 하천수에 많이 적용되고 있다. 흡광광도법은 온라인 및 오프라인으로 계측 가능하지만, 분석시간이 1시간 이상 소요되며, 전염소처리한 원수를 분석하는 경우 모노클로라민이 발해물질로 작용하여 오차가 발생할 우려가 있다. As an analysis method of ammonia nitrogen which is widely used at present, there are an absorbance method (Indophenol method) and an ion electrode method. Absorption spectrophotometry is a method of measuring the blue color of indophenol produced by reacting monochloramine in the presence of sodium hypochlorite in the presence of sodium hypochlorite at 640 nm, and is widely applied to relatively clean river water. Absorption spectroscopy can be measured on-line and off-line, but the analysis takes more than 1 hour, and when analyzing the prechlorinated raw water, monochloramine acts as a decomposing substance, which may cause errors.

또한, 이온전극법은 시료에 수산화나트륨을 넣고 pH를 11~13으로 조정하여 암모늄이온을 암모니아로 변화시킨 다음 암모니아 이온전극을 이용하여 측정하는 방법이다. 이온전극법도 온라인 및 오프라인으로 계측 가능하지만, 온라인 측정시 12분 이상이 소요되어 급변하는 원수수질에 대처하기 힘들고, 저수온이나 저농도인 경우 오차가 발생한다는 단점이 있다. In addition, the ion electrode method is a method of adding a sodium hydroxide to the sample to adjust the pH to 11 ~ 13 to change the ammonium ion to ammonia and then to measure using ammonia ion electrode. The ion electrode method can also be measured online and offline, but it takes 12 minutes or more when measuring online, making it difficult to cope with the rapidly changing raw water quality, and there is a disadvantage that an error occurs at low temperature or low concentration.

따라서, 암모니아성질소의 함량을 빠르고 정확하게 측정하기 위하여 새로운 분석 방법의 개발이 필요한 실정이다.
Therefore, it is necessary to develop a new analytical method in order to measure the content of ammonia nitrogen quickly and accurately.

본 발명자는 수용액내 모노클로라민과 디클로라민의 양을 측정하는 것에 의해 암모니아성질소의 함량을 빠르고 정확하게 측정할 수 있음을 발견하여 본 발명을 완성하기에 이르렀다. The present inventors have found that the content of ammonia nitrogen can be measured quickly and accurately by measuring the amounts of monochloramine and dichloramine in an aqueous solution, thus completing the present invention.

본 발명에 따르면, 원수내 암모니아성질소의 양을 빠르고 정확하게 측정하여, 염소 사용량을 최적화하고 소독부산물의 생성을 최소화시킬 수 있다. 또한, 염소 사용량을 줄이고, 소독부산물 제거에 투입되는 약품 및 시설에 대한 투자를 줄임으로써 비용 절감효과가 크다.
According to the present invention, by measuring the amount of ammonia nitrogen in the raw water quickly and accurately, it is possible to optimize the use of chlorine and minimize the production of disinfection by-products. In addition, the cost savings are greatly reduced by reducing the amount of chlorine used, and the investment in medicines and facilities that are used to remove disinfection byproducts.

본 발명에 따르면, 수용액내 암모니아성질소의 함량을 측정하는 방법이 제공되고, 상기 방법은:According to the invention, there is provided a method for measuring the content of ammonia nitrogen in an aqueous solution, the method comprising:

수용액내 유리잔류염소의 함량을 측정하는 단계(I);Measuring the content of free residual chlorine in the aqueous solution (I);

수용액내 유리잔류염소와 모노클로라민의 합량을 측정하는 단계(II);Measuring the total amount of free residual chlorine and monochloramine in the aqueous solution (II);

수용액내 유리잔류염소, 모노클로라민 및 디클로라민의 합량을 측정하는 단계(III); Determining the total amount of free residual chlorine, monochloramine and dichloramine in the aqueous solution (III);

상기 I, II 및 III단계에서 측정된 합량으로부터 수용액내 모노클로라민 및 디클로라민의 함량을 각각 산출하는 단계(IV); 및Calculating the contents of monochloramine and dichloramine in the aqueous solution from the sums measured in steps I, II and III, respectively; And

상기 IV단계에서 산출된 모노클로라민 및 디클로라민의 함량을 화학양론적으로 해석하여 암모니아성질소의 함량을 산출하는 단계(v)를 포함한다.
Comprising the stoichiometric analysis of the monochloramine and dichloramine content calculated in step IV to calculate the content of ammonia nitrogen (v).

