JP2001349866A - Apparatus for measuring residual chlorine - Google Patents

Apparatus for measuring residual chlorine

Info

Publication number
JP2001349866A
JP2001349866A JP2000169614A JP2000169614A JP2001349866A JP 2001349866 A JP2001349866 A JP 2001349866A JP 2000169614 A JP2000169614 A JP 2000169614A JP 2000169614 A JP2000169614 A JP 2000169614A JP 2001349866 A JP2001349866 A JP 2001349866A
Authority
JP
Japan
Prior art keywords
residual chlorine
concentration
reagent
applied voltage
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000169614A
Other languages
Japanese (ja)
Other versions
JP4463382B2 (en
Inventor
Shinichi Akazawa
真一 赤沢
Takeo Ishii
丈夫 石井
Naomi Narasaki
直美 楢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2000169614A priority Critical patent/JP4463382B2/en
Publication of JP2001349866A publication Critical patent/JP2001349866A/en
Application granted granted Critical
Publication of JP4463382B2 publication Critical patent/JP4463382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a residual chlorine-measuring apparatus, which can accurately measure the concentration of each of a free residual chlorine and a combined residual chlorine in residual chlorine concentration, and can distinctively measure concentrations of monochloramine and dichloramine in the combined residual chlorine. SOLUTION: After a reagent which includes bromide ions are merged with a sample solution, the reagent is introduced to a detecting part 7. In the detecting part 7, a first, a second and a third application voltages are applied between a detection electrode 14 of gold, which moves a circular motion and a counter electrode formed of platinum, and concentrations of the free residual chlorine, the monochlolamine and the dichloramine are calculated separately from each of oxidation-reduction current values obtained then. The first application voltage is selected from a range of -0.2 to -0.4 V, the second application voltage is selected from a range of -0.4 to -0.6 V, and the third application voltage is selected from a range of -0.7 to -1.0 V, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は残留塩素測定装置に
関し、さらに詳しくは、残留塩素濃度に占める遊離残留
塩素と結合残留塩素の濃度を各々得ることができると共
に、結合残留塩素の内、モノクロラミンとジクロラミン
の濃度とを各々得ることができる残留塩素測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring residual chlorine, and more particularly, it is possible to obtain the concentration of free residual chlorine and the concentration of combined residual chlorine in the residual chlorine concentration. The present invention relates to a residual chlorine measuring apparatus capable of obtaining a concentration of dichloramine and a concentration of dichloramine.

【0002】[0002]

【従来の技術】残留塩素とは、塩素処理の結果水中に残
留した消毒作用のある有効塩素のことで、次亜塩素酸な
どの遊離残留塩素と、クロラミンのような結合残留塩素
に区分される。いずれも酸化による殺菌力を有してい
る。
2. Description of the Related Art Residual chlorine is available chlorine having a disinfecting action remaining in water as a result of chlorination, and is classified into free residual chlorine such as hypochlorous acid and bound residual chlorine such as chloramine. . All have bactericidal power by oxidation.

【0003】この内、遊離残留塩素は主として塩素剤が
水と反応して生成する次亜塩素酸(HClO)と、これ
が解離した次亜塩素酸イオン(ClO−)と、分子状塩
素(Cl2)の3種類の形態をとる。三種類の形態の比
率はpHに依存する。たとえば、pH2以下では主とし
て分子状塩素が存在し、pH4〜pH7の範囲では主と
して次亜塩素酸の形態をとり、pH7.4で次亜塩素酸
と次亜塩素酸イオンがほぼ等しい濃度となる。すなわ
ち、上水等の通常のpHにおいては、ほとんどの遊離残
留塩素が次亜塩素酸又は次亜塩素酸イオンとして存在す
る。
[0003] Of these, free residual chlorine is mainly composed of hypochlorite (HClO) generated by the reaction of a chlorine agent with water, hypochlorite ion (ClO-) dissociated therefrom, and molecular chlorine (Cl2). In three forms. The ratio of the three forms depends on the pH. For example, at a pH of 2 or lower, molecular chlorine is mainly present, and in the range of pH 4 to pH 7, it mainly takes the form of hypochlorous acid, and at a pH of 7.4, hypochlorite and hypochlorite ions have almost the same concentration. That is, at ordinary pH such as tap water, most free residual chlorine exists as hypochlorous acid or hypochlorite ion.

【0004】一方、結合残留塩素は、水中のアンモニ
ア、アミン類、アミノ酸類と遊離残留塩素が反応して生
成するもので、モノクロラミン(NH2Cl)、ジクロ
ラミン(NHCl2)、トリクロラミン(NCl3)の
三種類の形態をとる。これらの比率もまたpHに依存
し、モノクロラミンの比率はpH6.5〜pH8.5の
範囲で最大となる。また、ジクロラミンの比率はpH
5.0〜pH6.5の範囲で大きくなるとされている。
そして、上水等の通常のpHにおいては、ほとんどの結
合残留塩素が、モノクロラミン又はジクロラミンとして
存在する。モノクロラミンとジクロラミンは、遊離残留
塩素に比較すると圧倒的に弱いものの殺菌力を有してい
る。
[0004] On the other hand, bound residual chlorine is produced by the reaction of free residual chlorine with ammonia, amines and amino acids in water. Monochloramine (NH2Cl), dichloramine (NHCl2) and trichloramine (NCl3) are formed. It takes the form of a kind. These ratios also depend on the pH, with the ratio of monochloramine being maximal in the range of pH 6.5 to pH 8.5. The ratio of dichloramine is pH
It is said to increase in the range of 5.0 to pH 6.5.
Then, at ordinary pH such as tap water, most of the bound residual chlorine is present as monochloramine or dichloramine. Monochloramine and dichloramine have overwhelmingly weak bactericidal activity compared to free residual chlorine.

【0005】我が国の水道法施行規則では、充分な殺菌
力を確保する観点で、給水栓における水が、遊離残留塩
素であれば0.1mg/L以上、結合残留塩素であれば
0.4mg/L以上の残留塩素を保持すべきことを定め
ている。このように、殺菌力の違いを考慮して、保持す
べき残留塩素の濃度も遊離残留塩素の場合と結合残留塩
素の場合とで異なる。したがって、浄水場等において
は、全残留塩素濃度だけでなく、遊離残留塩素濃度と結
合残留塩素濃度とを区別して把握することが必要であ
る。
According to the enforcement regulations of the Water Supply Law of Japan, from the viewpoint of securing sufficient sterilizing power, the water in the hydrant is 0.1 mg / L or more if free residual chlorine and 0.4 mg / L if combined residual chlorine. It specifies that residual chlorine of L or more should be retained. As described above, the concentration of residual chlorine to be retained also differs between the case of free residual chlorine and the case of combined residual chlorine in consideration of the difference in sterilizing power. Therefore, in a water purification plant, it is necessary to distinguish not only the total residual chlorine concentration but also the free residual chlorine concentration and the combined residual chlorine concentration.

【0006】また、塩素処理においては、充分な殺菌力
を確保しつつ残留塩素濃度が過剰とならないように、塩
素剤注入量の調整をしなければならない。下記に説明す
るように、この塩素剤の注入量を適切に調整するために
も遊離残留塩素濃度と結合残留塩素濃度とを区別して把
握することが必要である。
In the chlorination treatment, it is necessary to adjust the amount of the chlorine agent to be injected so that the residual chlorine concentration does not become excessive while ensuring sufficient sterilizing power. As described below, in order to properly adjust the amount of the chlorine agent to be injected, it is necessary to distinguish and grasp the free residual chlorine concentration and the combined residual chlorine concentration.

【0007】残留塩素濃度は、塩素剤の注入量に応じ
て、典型的には図7のように変化する。まず、塩素剤を
注入していく初期の段階では、残留塩素濃度はほぼゼロ
のまま推移する。これは、塩素によってきわめて分解し
やすい無機物質や有機物質によって、注入した塩素剤が
直ちに消費されるからである。塩素剤注入をさらに続け
ると、残留塩素濃度はクロラミン(主としてモノクロラ
ミン)の生成と共に徐々に増加するが、ある点をすぎる
と減少に転じる。これは、生成したクロラミンが、クロ
ラミンの生成に必要な塩素量よりも余分の塩素剤によっ
て、最終的に窒素と塩酸にまで分解されるからである。
このクロラミンの生成と分解が終了した時点(不連続
点)以降は、その後の塩素剤注入量に応じて残留塩素濃
度が増加していく。なお、不連続点以降は、アンモニア
性窒素等の酸化がほぼ完全に終了しているので、主とし
て遊離残留塩素濃度が増加する。
[0007] The residual chlorine concentration typically varies as shown in FIG. 7 according to the amount of the chlorine agent injected. First, in the initial stage of injecting the chlorine agent, the residual chlorine concentration remains almost zero. This is because the injected chlorinating agent is immediately consumed by inorganic and organic substances which are very easily decomposed by chlorine. As the chlorinating agent injection is further continued, the residual chlorine concentration gradually increases with the production of chloramine (mainly monochloramine), but starts decreasing after a certain point. This is because the produced chloramine is finally decomposed into nitrogen and hydrochloric acid by a chlorine agent in excess of the amount of chlorine necessary for producing chloramine.
After the end of the generation and decomposition of chloramine (discontinuous point), the residual chlorine concentration increases in accordance with the subsequent injection amount of the chlorinating agent. After the discontinuous point, since the oxidation of ammoniacal nitrogen and the like has been almost completely completed, the concentration of free residual chlorine mainly increases.

【0008】このように、塩素剤注入に伴う残留塩素濃
度変化は、水中のアンモニア性窒素の濃度等に応じて複
雑な動きをするので、残留塩素濃度を最適化するために
は、全残留塩素濃度だけでなく、遊離残留塩素濃度と結
合残留塩素濃度もそれぞれ把握し、これらの濃度に応じ
て、塩素剤投入量を調整する必要がある。
[0008] As described above, since the change in the residual chlorine concentration accompanying the injection of the chlorine agent moves in a complicated manner according to the concentration of ammoniacal nitrogen in the water, etc., in order to optimize the residual chlorine concentration, the total residual chlorine concentration is required. It is necessary to grasp not only the concentration but also the concentration of free residual chlorine and the concentration of residual chlorine residual, and to adjust the amount of the chlorinating agent to be supplied according to these concentrations.

【0009】残留塩素濃度は、従来から種々の方法で測
定されていた。また、o−トリジン比色法(OT法)で
は試薬添加から測定するまでの時間を変えることによ
り、ジエチル−p−フェニレンジアミン比色法(DPD
法)、ポーラログラフ法では、添加する試薬を代えるこ
とにより、全残留塩素濃度と遊離残留塩素濃度とを区別
して測定することも可能であった。
[0009] The residual chlorine concentration has been conventionally measured by various methods. In addition, in the o-tolidine colorimetric method (OT method), the time from the addition of a reagent to the measurement is changed to obtain a diethyl-p-phenylenediamine colorimetric method (DPD).
Method) and polarographic method, it was also possible to separately measure the total residual chlorine concentration and the free residual chlorine concentration by changing the reagent to be added.

【0010】たとえば、ポーラログラフ法では、試料液
にヨウ化カリウム溶液を加えると全残留塩素濃度に応じ
てヨウ素が遊離する。この遊離したヨウ素が電解還元さ
れてヨウ素イオンとなるときに、検知極と対極との間に
流れる酸化還元電流(拡散電流)を測定することにより
全残留塩素濃度が得られる。なお、ヨウ化カリウムを反
応させるときのpHは、約pH3である。
For example, in the polarographic method, when a potassium iodide solution is added to a sample solution, iodine is released according to the total residual chlorine concentration. When the released iodine is electrolytically reduced to iodine ions, the total residual chlorine concentration can be obtained by measuring the oxidation-reduction current (diffusion current) flowing between the detection electrode and the counter electrode. The pH at the time of reacting potassium iodide is about pH 3.

【0011】また、ヨウ化カリウムに代えて臭化カリウ
ム溶液を加えると、遊離残留塩素濃度に応じて臭素が遊
離する。この遊離した臭素が電解還元されて臭素イオン
となるときに、検知極と対極との間に流れる酸化還元電
流(拡散電流)を測定することにより遊離残留塩素濃度
が得られる。なお、臭化カリウムを反応させるときのp
Hは、約pH4である。そして、全残留塩素濃度と遊離
残留塩素濃度との差から結合残留塩素濃度が得られる。
When a potassium bromide solution is added in place of potassium iodide, bromine is liberated according to the free residual chlorine concentration. When the released bromine is electrolytically reduced to form bromine ions, the concentration of free residual chlorine can be obtained by measuring the oxidation-reduction current (diffusion current) flowing between the detection electrode and the counter electrode. In addition, p when reacting potassium bromide
H is about pH 4. Then, the combined residual chlorine concentration is obtained from the difference between the total residual chlorine concentration and the free residual chlorine concentration.

【0012】このように、従来から全残留塩素濃度と遊
離残留塩素濃度とをある程度選択的に測定することが可
能であり、この測定結果に基づき塩素剤の注入量の調整
が行われいていた。そして、種々の測定法の中でも、ポ
ーラログラフ法は連続測定や自動化にも適しており、浄
水場等の残留塩素濃度制御に広く用いられていた。
As described above, the total residual chlorine concentration and the free residual chlorine concentration can be selectively measured to some extent, and the injection amount of the chlorine agent has been adjusted based on the measurement result. Among various measurement methods, the polarographic method is suitable for continuous measurement and automation, and has been widely used for controlling residual chlorine concentration in water purification plants and the like.

【0013】[0013]

【発明が解決しようとする課題】上述のように、ポーラ
ログラフ法による残留塩素測定装置等では、試薬を変え
て選択性を持たせていた。しかし、試料液に臭化カリウ
ム試薬を反応させた場合、実際には遊離残留塩素だけで
なく、結合残留塩素による臭素の遊離もあり、結合残留
塩素の影響による大きなプラス誤差があった。そのた
め、必要な測定精度が得られなかった。
As described above, in the apparatus for measuring residual chlorine by the polarographic method or the like, the reagent is changed to provide selectivity. However, when a potassium bromide reagent was reacted with the sample solution, not only free residual chlorine, but also bromine was released due to the residual chlorine, and there was a large positive error due to the influence of the residual chlorine. Therefore, required measurement accuracy could not be obtained.

【0014】また、測定した全残留塩素濃度や遊離残留
塩素濃度に基づき塩素剤を注入すると、残留塩素濃度を
適正に調整したつもりでも、時間の経過と共に残留塩素
濃度が上昇し、最終的に高濃度となりすぎる場合があっ
た。これは、ジクロラミンが時間の経過と共に(1)式
のように分解して、遊離残留塩素を生成するためである
ことが知られている。これは、特に冬季の水温低下時に
良く見られる現象である。なお、同じ結合残留塩素でも
モノクロラミンが分解しても遊離残留塩素は生成されな
い。 2NHCl2+OH−→N2+2H++3Cl−+HOCl ……(1)
Further, when a chlorine agent is injected based on the measured total residual chlorine concentration or free residual chlorine concentration, the residual chlorine concentration increases with the passage of time even if the residual chlorine concentration is properly adjusted. The concentration sometimes became too high. It is known that this is because dichloramine is decomposed as time elapses as shown in equation (1) to generate free residual chlorine. This is a phenomenon often seen especially when the water temperature drops in winter. Even if monochloramine is decomposed even with the same combined residual chlorine, free residual chlorine is not generated. 2N HCl2 + OH- → N2 + 2H ++ 3Cl− + HOCl (1)

【0015】そのため、単に全残留塩素濃度と遊離残留
塩素濃度を区別して測定するだけでなく、結合残留塩素
の内、特にジクロラミン濃度を把握することが望まれて
いた。なお、ジクロラミン濃度を測定する方法として
は、米国のStandard Methodsが知られている。しかし、
この方法では試薬を粉末のまま試料液に添加しなければ
ならず、連続測定が可能な自動測定装置への適用は困難
であった。そのため、ジクロラミンの分解を考慮して塩
素剤の注入量を調整することは事実上不可能であった。
Therefore, it has been desired that not only the concentration of total residual chlorine and the concentration of free residual chlorine be measured separately but also the concentration of dichloramine among the bound residual chlorine be determined. As a method for measuring dichloramine concentration, Standard Methods in the United States is known. But,
In this method, the reagent must be added to the sample liquid as it is in a powder form, and it has been difficult to apply the method to an automatic measuring device capable of continuous measurement. Therefore, it was practically impossible to adjust the injection amount of the chlorine agent in consideration of the decomposition of dichloramine.

【0016】本発明は、上記事情に鑑みなされたもの
で、残留塩素濃度に占める遊離残留塩素と結合残留塩素
の濃度を各々精度良く測定できると共に、結合残留塩素
の内、モノクロラミンとジクロラミンの濃度とを区別し
て測定することができる残留塩素測定装置を提供するこ
とを課題とする。
The present invention has been made in view of the above circumstances, and it is possible to accurately measure the concentration of free residual chlorine and the concentration of combined residual chlorine in the concentration of residual chlorine, and to measure the concentration of monochloramine and dichloramine among the combined residual chlorine. It is an object of the present invention to provide a residual chlorine measuring device which can measure the residual chlorine separately.