총잔류염소는 유리잔류염소와 결합잔류염소의 합으로 표현된다. 유리잔류염소는 수중에 존재하는 염소의 HOCI 또는 OCI-형태를 의미하고, 결합잔류염소는 염소가 수중의 암모니아성질소와 반응하여 존재하는 클로라민 형태를 의미한다. 클로라민의 대표적인 형성반응은 다음과 같다:Total residual chlorine is expressed as the sum of free and combined residual chlorine. Free residual chlorine refers to the HOCI or OCI - form of chlorine present in water, and bound residual chlorine refers to the chloramine form present when chlorine reacts with ammonia nitrogen in water. Representative reactions of chloramine are as follows:

·Cl2 + H2O → HOCl + HClCl 2 + H 2 O → HOCl + HCl

·NH3 + HOCl → NH2Cl(모노클로라민) + H2O : pH 7.5-8.3 (식 1)NH 3 + HOCl → NH 2 Cl (monochloramine) + H 2 O: pH 7.5-8.3 (Equation 1)

·NH2Cl + HOCl → NHCl2 (디클로라민) + H2O : pH 5.0-6.5 (식 2)NH 2 Cl + HOCl → NHCl 2 (dichloramine) + H 2 O: pH 5.0-6.5 (Equation 2)

·NHCl2 + HOCl → NCl3 (트리클로라민) + H2O : pH 4 이하 (식 3)NHCl 2 + HOCl → NCl 3 (trichloramine) + H 2 O: pH 4 or less (Equation 3)

pH 7에서 모노클라라민과 디클로라민은 거의 같은 양으로 존재하지만, 트리클로라민은 거의 생성되지 않는다.
At pH 7, monochloramine and dichloramine are present in about the same amount, but little trichloramine is produced.

본 발명의 단계(I)에서, 수용액내 유리잔류염소의 함량은 N,N-디에틸페닐렌 디아민(DPD)을 사용하여 측정될 수 있다. In step (I) of the present invention, the content of free chlorine in the aqueous solution can be measured using N, N-diethylphenylene diamine (DPD).

본 발명의 단계(I)에서, 수용액은 지표수, 지하수, 수돗물, 하천수, 호수수, 생활용수, 오염된 물, 식음수로부터 선택될 수 있다.In step (I) of the present invention, the aqueous solution may be selected from surface water, ground water, tap water, river water, lake water, domestic water, polluted water, and drinking water.

본 발명의 단계(I)에서, 수용액은 염소 처리된 것일 수도 있다.
In step (I) of the present invention, the aqueous solution may be chlorinated.

본 발명의 단계(II)에서, 수용액내 유리잔류염소와 모노클로라민의 합량은 단계(Ⅰ)에서 유리잔류염소를 측정한 후 추가로 요오트칼륨(KI)을 사용하여 측정될 수 있다.
In step (II) of the present invention, the total amount of free chlorine and monochloramine in the aqueous solution may be measured using potassium iodine (KI) after measuring the free chlorine in step (I).

본 발명의 단계(III)에서, 수용액내 유리잔류염소, 모노클로라민 및 디클로라민의 합량은 DPD을 사용하여 측정될 수 있다.
In step (III) of the present invention, the sum of free chlorine, monochloramine and dichloramine in aqueous solution can be measured using DPD.