【0017】[0017]

【課題を解決するための手段】本発明者らは、上記課題
を検討した結果、ポーラログラフ法であっても、特定の
条件を選択すれば、残留塩素の種類に応じて異なるポー
ラログラム(印加電圧と測定電流との関係)が得られる
ことを見いだし、以下の発明をなしたものである。な
お、印加電圧とは、対極を基準として検知極に印加する
電圧である。
Means for Solving the Problems As a result of studying the above problems, the present inventors have found that even if the polarographic method is used, if specific conditions are selected, different polarograms (applied voltage) may be used depending on the type of residual chlorine. And the measured current) are obtained, and the following invention has been made. Here, the applied voltage is a voltage applied to the detection electrode with reference to the counter electrode.

【0018】すなわち、請求項1に係る発明として、試
料液にハロゲンイオンを含む試薬を添加する試薬添加機
構と、金製の検知極と、白金製の対極と、検知極と対極
との間に、第1、第2及び第3の印加電圧を与える加電
圧機構とを具備し、試薬を添加した試料液を検知極表面
に対して相対的に流動させつつ、検知極と対極との間に
流れる酸化還元電流を測定する残留塩素測定装置であっ
て、第1の印加電圧が−0.2〜−0.4Vの範囲か
ら、第2の印加電圧が−0.4〜−0.6Vの範囲か
ら、第3の印加電圧が−0.7〜−1.0Vの範囲か
ら、各々選択されることを特徴とする残留塩素測定装置
を提供する。
That is, according to the first aspect of the present invention, there is provided a reagent addition mechanism for adding a reagent containing a halogen ion to a sample liquid, a gold detection electrode, a platinum counter electrode, and a detection electrode between the detection electrode and the counter electrode. And a voltage applying mechanism for applying the first, second, and third applied voltages, and the sample solution to which the reagent is added is caused to relatively flow with respect to the surface of the detection electrode, and between the detection electrode and the counter electrode. A residual chlorine measuring device for measuring a flowing oxidation-reduction current, wherein a first applied voltage ranges from -0.2 to -0.4 V and a second applied voltage ranges from -0.4 to -0.6 V. And a third applied voltage is selected from a range of -0.7 to -1.0 V, respectively.

【0019】本発明において測定される酸化還元電流
は、被還元物質が一定の厚さの拡散層と呼ばれる層の中
において、濃度勾配による自然拡散によってのみ検知極
表面に運ばれ、その表面で還元されるときに流れる拡散
電流である。被還元物質の濃度に応じた酸化還元電流
(拡散電流)を得るためには、拡散層が常に新しくなる
ようにすることが必要である。拡散層が常に新しくされ
ていれば、試料液液中の被還元物質はその濃度に応じて
検知極に供給される。拡散層は検知極に接する試料液を
検知極表面に対して相対的に流動させることにより常に
新しくすることができる。
The oxidation-reduction current measured in the present invention is such that the substance to be reduced is carried to the surface of the detection electrode only by spontaneous diffusion due to a concentration gradient in a layer called a diffusion layer having a constant thickness, and the reduction is performed on the surface. Is the diffusion current that flows when In order to obtain an oxidation-reduction current (diffusion current) corresponding to the concentration of the substance to be reduced, it is necessary to always make the diffusion layer new. If the diffusion layer is constantly refreshed, the substance to be reduced in the sample liquid is supplied to the detection electrode according to the concentration. The diffusion layer can always be refreshed by causing the sample liquid in contact with the sensing electrode to flow relatively to the sensing electrode surface.

【0020】検知極に接する試料液を検知極表面に対し
て相対的に流動させるためには、静止した試料液に対し
て検知極を回転又は振動させて動かすか、検知極は静止
したままで試料液を流すようにする。あるいは、検知極
を動かしつつ試料液も流すようにしてもよい。
In order to cause the sample liquid in contact with the detection electrode to flow relatively to the surface of the detection electrode, the detection electrode is moved by rotating or vibrating the stationary sample liquid, or the detection electrode is kept stationary. Let the sample flow. Alternatively, the sample liquid may be caused to flow while moving the detection electrode.

【0021】試料液の流れのみから相対的な流動を得る
場合、検出器を動かす機構が不要となるため、簡易な装
置を構成する上で適している。しかし、正確な測定を安
定して長期間連続するためには、検知極を回転又は振動
させることが望ましい。なぜなら、検知極は静止したま
まで試料液の流れを利用して測定する場合、試料液流速
によってポーラログラムが変化してしまうからである。
When a relative flow is obtained only from the flow of the sample liquid, a mechanism for moving the detector is not required, which is suitable for constructing a simple apparatus. However, it is desirable to rotate or vibrate the sensing electrode in order to stably perform accurate measurement for a long period of time. This is because when the measurement is performed using the flow of the sample liquid while the detection electrode is stationary, the polarogram changes depending on the flow rate of the sample liquid.

【0022】回転させて使用する検知極を回転電極、振
動させて使用する電極を振動電極と称するが、これら
は、試料液の通常の流速よりはるかに大きい線速度で回
転、振動する。このため、試料液流速と無関係に安定な
拡散層を形成することができ、試料液流速の変動による
測定値への影響を受けにくい。また、回転や振動を洗浄
ビーズの中で行うことにより、検知極への汚れの付着を
容易に防止することができる。
The detecting electrode used by rotating is called a rotating electrode, and the electrode used by vibrating is called a vibrating electrode. These electrodes rotate and vibrate at a linear velocity much larger than the normal flow rate of the sample liquid. For this reason, a stable diffusion layer can be formed irrespective of the sample liquid flow velocity, and the measurement value is less affected by fluctuations in the sample liquid flow velocity. Further, by performing the rotation and the vibration in the cleaning beads, it is possible to easily prevent the contamination of the detection electrode with dirt.

【0023】回転電極では、回転する検知極からリード
線を切断せずに引き出すために、水銀接点を使用する方
式、回転方向を交互に切り替えてリード線のねじれを防
ぐ方式等があるが、実公平7−4566号公報に示すよ
うに、検知極の支持体を回転させずにすりこぎ状に動か
すことによって検知極を円運動させる方式が望ましい。
振動電極については、外部のバイブレータで検知極を振
動させる方式(実公昭62−41240号公報参照)の
ものや、内蔵した電磁石を利用して振動させる方式(実
公平6−765号公報)等種々の方式のものが知られて
おり、本発明の装置における検知極としては、何れのも
のを採用してもよい。
For the rotating electrode, there are a method of using a mercury contact in order to draw out the lead wire from the rotating detection electrode without cutting, and a method of alternately switching the rotation direction to prevent twisting of the lead wire. As disclosed in Japanese Patent Publication No. Hei 7-4566, it is desirable to use a method in which the detection electrode is circularly moved by moving the support of the detection electrode in a peal shape without rotating.
As for the vibrating electrode, there are various methods such as a method of vibrating the detection electrode with an external vibrator (see Japanese Utility Model Publication No. 62-41240) and a method of using the built-in electromagnet to vibrate (Japanese Utility Model Publication No. 6-765). The known type is known, and any type may be adopted as the detection electrode in the device of the present invention.

【0024】本発明の装置では、試料液にハロゲンイオ
ンを含む試薬を添加するので、被還元物質となるのは、
試料液中の残留塩素または、残留塩素とハロゲンイオン
を含む試薬とが反応することにより得られる物質であ
る。本発明の装置では、残留塩素が、遊離残留塩素、モ
ノクロラミン、ジクロラミンの何れであるかによって、
異なるポーラログラムが得られる。これは、残留塩素の
種類毎に、本装置の条件下で被還元物質となる物質が異
なっているためと考えられる。
In the apparatus of the present invention, since a reagent containing a halogen ion is added to the sample solution, the substance to be reduced is
It is a substance obtained by reacting residual chlorine in a sample liquid or a reagent containing residual chlorine with a halogen ion. In the apparatus of the present invention, depending on whether the residual chlorine is free residual chlorine, monochloramine, or dichloramine,
Different polarograms are obtained. It is considered that this is because the substance to be reduced under the conditions of the present apparatus is different for each type of residual chlorine.

【0025】具体的には、−0.2〜−0.4Vの第1
の印加電圧で得られる電流は、概ね遊離残留塩素濃度の
関数となる。また、−0.4〜−0.6Vの第2の印加
電圧で得られる電流は、概ね遊離残留塩素濃度とモノク
ロラミン濃度の関数となる。また、−0.7〜−1.0
Vの第3の印加電圧で得られる電流は、遊離残留塩素濃
度、モノクロラミン濃度、及びジクロラミン濃度の関数
となる。このように、残留塩素の種類によって、異なる
ポーラログラムが得られるので、三種類の異なる印加電
圧における酸化還元電流値から、各々の濃度を演算が可
能となるものである。
Specifically, the first voltage of -0.2 to -0.4 V
Is approximately a function of the free residual chlorine concentration. Further, the current obtained at the second applied voltage of -0.4 to -0.6 V is substantially a function of the concentration of free residual chlorine and the concentration of monochloramine. Also, -0.7 to -1.0
The current obtained at the third applied voltage of V is a function of the free residual chlorine concentration, the monochloramine concentration and the dichloramine concentration. As described above, different polarograms can be obtained depending on the type of residual chlorine, so that the respective concentrations can be calculated from the oxidation-reduction current values at three different applied voltages.

【0026】また、請求項2に記載の如く、第1の印加
電圧を、−0.2〜−0.4Vの範囲から、第2の印加
電圧が、−0.4〜−0.5Vの範囲から、第3の印加
電圧が−0.7〜−0.9Vの範囲から各々選択される
ようにした場合、上記の関数関係は、より鮮明に得られ
る。
Further, as set forth in claim 2, the first applied voltage ranges from -0.2 to -0.4V and the second applied voltage ranges from -0.4 to -0.5V. When the third applied voltage is selected from the range from -0.7 to -0.9 V, the above functional relationship can be obtained more clearly.

【0027】本発明者らは、本発明の装置における被還
元物質が具体的にどのような化学種であるかの検証を未
だ行ってはいないが、次のように推定される。まず、残
留塩素が遊離残留塩素である場合、ハロゲンイオンと直
ちに反応してハロゲン分子を遊離するので、遊離残留塩
素に由来する被還元物質のほとんどがハロゲン分子であ
ると考えられる。一方、残留塩素がモノクロラミン、ジ
クロラミン等の結合残留塩素の場合には、遊離残留塩素
と比較してハロゲンイオンとの反応が進行しにくい。そ
のため、モノクロラミンやジクロラミンのほとんどは、
そのまま被還元物質となっているのではないかと考えら
れる。
The present inventors have not yet verified the specific chemical species of the substance to be reduced in the apparatus of the present invention, but it is presumed as follows. First, when the residual chlorine is free residual chlorine, it reacts immediately with a halogen ion to release a halogen molecule. Therefore, it is considered that most of the substance to be reduced derived from the free residual chlorine is a halogen molecule. On the other hand, when the residual chlorine is a combined residual chlorine such as monochloramine or dichloramine, the reaction with the halogen ions is less likely to proceed as compared with the free residual chlorine. Therefore, most of monochloramine and dichloramine,
It is considered that the substance is directly reduced.

【0028】本発明の装置では、結合残留塩素に由来し
て遊離したハロゲン分子が少ない程、上記関数関係がよ
り鮮明に得られる。つまり、結合残留塩素とハロゲンイ
オンとの反応はできるだけ進行しない条件が望ましい。
ただし、本発明の装置の条件は、結合残留塩素に由来す
るハロゲン分子が全く生じない条件に限定されるわけで
はない。なお、その場合は第1から第3の印加電圧にお
いて得られる電流と、各々の残留塩素との関数関係が複
雑になり、各残留塩素の濃度の演算が複雑になると共
に、誤差も大きくなると考えられる。この場合、少しで
も再現性のある測定結果を得るためには、測定条件をよ
り厳密に固定することが必要である。したがって、請求
項3から請求項5に記載の如く、結合残留塩素とハロゲ
ンイオンとの反応ができるだけ進行しない条件を選択す
ることが望ましい。
In the apparatus of the present invention, the smaller the number of halogen molecules released due to the residual chlorine residue, the more clearly the above functional relationship can be obtained. In other words, it is desirable that the reaction between the residual chlorine and the halogen ion does not proceed as much as possible.
However, the conditions of the apparatus of the present invention are not limited to conditions under which no halogen molecules derived from the residual chlorine residue are generated. In this case, it is considered that the functional relationship between the current obtained at the first to third applied voltages and each residual chlorine becomes complicated, the calculation of the concentration of each residual chlorine becomes complicated, and the error increases. Can be In this case, it is necessary to fix the measurement conditions more strictly in order to obtain a measurement result with a little reproducibility. Therefore, as described in claims 3 to 5, it is desirable to select conditions under which the reaction between the residual chlorine and halogen ions does not proceed as much as possible.

【0029】まず、請求項3に記載の如く、試薬に含ま
れるハロゲンイオンを臭化物イオンとすることが望まし
い。ハロゲンイオンとして、ヨウ化物イオンを選択する
ことも可能であるが、臭化物イオンの方が結合残留塩素
との反応が遅いからである。
First, it is desirable that the halogen ions contained in the reagent be bromide ions. It is also possible to select iodide ions as halogen ions, but bromide ions react more slowly with residual chlorine bound.

【0030】また、請求項4に記載の如く、試薬が、試
薬添加後における試料液のpHをpH4〜pH5の範囲
に調整するpH調整剤を含むことが望ましい。pHを比
較的高く調整することにより、臭化物イオン等のハロゲ
ンイオンと結合残留塩素との反応がより遅くできるから
である。
It is desirable that the reagent contains a pH adjuster for adjusting the pH of the sample solution after the addition of the reagent to a range of pH 4 to pH 5. This is because by adjusting the pH to a relatively high value, the reaction between halogen ions such as bromide ions and bound residual chlorine can be slowed down.

【0031】また、請求項5に記載の如く、試薬添加
後、3分以内に酸化還元電流の測定を行うことが望まし
い。反応時間が長くなりすぎると、臭化物イオン等のハ
ロゲンイオンと結合残留塩素との反応が進行してしまう
からである。なお、添加から測定までの時間の下限値に
特に限定はないが、試料液と試薬とが混合する時間は確
保する必要がある。
As described in claim 5, it is desirable to measure the oxidation-reduction current within 3 minutes after the addition of the reagent. This is because if the reaction time is too long, the reaction between halogen ions such as bromide ions and the residual chlorine bound proceeds. The lower limit of the time from the addition to the measurement is not particularly limited, but it is necessary to secure a time for mixing the sample solution and the reagent.

【0032】また、請求項6に係る発明として、第1、
第2及び第3の印加電圧における酸化還元電流値から、
ジクロラミンの濃度を演算する演算機構を備えることを
特徴とする請求項1から請求項5のいずれかに記載の残
留塩素測定装置を提供する。これにより、従来最も困難
であったジクロラミン濃度を得ることができる。しか
も、それを自動で行うことができる。
Further, the invention according to claim 6 includes:
From the oxidation-reduction current values at the second and third applied voltages,
An apparatus for measuring residual chlorine according to any one of claims 1 to 5, further comprising an operation mechanism for calculating the concentration of dichloramine. This makes it possible to obtain a dichloramine concentration which has been conventionally the most difficult. Moreover, it can be performed automatically.

【0033】また、請求項7に係る発明として、第2及
び第3の印加電圧における酸化還元電流値から、ジクロ
ラミンの濃度を演算する演算機構を備えることを特徴と
する請求項1から請求項5のいずれかに記載の残留塩素
測定装置を提供する。ジクロラミンが存在する条件下で
は、通常遊離残留塩素がほとんど存在しないことが経験
上明らかなので、かかる事実を踏まえれば、2つの異な
る印加電圧における電流値だけで、近似的にジクロラミ
ン濃度が求められるものである。
According to a seventh aspect of the present invention, there is provided an arithmetic mechanism for calculating a concentration of dichloramine from an oxidation-reduction current value at the second and third applied voltages. The present invention provides a residual chlorine measuring device according to any one of the above. It is clear from experience that under normal conditions where dichloramine is present, there is almost no free residual chlorine.Based on this fact, the dichloramine concentration can be approximately determined only by the current value at two different applied voltages. is there.

【0034】請求項1から請求項7のいずれかに記載の
残留塩素測定装置によって得られた測定値に基づき、殺
菌対象水への塩素剤注入量を調整する残留塩素濃度の制
御を行えば、そのときに存在する残留塩素濃度を種類別
に正確に測定できるので、水道法施行規則で規定される
必要な残留塩素濃度が確保されるように的確に制御でき
る。また、結合残留塩素、特にジクロラミンの濃度を測
定できるので、塩素剤注入後の残留塩素濃度変化につい
ても予測可能となり、注入量の最適化ができる。
When the residual chlorine concentration is adjusted based on the measured value obtained by the residual chlorine measuring device according to any one of claims 1 to 7, the amount of the chlorine agent injected into the water to be sterilized is adjusted. Since the residual chlorine concentration present at that time can be accurately measured for each type, it is possible to accurately control the required residual chlorine concentration prescribed in the Water Supply Law enforcement regulations. In addition, since the concentration of bound residual chlorine, particularly dichloramine, can be measured, it is possible to predict the change in residual chlorine concentration after the injection of the chlorinating agent, and to optimize the injection amount.