본 발명의 단계(IV)에서, I, II 및 III단계에서 측정된 합량으로부터 수용액내 모노클로라민 및 디클로라민의 함량을 산출하는 방법은 다음과 같다:In step (IV) of the present invention, the method for calculating the content of monochloramine and dichloramine in aqueous solution from the sums measured in steps I, II and III is as follows:

·디클로라민의 함량: 단계(III)의 유리잔류염소, 모노클로라민 및 디클로라민의 합량 - 단계(II)의 유리잔류염소 및 모노클로라민의 합량Content of dichloramine: sum of free chlorine, monochloramine and dichloramine in step (III)-sum of free chlorine and monochloramine in step (II)

·모노클로라민의 함량: 단계(II)의 유리잔류염소 및 모노클로라민의 합량 - 단계(I)의 유리잔류염소의 양
Monochloramine content: The sum of free residual chlorine and monochloramine in step (II) -Amount of free residual chlorine in step (I)

본 발명의 단계(V)에서, IV단계에서 산출된 모노클로라민 및 디클로라민의 함량을 화학양론적으로 해석하여 암모니아성질소의 함량을 산출하는 방법은 다음과 같다:In step (V) of the present invention, the method for calculating the content of ammonia nitrogen by stoichiometric analysis of the amounts of monochloramine and dichloramine calculated in step IV is as follows:

·식 1 : NH3 + HOCl → NH2Cl + H2O 이므로Equation 1: NH 3 + HOCl → NH 2 Cl + H 2 O

질소 : 모노클로라민 = 14 : 51.5 이고,        Nitrogen: monochloramine = 14: 51.5,

·식 2 : NH2Cl + HOCl → NHCl2 + H2O 이므로 Equation 2: NH 2 Cl + HOCl → NHCl 2 + H 2 O

모노클로라민 : 디클로라민 = 51.5 : 86 이다.         Monochloramine: dichloramine = 51.5: 86.

따라서, 암모니아성질소의 함량은 하기의 계산식으로부터 산출될 수 있다: Therefore, the content of ammonia nitrogen can be calculated from the following formula:

NH3-N = 0.272 {모노클로라민 + (0.598 X 디클로라민)} (계산식 1)
NH 3 -N = 0.272 {Monochloramine + (0.598 X Dichloramine)} (Calculation 1)

원수내 암모니아성질소의 양을 빠르고 정확하게 측정할 수 있으므로, 염소 사용량을 최적화하고 소독부산물의 생성을 최소화시킬 수 있다. 또한, 암모니아성질소가 저농도(0.05mg/L이하)로 유입되는 경우에도 측정이 가능하다.
Ammonia nitrogen in raw water can be measured quickly and accurately, optimizing chlorine usage and minimizing the production of disinfection by-products. In addition, measurement can be performed even when ammonia nitrogen is introduced at a low concentration (0.05 mg / L or less).

도 1은 본원발명과 종래 분석법을 비교한 분석 흐름도를 나타낸다. 1 shows an analysis flow chart comparing the present invention and a conventional assay.

본 발명은 하기의 실시예에 의해 구체적으로 설명될 것이다. 그러나, 본 발명의 범위가 이에 한정되는 것은 아니다. The invention will be specifically illustrated by the following examples. However, the scope of the present invention is not limited thereto.

1. 비교예1. Comparative Example

본 연구에서 사용된 시료는 서울시 소재 풍납취수장에서 채취하였다. 상기 시료내 암모니아성질소의 함량을 수질오염공정시험법 제11항에 따른 인도페놀법에 의해 측정하였다. 측정된 암모니아성질소의 함량은 0.38mg/L이었다.
The samples used in this study were collected from Pungnap intake in Seoul. The content of ammonia nitrogen in the sample was measured by the indophenol method according to claim 11 of the water pollution process test method. The content of ammonia nitrogen measured was 0.38 mg / L.