【0035】[0035]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。図1は本発明の1実施形態である残留塩
素測定装置を示すもので、試料液は、試料液流入路1に
介装されたポンプ2により、試薬は、試薬流入路3に介
装されたポンプ4により、各々流入して、混合コイル5
が介装された合流路6に流入するようになっている。そ
して、合流路6で混合された試料液と試薬とは、検出部
7に導入された後、排出路8から排出されるようになっ
ている。また、9は、検出部7を制御すると共に、測定
値の演算を行う演算制御装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a residual chlorine measuring apparatus according to one embodiment of the present invention, in which a sample liquid is interposed in a reagent inflow path 3 by a pump 2 interposed in a sample liquid inflow path 1. Mixing coil 5
Flows into the intervening merging channel 6. Then, the sample liquid and the reagent mixed in the joining channel 6 are introduced into the detecting section 7 and then discharged from the discharge path 8. Reference numeral 9 denotes an arithmetic and control unit that controls the detection unit 7 and calculates a measured value.

【0036】試薬は、臭化カリウム、ヨウ化カリウム等
のハロゲン化物と、pH調整剤を含んでいる。上水等の
試料液への添加を容易にするため、粉末ではなく、溶液
として供給されるようになっている。試料液と試薬は、
合流後数秒から数10秒で検出部7に導入されるように
なっている。
The reagent contains a halide such as potassium bromide or potassium iodide, and a pH adjuster. In order to facilitate the addition of tap water to a sample solution, the solution is supplied as a solution instead of a powder. Sample solution and reagents
It is designed to be introduced into the detection unit 7 several seconds to several tens of seconds after the merging.

【0037】図2は、上記検出部7の構成を示すもの
で、11はフローセル、12はフローセル11に導入さ
れた試薬混合後の試料液、13は下部が試料液12に浸
漬された円柱形の検知極支持体、14は検知極支持体1
3の先端面に取り付けられた検知極、15は下部が試料
液12に浸漬された円柱形の対極支持体、16は対極支
持体15の外周面に取り付けられた対極、17は検知極
回転用モータ、18は可変の加電圧回路、19は電流計
を示す。なお、試料液12中には検知極洗浄用のガラス
ビーズ(図示せず)が投入されている。
FIG. 2 shows the structure of the detection unit 7. Reference numeral 11 denotes a flow cell, reference numeral 12 denotes a sample liquid mixed with a reagent introduced into the flow cell 11, and reference numeral 13 denotes a columnar part whose lower part is immersed in the sample liquid 12. , The detection electrode support 14;
Reference numeral 3 is a detection electrode attached to the tip surface, 15 is a cylindrical counter electrode support whose lower part is immersed in the sample solution 12, 16 is a counter electrode attached to the outer peripheral surface of the counter electrode support 15, and 17 is a rotation of the detection electrode. The motor, 18 is a variable applied voltage circuit, and 19 is an ammeter. The sample solution 12 contains glass beads (not shown) for cleaning the detection electrode.

【0038】検知極14は、前述の実公平7−4566
号公報に記載の方式で円運動するようになっている。す
なわち、検知極支持体13は傾斜状態に配置されてお
り、その長さ方向中間部所定箇所が軸受け23によって
保持されている。また、検知極支持体13の基端部24
とモータ17の回転軸25は偏心して係合しており、モ
ータ17の回転軸25を回転させることにより基端部2
4が軸受け23による保持箇所を支点として円運動する
ようになっている。そして、この基端部24の円運動に
伴って、検知極支持体13の先端部に取り付けられた検
知極14も円運動するようになっている。また、検知極
14と電流計19との間を接続するリード線26は、検
知極支持体3内を通って軸受け23による保持箇所近傍
から、検知極4を円運動させても、ねじれたりせずに引
き出せるようになっている。
The detection pole 14 is the same as the above-mentioned actual fair 7-4566.
No. 4, pp. 147-64, 1991. The circular motion is performed according to the method described in Japanese Unexamined Patent Publication (Kokai) No. H10-209686. That is, the sensing electrode support 13 is arranged in an inclined state, and a predetermined portion in the lengthwise middle portion is held by the bearing 23. Further, the base end portion 24 of the detection electrode support 13
The rotation shaft 25 of the motor 17 is eccentrically engaged with the rotation shaft 25 of the motor 17.
Numeral 4 is adapted to make a circular motion with the holding point of the bearing 23 as a fulcrum. Then, with the circular movement of the base end 24, the detection pole 14 attached to the distal end of the detection pole support 13 also makes a circular movement. Further, the lead wire 26 connecting between the detection electrode 14 and the ammeter 19 is twisted even when the detection electrode 4 is moved circularly from the vicinity of the holding position of the bearing 23 through the inside of the detection electrode support 3. It can be pulled out without.

【0039】本実施形態の検知極14は金製であり、対
極16は白金製である。また、加電圧回路18は、演算
制御装置9の制御を受けて、第1の印加電圧(−0.2
〜−0.4Vの範囲から選択される電圧)と、第2の印
加電圧(−0.4〜−0.6V、望ましくは−0.4〜
−0.5Vの範囲から選択される電圧)と、第3の印加
電圧(−0.7〜−1.0V、望ましくは−0.7〜−
0.9Vの範囲から選択される電圧)とを1秒程度の間
隔で切り替えられるようになっている。
In the present embodiment, the detection electrode 14 is made of gold, and the counter electrode 16 is made of platinum. In addition, the applied voltage circuit 18 receives the first applied voltage (−0.2
And a second applied voltage (-0.4 V to -0.6 V, preferably -0.4 V to -0.4 V).
And a third applied voltage (-0.7 V to -1.0 V, preferably -0.7 V to -0.7 V).
(A voltage selected from the range of 0.9 V) can be switched at intervals of about 1 second.

【0040】本実施形態の残留塩素測定装置を用いて試
料液の残留塩素濃度を測定する場合、試料液と試薬は、
合流路6で混合された後に検出部7に導入される。試料
液中の遊離残留塩素は試薬中のハロゲンイオンと瞬時に
反応するので、検出部に試料液が導入される時点で、ほ
ぼ完全にハロゲン分子に置き換わっている。一方、結合
残留塩素は、ほとんどハロゲンイオンと反応せずに、あ
るいは、一部のみ反応した状態で検出部7に導入され
る。
When measuring the residual chlorine concentration of the sample liquid using the residual chlorine measuring apparatus of this embodiment, the sample liquid and the reagent
After being mixed in the merging channel 6, it is introduced into the detection unit 7. Since the free residual chlorine in the sample solution reacts instantaneously with the halogen ions in the reagent, it is almost completely replaced by halogen molecules when the sample solution is introduced into the detection section. On the other hand, the bound residual chlorine is introduced into the detection section 7 with little or no reaction with the halogen ions.

【0041】検出部7では、モータ17の作動によって
検知極支持体13を軸受け23を支点として円運動さ
せ、これにより検知極14を円運動させる。そして、加
電圧回路18によって検知極14と対極16との間に測
定電圧を印加し、このとき検知極14と対極16との間
に流れる測定電流を電流計19で検出する。
In the detecting section 7, the operation of the motor 17 causes the detection pole support 13 to make a circular motion about the bearing 23, thereby causing the detection pole 14 to make a circular motion. Then, a measurement voltage is applied between the detection electrode 14 and the counter electrode 16 by the applied voltage circuit 18, and a measurement current flowing between the detection electrode 14 and the counter electrode 16 at this time is detected by the ammeter 19.

【0042】このとき、加電圧回路18による印加電圧
は、時系列的に第1から第3の印加電圧に切り替えられ
る。そして、各々の印加電圧における電流値が電流計1
9によって測定され、それらの値を用いて、演算制御装
置9によって、遊離残留塩素、モノクロラミン、ジクロ
ラミンの濃度が演算される。
At this time, the applied voltage by the applied voltage circuit 18 is switched in time series from the first to the third applied voltage. Then, the current value at each applied voltage is
9 and using these values, the arithmetic and control unit 9 calculates the concentrations of free residual chlorine, monochloramine and dichloramine.

【0043】本実施形態では、試薬の添加機構として、
検出部に導入する前に合流させる方式としたので、検出
部7における試料液の置き換わりが良く、残留塩素とい
う不安定な成分を正確に測定することができる。なお、
検出部7に試薬液を直接添加しても差し支えないが、こ
の場合、混合に必要な時間が経過したと判断される時間
以降に電流の測定値を取り込むことが必要である。
In this embodiment, the mechanism for adding the reagent is as follows.
Since the system is combined before being introduced into the detection unit, the replacement of the sample liquid in the detection unit 7 is good, and an unstable component called residual chlorine can be accurately measured. In addition,
The reagent solution may be directly added to the detection unit 7, but in this case, it is necessary to take in the measured current value after the time when it is determined that the time required for mixing has elapsed.

【0044】なお、本実施形態では、一つの加電圧回路
を時系列的に切り替えて3種類の印加電圧を得るように
したが、各々単一の印加電圧を与える複数の加電圧回路
に、複数組の検知極と対極とを各々接続して、三種類の
印加電圧における電流値を同時に得られるようにしても
よい。また、検知極を回転電極としたが、振動電極や静
止電極(試料液の流速を利用する電極)としてもよい。
In this embodiment, one applied voltage circuit is switched in time series to obtain three kinds of applied voltages. However, a plurality of applied voltage circuits each providing a single applied voltage are provided with a plurality of applied voltages. A pair of detection electrodes and counter electrodes may be connected to each other so that current values at three types of applied voltages can be obtained simultaneously. Further, although the detection electrode is a rotating electrode, it may be a vibrating electrode or a stationary electrode (an electrode utilizing the flow rate of the sample liquid).

【0045】[0045]

【実施例】図3は、図1の残留塩素測定装置を用いて残
留塩素の種類別に、測定電圧(対極を基準として検知極
に印加する電圧)と測定電流との関係を示すポーラログ
ラムを調べたものである。ただし、加電圧回路18とし
ては、電圧を連続的に変化させられるものを用い、掃引
速度は100mV/分で電圧を掃印した。検知極として
は、直径2mmの金電極を用い、線速度で30〜50c
m/sが得られる程度の回転を与えた。対極は、上述の
ように白金電極である。
FIG. 3 shows a polarogram showing the relationship between the measured voltage (voltage applied to the detection electrode with reference to the counter electrode) and the measured current for each type of residual chlorine using the residual chlorine measuring apparatus shown in FIG. It is a thing. However, a circuit capable of continuously changing the voltage was used as the applied voltage circuit 18, and the voltage was swept at a sweep speed of 100 mV / min. As the detection electrode, a gold electrode having a diameter of 2 mm is used and the linear velocity is 30 to 50 c.
The rotation was given such that m / s was obtained. The counter electrode is a platinum electrode as described above.

【0046】試料液としては、残留塩素のほとんどが遊
離残留塩素である試料αと、残留塩素のほとんどがモノ
クロラミンである試料βと、残留塩素のほとんどがジク
ロラミンである試料γと、残留塩素をほとんど含まない
試料δを用意した。試薬としては、臭化カリウム30g
と、pH調整剤としての酢酸ナトリウム10g及び酢酸
10mLとを純水で1Lとしたものを使用した。試料液
の流量は50mL/min、試薬の流量は約1.1mL
/minとし、合流後約30秒で検出部7に導入される
ようにした。
As sample liquids, a sample α in which most of residual chlorine is free residual chlorine, a sample β in which most of residual chlorine is monochloramine, a sample γ in which most of residual chlorine is dichloramine, and A sample δ containing almost no sample was prepared. As a reagent, potassium bromide 30 g
And 10 g of sodium acetate as a pH adjuster and 10 mL of acetic acid were adjusted to 1 L with pure water. The flow rate of the sample solution is 50 mL / min, and the flow rate of the reagent is about 1.1 mL
/ Min, and introduced into the detection unit 7 about 30 seconds after the merging.

【0047】各々の試料液における各成分の濃度の参照
値は、米国のStandard Methodsに準じて、以下に示す手
分析法で求めた。まず、DPD(ジエチル−p−フェニ
レンジアミン)溶液試薬1mL及び緩衝液(0.2mo
l/L KH2PO4 300mLと、0.2mol/
L NaOH 106mLとを混合し、1,2シクロヘ
キサンジアミン4酢酸0.39gを溶解したもの)1m
Lを25mL共栓付比色管に入れた。そして、ここに試
料液20mLを加えて552nmの吸光度を測定した。
この値から、遊離残留塩素濃度を得た。
The reference value of the concentration of each component in each sample solution was determined by the following manual analysis method according to the United States Standard Methods. First, 1 mL of a DPD (diethyl-p-phenylenediamine) solution reagent and a buffer (0.2 mol)
1 / L KH2PO4 300mL, 0.2mol /
L NaOH 106 mL, and 1,9 cyclohexanediaminetetraacetic acid 0.39 g was dissolved) 1 m
L was placed in a 25 mL colorimetric tube with a stopper. Then, 20 mL of the sample solution was added thereto, and the absorbance at 552 nm was measured.
From this value, the free residual chlorine concentration was obtained.

【0048】次に、遊離残留塩素測定後の試料液に、
0.1%ヨウ化カリウム溶液を0.1mL加え、直ちに
552nmの吸光度を測定した。この値から、遊離残留
塩素濃度とモノクロラミン濃度との合計を求めた。さら
に、遊離残留塩素濃度とモノクロラミン濃度の合計値測
定後の試料に、ヨウ化カリウムの結晶0.2gを加え、
溶解した後5分放置してから552nmの吸光度を測定
した。この値から、遊離残留塩素、モノクロラミン、ジ
クロラミンの各濃度の合計を求めた。その結果、試料液
α、β、γ、δの各々について、表1に示す手分析値が
得られた。
Next, the sample liquid after the measurement of free residual chlorine is
0.1 mL of a 0.1% potassium iodide solution was added, and the absorbance at 552 nm was measured immediately. From this value, the sum of the free residual chlorine concentration and the monochloramine concentration was determined. Further, 0.2 g of potassium iodide crystal was added to the sample after measuring the total value of the free residual chlorine concentration and the monochloramine concentration,
After dissolution, the mixture was allowed to stand for 5 minutes, and the absorbance at 552 nm was measured. From these values, the total of the concentrations of free residual chlorine, monochloramine, and dichloramine was determined. As a result, the hand analysis values shown in Table 1 were obtained for each of the sample liquids α, β, γ, and δ.

【0049】[0049]

【表1】 [Table 1]

【0050】図3に示すように、試料液α、β、γ、δ
の各々について、異なるポーラログラムが得られた。ま
ず、ほとんどが遊離残留塩素である試料αでは、−0.
2〜−1.0Vにおいて、プラトー流域(印加電圧が若
干ずれても、電流がほとんど変化しない領域)が得られ
た。また、ほとんどがモノクロラミンである試料βで
は、−0.4〜−0.6V(特に−0.4〜−0.5
V)、及び−0.7〜−1.0V(特に−0.7〜−
0.9V)において、プラトー領域が得られた。また、
ほとんどがジクロラミンである試料γでは、−0.7〜
−1.0Vにおいて、プラトー領域が得られた。また、
残留塩素をほとんど含まない試料δでは、−1.0V以
下の電流が無視できる程度だった。
As shown in FIG. 3, the sample liquids α, β, γ, δ
, Different polarograms were obtained. First, in sample α, which is mostly free residual chlorine, −0.0.
At 2 to -1.0 V, a plateau flow region (a region where the current hardly changes even if the applied voltage is slightly shifted) was obtained. In the sample β, which is mostly monochloramine, −0.4 to −0.6 V (particularly −0.4 to −0.5 V).
V), and -0.7 to -1.0 V (particularly -0.7 to-
At 0.9 V), a plateau region was obtained. Also,
In sample γ, which is mostly dichloramine, -0.7 to
At -1.0 V, a plateau region was obtained. Also,
In sample δ containing almost no residual chlorine, the current of −1.0 V or less was negligible.

【0051】なお、各々のポーラログラムは、印加電圧
を掃印して得ているため、印加電圧を固定した場合より
も電流の立ち上がりが若干早くなっている。したがっ
て、−0.2〜−0.4Vにおける試料βの電流値、−
0.4〜−0.6Vにおける試料γの電流値、−0.9
〜−1.0Vにおける試料δの電流値は、掃印せずに固
定した印加電圧を与えた場合には、より小さくなり、測
定上ほとんど問題とならないものである。
Since each polarogram is obtained by sweeping the applied voltage, the current rises slightly earlier than when the applied voltage is fixed. Therefore, the current value of the sample β at −0.2 to −0.4 V, −
Current value of sample γ at 0.4 to −0.6 V, −0.9
The current value of the sample δ at -1.0 V is smaller when a fixed applied voltage is applied without sweeping, and there is almost no problem in measurement.

【0052】以上のことから、第1の領域(−0.2〜
−0.4V)の領域電流は、概ね遊離残留塩素濃度の関
数となる。また、第2の印加電圧(−0.4〜−0.6
V望ましくは−0.4〜−0.5V)で得られる電流
は、概ね遊離残留塩素濃度とモノクロラミン濃度の関数
となる。また、第3の印加電圧(−0.7〜−1.0V
望ましくは−0.7〜−0.9V)で得られる電流は、
遊離残留塩素濃度、モノクロラミン濃度、及びジクロラ
ミン濃度の関数となる。
From the above, the first region (−0.2 to
The area current of -0.4 V) is approximately a function of the free residual chlorine concentration. In addition, the second applied voltage (−0.4 to −0.6)
V (preferably -0.4 to -0.5 V) is approximately a function of the free residual chlorine concentration and the monochloramine concentration. In addition, the third applied voltage (−0.7 to −1.0 V)
Desirably, the current obtained at -0.7 to -0.9 V) is
It is a function of the concentration of free residual chlorine, monochloramine and dichloramine.