2. 실시예2. Example

단계(I)Step (I)

서울시 소재 풍납취수장에서 채취한 시료의 암모니아성질소의 함량을 인도페놀법에 의해 측정한 후(0.38 mg/L)를 암모니아성질소농도의 10배로 염소 처리하였다. 염소처리된 시료에 DPD을 첨가한 후, 잔류염소계측기 (HACH사 us/4670000)를 사용하여 유리잔류염소의 함량을 측정하였다. 측정된 유리잔류염소의 함량은 0.22mg/L이었다.
After measuring the ammonia nitrogen content of the samples collected from Pungnap intake in Seoul by the Indophenol method (0.38 mg / L), the chlorine treatment was 10 times the ammonia nitrogen concentration. After the DPD was added to the chlorinated sample, the residual chlorine content was measured using a residual chlorine measuring instrument (US / 4670000 HACH). The measured free chlorine content was 0.22 mg / L.

단계(step( IIII ))

단계 I의 혼합물에 1000mg/L의KI 약 0.5ml를 첨가하여 유리잔류염소와 모노클로라민의 합량을 측정하였다. 측정된 유리잔류염소와 모노클로라민의 합량은 1.02mg/L이었다.
About 0.5 ml of 1000 mg / L KI was added to the mixture of Step I to determine the total amount of free chlorine and monochloramine. The total amount of free chlorine and monochloramine measured was 1.02 mg / L.

단계(step( IIIIII ))

단계(II)의 혼합물에 DPD를 첨가하여 유리잔류염소, 모노클로라민, 및 디클로라민의 합량을 측정하였다. 측정된 유리잔류염소, 모노클로라민, 및 디클로라민의 합량은 2.03mg/L이었다.
DPD was added to the mixture of step (II) to determine the total amount of free chlorine, monochloramine, and dichloramine. The combined amount of free residual chlorine, monochloramine, and dichloramine was 2.03 mg / L.

단계(step( IVIV ))

상기 단계(I) 내지 단계(III)으로부터 측정된 값으로부터 모노클로라민 및 디클로라민의 함량을 산출하였다. 산출된 모노클로라민과 디클로라민의 함량은 다음과 같았다:The content of monochloramine and dichloramine was calculated from the values measured in steps (I) to (III) above. The calculated monochloramine and dichloramine contents were as follows:

·모노클로라민 : 1.02mg/L 0.22mg/L = 0.80mg/LMonochloramine: 1.02 mg / L 0.22 mg / L = 0.80 mg / L

·디클로라민 : 2.03mg/L 1.02mg/L = 1.01mg/L
Dichloramine: 2.03 mg / L 1.02 mg / L = 1.01 mg / L

단계(V)Phase (V)

단계(IV)의 모노클로라민과 디클로라민의 함량을 이용하여 암모니아성질소의 함량을 계산식 1에 따라 산출하였다. 산출된 암모니아성질소의 함량은 다음과 같다:The content of ammonia nitrogen was calculated according to Formula 1 using the amounts of monochloramine and dichloramine in step (IV). The calculated ammonia nitrogen content is as follows:

·NH3-N = 0.272 {0.08 + (0.598 X 1.01)} = 0.3818mg/LNH 3 -N = 0.272 {0.08 + (0.598 X 1.01)} = 0.3818 mg / L

시간 경과 및 염소주입농도에 따른 Over time and chlorine concentration 암모니아성질소의Ammonium nitrogen 함량 측정 Content measurement

상기의 실시예와 동일한 방법을 사용하여, 염소주입농도를 달리한 시간의 경과에 따른 암모니아성질소의 함량을 측정하였으며, 결과를 표 1에 나타내었다. 정확도는 98%로 나타났으며, 상대표준편차는 4.0%이었다. Using the same method as in the above example, the content of ammonia nitrogen was measured over time with different chlorine injection concentrations, and the results are shown in Table 1. The accuracy was 98% and the relative standard deviation was 4.0%.

Figure 112010080905872-pat00001
Figure 112010080905872-pat00001

3. 결과 3. Results

원수내 암모니아성질소의 함량을 측정한 결과, 종래의 인도페놀법을 사용한 경우 0.38 mg/L로 측정되었고, 본원발명에 따른 방법을 사용한 경우에도 약 0.38 mg/L로 측정되었다. 본원발명에 따른 방법을 사용하여 측정한 경우, 온라인 계측시 약 2.5분 내에 암모니아성질소의 함량을 알 수 있었다. As a result of measuring the content of ammonia nitrogen in the raw water, it was measured at 0.38 mg / L using the conventional indophenol method, and about 0.38 mg / L using the method according to the present invention. When measured using the method according to the present invention, the content of ammonia nitrogen was found in about 2.5 minutes on-line measurement.

본원발명에 따라 원수내 암모니아성질소의 양을 빠르고 정확하게 측정할 수 있으므로, 염소 사용량을 최적화하여 소독부산물의 생성을 최소화시킬 수 있었다. 앞으로, 염소 사용량을 줄이고, 소독부산물 제거에 투입되는 약품 및 시설에 대한 투자를 줄임으로써 비용 절감의 효과가 기대된다.
According to the present invention, since the amount of ammonia nitrogen in raw water can be measured quickly and accurately, it was possible to minimize the production of disinfection by-products by optimizing the amount of chlorine used. In the future, the cost savings are expected by reducing the amount of chlorine used and reducing the investment in chemicals and facilities used to remove disinfection by-products.

Claims (5)

수용액내 암모니아성질소의 함량을 측정하는 방법에 관한 것으로, 상기 방법은:
수용액내 유리잔류염소의 함량을 측정하는 단계(I);
수용액내 유리잔류염소와 모노클로라민의 합량을 측정하는 단계(II);
수용액내 유리잔류염소, 모노클로라민 및 디클로라민의 합량을 측정하는 단계(III);
상기 I, II 및 III단계에서 측정된 합량으로부터 수용액내 모노클로라민 및 디클로라민의 함량을 각각 산출하는 단계(IV); 및
상기 IV단계에서 산출된 모노클로라민 및 디클로라민의 함량을 하기의 식에 대입하여 암모니아성질소의 함량을 산출하는 단계(v)를 포함하는 것인 방법:
NH3-N = 0.272 {모노클로라민의 함량 + (0.598 X 디클로라민의 함량)}.
A method for measuring the content of ammonia nitrogen in an aqueous solution, the method comprising:
Measuring the content of free residual chlorine in the aqueous solution (I);
Measuring the total amount of free residual chlorine and monochloramine in the aqueous solution (II);
Determining the total amount of free residual chlorine, monochloramine and dichloramine in the aqueous solution (III);
Calculating the contents of monochloramine and dichloramine in the aqueous solution from the sums measured in steps I, II and III, respectively; And
Comprising the step (v) to calculate the content of ammonia nitrogen by substituting the content of monochloramine and dichloramine in step IV to the following formula:
NH 3 -N = 0.272 {content of monochloramine + (content of 0.598 X dichloramine)}.
제1항에 있어서, 수용액내 유리잔류염소의 함량은 N,N-디에틸페닐렌디아민(DPD)을 사용하여 측정되는 것인 방법.The method of claim 1, wherein the content of free residual chlorine in the aqueous solution is measured using N, N-diethylphenylenediamine (DPD). 제1항에 있어서, 수용액내 유리잔류염소와 모노클로라민의 합량은 요오드칼륨(KI)을 사용하여 측정되는 것인 방법.The method of claim 1, wherein the total amount of free chlorine and monochloramine in the aqueous solution is measured using potassium iodine (KI). 제1항에 있어서, 수용액내 유리잔류염소, 모노클로라민 및 디클로라민의 합량은 N,N-디에틸페닐렌디아민(DPD)을 사용하여 측정되는 것인 방법.The method of claim 1, wherein the total amount of free residual chlorine, monochloramine and dichloramine in the aqueous solution is measured using N, N-diethylphenylenediamine (DPD). 삭제delete
KR1020100124990A 2010-12-08 2010-12-08 A method of measuring ammonium nitrogen in solution KR101244614B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100124990A KR101244614B1 (en) 2010-12-08 2010-12-08 A method of measuring ammonium nitrogen in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100124990A KR101244614B1 (en) 2010-12-08 2010-12-08 A method of measuring ammonium nitrogen in solution

Publications (2)

Publication Number Publication Date
KR20120063838A KR20120063838A (en) 2012-06-18
KR101244614B1 true KR101244614B1 (en) 2013-03-25

Family

ID=46684158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100124990A KR101244614B1 (en) 2010-12-08 2010-12-08 A method of measuring ammonium nitrogen in solution

Country Status (1)

Country Link
KR (1) KR101244614B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116693012A (en) * 2023-05-06 2023-09-05 同济大学 Method for sterilizing and cooperatively and rapidly removing ammonia nitrogen in overflow sewage of drainage pipeline containing chlorine disinfectant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214153A (en) 1999-01-27 2000-08-04 Suido Kiko Kaisha Ltd Potassium iodide reagent for total-residual-chlorine measurement
JP2001349866A (en) * 2000-06-06 2001-12-21 Dkk Toa Corp Apparatus for measuring residual chlorine
US7438796B2 (en) * 2006-08-28 2008-10-21 Hach Company Electrochemical chlorine sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214153A (en) 1999-01-27 2000-08-04 Suido Kiko Kaisha Ltd Potassium iodide reagent for total-residual-chlorine measurement
JP2001349866A (en) * 2000-06-06 2001-12-21 Dkk Toa Corp Apparatus for measuring residual chlorine
US7438796B2 (en) * 2006-08-28 2008-10-21 Hach Company Electrochemical chlorine sensor

Also Published As

Publication number Publication date
KR20120063838A (en) 2012-06-18

Similar Documents

Publication Publication Date Title
Pinkernell et al. Methods for the photometric determination of reactive bromine and chlorine species with ABTS
Yang et al. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate
Uyak et al. Seasonal variations of disinfection by-product precursors profile and their removal through surface water treatment plants
Demutskaya et al. Photometric determination of ammonium nitrogen with the nessler reagent in drinking water after its chlorination
Pan et al. Total organic iodine measurement: A new approach with UPLC/ESI-MS for off-line iodide separation/detection
Brandao et al. Development of a simple method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry
CN106680228A (en) Method for quickly determining available chlorine in water by using ultraviolet-visible spectrophotometry
Karpel Vel Leitner et al. Chlorination and formation of organoiodinated compounds: the important role of ammonia
Song et al. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method
JP4944740B2 (en) Chlorite ion measurement method
Hollowell et al. Selective determination of chlorine dioxide using gas diffusion flow injection analysis
Duirk et al. Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter
Wang et al. Factors influencing the formation of chlorination brominated trihalomethanes in drinking water
Farrell et al. Spectrophotometric determination of bromate ions using phenothiazines
CN101532998B (en) A method for detecting chlorine dioxide content in life drinking water
US9746451B2 (en) Kinetic chlorine measurement
KR101244614B1 (en) A method of measuring ammonium nitrogen in solution
Singh et al. Direct spectrophotometric determination of trace amounts of mercury (II) in aqueous media as its dithizonate complex in the presence of a neutral surfactant
JP6777915B2 (en) Analytical method and analyzer
Chiswell et al. Spectrophotometric method for the determination of chlorite and chlorate
Hosseini et al. Spectrophotometric determination of chlorate ions in drinking water
Johnson et al. Photolytic spectroscopic quantification of residual chlorine in potable waters
Shishehbore et al. Kinetic determination of thiocyanate on the basis of its catalytic effect on the oxidation of methylene blue with potassium bromate
Behpour et al. Solid phase extraction of arsenic by sorption on naphthalene-methyltrioctyl ammonium chloride and spectrophotometric determination
Zaporozhets et al. Spectrophotometric determination of hypochlorite by N, N-diethylaniline

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170303

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190207

Year of fee payment: 7