【0053】したがって、三種類の異なる印加電圧にお
ける酸化還元電流値から、遊離残留塩素濃度、モノクロ
ラミン濃度、及びジクロラミンの濃度各々演算すること
が可能となるものである。なお、結合残留塩素が存在す
る条件では、通常遊離残留塩素はほとんど存在しないの
で、モノクロラミンの濃度は、近似的に第2の印加電圧
における電流だけから得ることができる。また、ジクロ
ラミンの濃度は、近似的に第2の印加電圧における電流
と第3の印加電圧における電流とだけから得ることがで
きる。
Therefore, it is possible to calculate the concentration of free residual chlorine, the concentration of monochloramine, and the concentration of dichloramine from the oxidation-reduction current values at three different applied voltages. It should be noted that, under the condition where bound residual chlorine is present, since almost no free residual chlorine is present, the concentration of monochloramine can be approximately obtained only from the current at the second applied voltage. Further, the concentration of dichloramine can be approximately obtained only from the current at the second applied voltage and the current at the third applied voltage.

【0054】図4から図6は、第1、第2、第3の印加
電圧をとびとびにとるように、約1分毎に印加電圧を切
り替えた他は、図3と同一の条件で種々の試料液を測定
した結果である。なお、第1の印加電圧としては−0.
3V、第2の印加電圧としては−0.6V、第3の印加
電圧としては−0.8Vを各々選択した。各々横軸は、
上述の米国のStandard Methodsに準じた手分析値、縦軸
は、電極出力として得られた酸化還元電流値である。
FIG. 4 to FIG. 6 show various conditions under the same conditions as FIG. 3 except that the applied voltage is switched about every one minute so that the first, second, and third applied voltages are discrete. It is the result of measuring the sample liquid. Note that the first applied voltage is -0.0.
3 V, -0.6 V as the second applied voltage, and -0.8 V as the third applied voltage. Each horizontal axis is
The hand analysis value according to the above-mentioned US Standard Methods, and the vertical axis is the oxidation-reduction current value obtained as the electrode output.

【0055】この内、図4は、遊離残留塩素濃度と、第
1の印加電圧(−0.3V)における電極出力との関係
を示すグラフである。y=0.492x−0.018
8,R2=0.9747という非常に良い相関関係が得
られた。また、図5は、モノクロラミン濃度と、第2の
印加電圧(−0.6V)における電極出力との関係を示
すグラフである。y=0.3692x+0.251,R
2=0.9337という非常に良い相関関係が得られ
た。また、図6は、ジクロラミン濃度と、第3の印加電
圧(−0.8V)における電極出力から第2の印加電圧
(−0.6V)における電極出力を差し引いた値との関
係を示すグラフである。y=0.3368x+0.34
21,R2=0.9211という非常に良い相関関係が
得られた。
FIG. 4 is a graph showing the relationship between the free residual chlorine concentration and the electrode output at the first applied voltage (-0.3 V). y = 0.492x-0.018
A very good correlation of 8, R2 = 0.9747 was obtained. FIG. 5 is a graph showing the relationship between the monochloramine concentration and the electrode output at the second applied voltage (-0.6 V). y = 0.3692x + 0.251, R
A very good correlation of 2 = 0.9337 was obtained. FIG. 6 is a graph showing the relationship between dichloramine concentration and a value obtained by subtracting the electrode output at the second applied voltage (-0.6 V) from the electrode output at the third applied voltage (-0.8 V). is there. y = 0.368x + 0.34
A very good correlation of 21, R2 = 0.9211 was obtained.

【0056】図4から図6の結果より、三種類の残留塩
素が三種類の印加電圧における酸化還元電流値から正確
に求められるばかりでなく、遊離残留塩素は第1の印加
電圧における電流値から、モノクロラミンは第2の印加
電圧における電流値から、ジクロラミンは第3における
電流値と第2の印加電圧における電流値との差から、各
々簡便に演算できることも確認された。
From the results of FIG. 4 to FIG. 6, not only three kinds of residual chlorine can be accurately obtained from the oxidation-reduction current values at three kinds of applied voltages, but also free residual chlorine can be obtained from the current value at the first applied voltage. It was also confirmed that monochloramine could be easily calculated from the current value at the second applied voltage, and dichloramine could be easily calculated from the difference between the current value at the third and the current value at the second applied voltage.

【0057】[0057]

【発明の効果】本発明の残留塩素測定装置によれば、残
留塩素濃度に占める遊離残留塩素と結合残留塩素の濃度
を各々精度良く測定できると共に、結合残留塩素の内、
モノクロラミンとジクロラミンの濃度とを区別して測定
することができる。また、各々の濃度は近似的に簡便な
演算で求められる。また、本発明の残留塩素測定装置を
用いれば、上水の塩素処理等において、残留塩素濃度を
適切に制御することができ、充分な殺菌力を確保しつ
つ、過剰な塩素剤の投入を防ぐことができる。
According to the apparatus for measuring residual chlorine of the present invention, the concentration of free residual chlorine and the concentration of combined residual chlorine in the concentration of residual chlorine can be accurately measured, respectively.
Monochloramine and dichloramine concentration can be measured separately. In addition, each concentration can be obtained by an approximately simple calculation. Further, by using the residual chlorine measuring device of the present invention, in chlorination of clean water and the like, it is possible to appropriately control the residual chlorine concentration, and to prevent the injection of an excessive chlorine agent while securing a sufficient sterilizing power. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】 図1の検出部7を示す構成図である。FIG. 2 is a configuration diagram illustrating a detection unit 7 of FIG.

【図3】 本発明の一実施例における測定電圧と測定電
流との関係を示すポーラログラムである。
FIG. 3 is a polarogram showing a relationship between a measured voltage and a measured current in one embodiment of the present invention.

【図4】 本発明の他の実施例における遊離残留塩素濃
度と電極出力との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the concentration of free residual chlorine and the output of an electrode in another example of the present invention.

【図5】 本発明の他の実施例におけるモノクロラミン
濃度と電極出力との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between monochloramine concentration and electrode output in another example of the present invention.

【図6】 本発明の他の実施例におけるジクロラミン濃
度と電極出力との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between dichloramine concentration and electrode output in another example of the present invention.

【図7】 注入塩素量と全残留塩素濃度との関係を示す
グラフである。
FIG. 7 is a graph showing the relationship between the amount of injected chlorine and the concentration of total residual chlorine.

【符号の説明】[Explanation of symbols]

1 試料流入路 2,4 ポンプ 3 試薬流入路 5 混合コイル 6 合流路 7 検出部 8 排出路 9 演算制御装置 14 検知極 16 対極 18 加電圧回路 19 電流計 DESCRIPTION OF SYMBOLS 1 Sample inflow path 2, 4 Pump 3 Reagent inflow path 5 Mixing coil 6 Merging path 7 Detector 8 Discharge path 9 Arithmetic controller 14 Detecting pole 16 Counter electrode 18 Applied voltage circuit 19 Ammeter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 試料液にハロゲンイオンを含む試薬を添
加する試薬添加機構と、金製の検知極と、白金製の対極
と、検知極と対極との間に、第1、第2及び第3の印加
電圧を与える加電圧機構とを具備し、試薬を添加した試
料液を検知極表面に対して相対的に流動させつつ、検知
極と対極との間に流れる酸化還元電流を測定する残留塩
素測定装置であって、第1の印加電圧が−0.2〜−
0.4Vの範囲から、第2の印加電圧が−0.4〜−
0.6Vの範囲から、第3の印加電圧が−0.7〜−
1.0Vの範囲から、各々選択されることを特徴とする
残留塩素測定装置。
1. A reagent addition mechanism for adding a reagent containing a halogen ion to a sample liquid, a gold detection electrode, a platinum counter electrode, and first, second, and third electrodes between the detection electrode and the counter electrode. A voltage applying mechanism for applying an applied voltage of 3 to measure the oxidation-reduction current flowing between the detection electrode and the counter electrode while causing the sample liquid to which the reagent is added to flow relatively to the detection electrode surface. A chlorine measuring apparatus, wherein the first applied voltage is -0.2 to-
From the range of 0.4 V, the second applied voltage is -0.4 to-
From the range of 0.6 V, the third applied voltage is -0.7 to-
An apparatus for measuring residual chlorine, which is selected from a range of 1.0 V.
【請求項2】 試料液にハロゲンイオンを含む試薬を添
加する試薬添加機構と、金製の検知極と、白金製の対極
と、検知極と対極との間に、第1、第2及び第3の印加
電圧を与える加電圧機構とを具備し、試薬を添加した試
料液を検知極表面に対して相対的に流動させつつ、検知
極と対極との間に流れる酸化還元電流を測定する残留塩
素測定装置であって、第1の印加電圧が−0.2〜−
0.4Vの範囲から、第2の印加電圧が−0.4〜−
0.5Vの範囲から、第3の印加電圧が−0.7〜−
0.9Vの範囲から、各々選択されることを特徴とする
残留塩素測定装置。
2. A reagent addition mechanism for adding a reagent containing a halogen ion to a sample solution, a gold detection electrode, a platinum counter electrode, and first, second, and third electrodes between the detection electrode and the counter electrode. A voltage applying mechanism for applying an applied voltage of 3 to measure the oxidation-reduction current flowing between the detection electrode and the counter electrode while causing the sample liquid to which the reagent is added to flow relatively to the surface of the detection electrode. A chlorine measuring apparatus, wherein the first applied voltage is -0.2 to-
From the range of 0.4 V, the second applied voltage is -0.4 to-
From the range of 0.5 V, the third applied voltage is -0.7 to-
An apparatus for measuring residual chlorine, which is selected from a range of 0.9 V.
【請求項3】 試薬に含まれるハロゲンイオンが、臭化
物イオンであることを特徴とする請求項1又は請求項2
に記載の残留塩素測定装置。
3. The method according to claim 1, wherein the halogen ions contained in the reagent are bromide ions.
The residual chlorine measuring device according to 1.
【請求項4】 試薬が、試薬添加後における試料液のp
HをpH4〜pH5の範囲に調整するpH調整剤を含む
ことを特徴とする請求項1から請求項3のいずれかに記
載の残留塩素測定装置。
4. The method according to claim 1, wherein the reagent is p
The residual chlorine measuring device according to any one of claims 1 to 3, further comprising a pH adjuster for adjusting H to a range of pH 4 to pH 5.
【請求項5】 試薬添加後、3分以内に酸化還元電流の
測定を行うことを特徴とする請求項1から請求項4のい
ずれかに記載の残留塩素測定装置。
5. The residual chlorine measuring device according to claim 1, wherein the measurement of the oxidation-reduction current is performed within 3 minutes after the addition of the reagent.
【請求項6】 第1、第2及び第3の印加電圧における
酸化還元電流値から、ジクロラミンの濃度を演算する演
算機構を備えることを特徴とする請求項1から請求項5
のいずれかに記載の残留塩素測定装置。
6. The apparatus according to claim 1, further comprising an arithmetic mechanism for calculating a concentration of dichloramine from an oxidation-reduction current value at the first, second, and third applied voltages.
The residual chlorine measuring device according to any one of the above.
【請求項7】 第2及び第3の印加電圧における酸化還
元電流値から、ジクロラミンの濃度を演算する演算機構
を備えることを特徴とする請求項1から請求項5のいず
れかに記載の残留塩素測定装置。
7. The residual chlorine according to claim 1, further comprising an arithmetic mechanism for calculating the concentration of dichloramine from the oxidation-reduction current value at the second and third applied voltages. measuring device.
JP2000169614A 2000-06-06 2000-06-06 Residual chlorine measuring device Expired - Fee Related JP4463382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169614A JP4463382B2 (en) 2000-06-06 2000-06-06 Residual chlorine measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169614A JP4463382B2 (en) 2000-06-06 2000-06-06 Residual chlorine measuring device

Publications (2)

Publication Number Publication Date
JP2001349866A true JP2001349866A (en) 2001-12-21
JP4463382B2 JP4463382B2 (en) 2010-05-19

Family

ID=18672450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169614A Expired - Fee Related JP4463382B2 (en) 2000-06-06 2000-06-06 Residual chlorine measuring device

Country Status (1)

Country Link
JP (1) JP4463382B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244614B1 (en) * 2010-12-08 2013-03-25 서울특별시 A method of measuring ammonium nitrogen in solution
JP2018124130A (en) * 2017-01-31 2018-08-09 東亜ディーケーケー株式会社 Device and method for measuring residual chlorine
JP2020003382A (en) * 2018-06-29 2020-01-09 東亜ディーケーケー株式会社 Total effective chlorine measurement device, method for correction of the same, and method for measuring total effective chlorine
JP2020060371A (en) * 2018-10-04 2020-04-16 東亜ディーケーケー株式会社 Reagent-less residual chlorine measuring device and reagent-less residual chlorine measuring method
JP2020060372A (en) * 2018-10-04 2020-04-16 東亜ディーケーケー株式会社 Calibration method of residual chlorine measuring device
US20220065814A1 (en) * 2020-09-03 2022-03-03 Yokogawa Electric Corporation Measuring device
US20220065813A1 (en) * 2020-09-03 2022-03-03 Yokogawa Electric Corporation Measuring device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244614B1 (en) * 2010-12-08 2013-03-25 서울특별시 A method of measuring ammonium nitrogen in solution
JP2018124130A (en) * 2017-01-31 2018-08-09 東亜ディーケーケー株式会社 Device and method for measuring residual chlorine
JP2020003382A (en) * 2018-06-29 2020-01-09 東亜ディーケーケー株式会社 Total effective chlorine measurement device, method for correction of the same, and method for measuring total effective chlorine
JP7093005B2 (en) 2018-06-29 2022-06-29 東亜ディーケーケー株式会社 Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP2020060372A (en) * 2018-10-04 2020-04-16 東亜ディーケーケー株式会社 Calibration method of residual chlorine measuring device
JP2020060371A (en) * 2018-10-04 2020-04-16 東亜ディーケーケー株式会社 Reagent-less residual chlorine measuring device and reagent-less residual chlorine measuring method
JP7231814B2 (en) 2018-10-04 2023-03-02 東亜ディーケーケー株式会社 Calibration method of residual chlorine measuring device
JP7177341B2 (en) 2018-10-04 2022-11-24 東亜ディーケーケー株式会社 Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
CN114137054A (en) * 2020-09-03 2022-03-04 横河电机株式会社 Measuring device
EP3964827A1 (en) * 2020-09-03 2022-03-09 Yokogawa Electric Corporation Measuring device comprising a rotating working electrode
JP2022042875A (en) * 2020-09-03 2022-03-15 横河電機株式会社 Measurement device
JP2022042873A (en) * 2020-09-03 2022-03-15 横河電機株式会社 Measurement device
US20220065814A1 (en) * 2020-09-03 2022-03-03 Yokogawa Electric Corporation Measuring device
CN114137037A (en) * 2020-09-03 2022-03-04 横河电机株式会社 Measuring device
US20220065813A1 (en) * 2020-09-03 2022-03-03 Yokogawa Electric Corporation Measuring device
JP7302555B2 (en) 2020-09-03 2023-07-04 横河電機株式会社 measuring device
JP7302556B2 (en) 2020-09-03 2023-07-04 横河電機株式会社 measuring device
US11940408B2 (en) * 2020-09-03 2024-03-26 Yokogawa Electric Corporation Measuring device
US11946899B2 (en) 2020-09-03 2024-04-02 Yokogawa Electric Corporation Measuring device

Also Published As

Publication number Publication date
JP4463382B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
WO2009055093A1 (en) Electrochemical methods for selective detection of free chlorine, monochloramine and dichloramine
JP4463382B2 (en) Residual chlorine measuring device
WO2015020188A1 (en) Residual-chlorine measurement device, and residual-chlorine measurement method
JP6372302B2 (en) Free residual chlorine measuring device
Hara et al. Buffer composition suitable for determining very low fluoride concentrations using a fluoride ion-selective electrode and its application to the continuous analysis of rain water
JP4894004B2 (en) Urea concentration measuring method and urea concentration measuring device
JP7231814B2 (en) Calibration method of residual chlorine measuring device
JP3390154B2 (en) Residual chlorine meter and water purification device using it
JP2022114416A (en) Electrochemical measurement device and electrochemical measurement method
JP7177341B2 (en) Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
JP3469962B2 (en) Free chlorine measuring device
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP3702125B2 (en) Equipment for measuring residual chlorine in sewage treated water
JP3533573B1 (en) Automatic chlorine concentration measuring device and chlorine concentration measuring method
EP3472597B1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
JP2022131955A (en) Measuring method for hexamethylenetetramine, measuring method for substances to which water purification treatment is difficult to be applied, and measuring device
JP2006242629A (en) Discriminated potentiometric titration device of hydrogen peroxide and acetyl hydroperoxide
JP3838435B2 (en) Hypochlorous acid concentration measuring device
JP2017015669A (en) Residual chlorine measurement method and residual chlorine measurement device
JPS6156465B2 (en)
JP4013647B2 (en) Ammonia meter
JP2004144662A (en) Apparatus and method for measuring oxidation-reduction current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees