JP2020003382A - Total effective chlorine measurement device, method for correction of the same, and method for measuring total effective chlorine - Google Patents

Total effective chlorine measurement device, method for correction of the same, and method for measuring total effective chlorine Download PDF

Info

Publication number
JP2020003382A
JP2020003382A JP2018124176A JP2018124176A JP2020003382A JP 2020003382 A JP2020003382 A JP 2020003382A JP 2018124176 A JP2018124176 A JP 2018124176A JP 2018124176 A JP2018124176 A JP 2018124176A JP 2020003382 A JP2020003382 A JP 2020003382A
Authority
JP
Japan
Prior art keywords
total available
available chlorine
chlorine
sample liquid
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018124176A
Other languages
Japanese (ja)
Other versions
JP7093005B2 (en
Inventor
美由貴 浦田
Miyuki Urata
美由貴 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2018124176A priority Critical patent/JP7093005B2/en
Publication of JP2020003382A publication Critical patent/JP2020003382A/en
Application granted granted Critical
Publication of JP7093005B2 publication Critical patent/JP7093005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

To provide a total effective chlorine measurement device, a method for correction of the device, and a method for measuring the total effective chlorine which can determine the total effective concentration of chlorine by a two-electrode polarographic method and also can determine an accurate total effective concentration of chlorine including hypobromous acid even in such a sample liquid containing bromine as sea water or a boiler cooling water.SOLUTION: A applied voltage selected from the 750±250-mV range is applied between a metal detection electrode 13 immersed in a sample liquid S and a counter electrode 15 made of platinum, an oxidation-reduction current flowing in the detection electrode and the counter electrode is measured, and the total effective concentration of chlorine in the sample liquid is determined from the obtained oxidation-reduction current.SELECTED DRAWING: Figure 1

Description

本発明は全有効塩素測定装置とその校正方法および全有効塩素測定方法に関する。さらに詳しくは、無試薬式で海水等の臭素を含む試料液の全有効塩素濃度も評価可能な全有効塩素測定装置とその校正方法および全有効塩素測定方法に関する。   The present invention relates to a total available chlorine measuring device, a calibration method thereof, and a total available chlorine measuring method. More specifically, the present invention relates to a total available chlorine measuring apparatus capable of evaluating the total available chlorine concentration of a sample solution containing bromine such as seawater in a reagentless manner, a calibration method thereof, and a total available chlorine measuring method.

全有効塩素濃度とは、殺菌効力のあるハロゲン系薬剤全体の濃度である。具体的には、ヨウ化カリウムを反応させた際に遊離するヨウ素の量に対応するハロゲン量(通常は塩素量)で表される。
全有効塩素には、遊離塩素(次亜塩素酸または次亜塩素酸イオン)、クロラミンなどの結合塩素が含まれる。
海水等の臭素を含む水に次亜塩素酸ナトリウムを加えると、臭素との反応で、次亜臭素酸が生成し、さらには、海水中のアンモニア性窒素と反応し、ブロモアミン類(結合臭素)が生成していると考えられる。この次亜臭素酸、ブロモアミン類なども、ヨウ化カリウムを反応させるとヨウ素を遊離させるので、全有効塩素に含まれる。
The total available chlorine concentration is the concentration of the entire germicidal halogen-based drug. Specifically, it is represented by the amount of halogen (usually the amount of chlorine) corresponding to the amount of iodine released when potassium iodide is reacted.
Total available chlorine includes bound chlorine such as free chlorine (hypochlorous acid or hypochlorite ion) and chloramine.
When sodium hypochlorite is added to water containing bromine such as seawater, hypobromite is generated by a reaction with bromine, and further reacts with ammonia nitrogen in seawater to form bromoamines (bound bromine). Is generated. The hypobromite, bromoamines, and the like are also included in the total available chlorine because they react with potassium iodide to release iodine.

塩素濃度の連続測定には、従来酸化還元電流を測定するポーラログラフ法が用いられている。ポーラログラフ法による塩素濃度の測定装置としては、試薬の添加を必要とする有試薬式と、試薬を用いない無試薬式の装置が存在する。
無試薬式の装置は、保守作業や保守費用の負担が小さいというメリットがあるが、無試薬式で精度良く安定して塩素濃度を測定できる測定対象は、上水等特定の試料液に限られているのが現状である(特許文献1)。
特に海水またはボイラー冷却水等の臭素を含む水の場合、無試薬式ポーラログラフ法で、精度良く安定して塩素濃度測定することはできなかった。
For continuous measurement of chlorine concentration, a polarographic method for measuring an oxidation-reduction current has been conventionally used. As the apparatus for measuring the chlorine concentration by the polarographic method, there are a reagent type apparatus which requires addition of a reagent and a non-reagent type apparatus which does not use a reagent.
Reagent-free equipment has the advantage of less maintenance work and maintenance costs, but the reagent-free, stable and accurate measurement of chlorine concentration is limited to specific sample liquids such as clean water. This is the current situation (Patent Document 1).
Particularly, in the case of seawater or water containing bromine such as boiler cooling water, the chlorine concentration cannot be measured accurately and stably by the reagentless polarographic method.

特許第3469962号公報Japanese Patent No. 3469962

本発明は、上記事情に鑑み、試薬を用いることなく、二電極式ポーラログラフ法により全有効塩素濃度を求めることができ、かつ海水やボイラー冷却水のように臭素を含む試料液における、次亜臭素酸なども含む全有効塩素濃度を、精度良く安定して測定できる全有効塩素測定装置とその校正方法および全有効塩素測定方法を提供することを課題とする。   In view of the above circumstances, the present invention can determine the total available chlorine concentration by a two-electrode polarographic method without using a reagent, and in a sample solution containing bromine such as seawater or boiler cooling water, hypobromite. An object of the present invention is to provide a total available chlorine measuring device capable of accurately and stably measuring the total available chlorine concentration including an acid and the like, a calibration method thereof, and a total available chlorine measuring method.

上記の課題を達成するために、本発明は以下の構成を採用した。
[1]二電極式ポーラログラフ法による全有効塩素測定装置であって、
試料液に浸漬される金製の検知極、及び白金製の対極と、
前記検知極と対極との間に、750±250mVの範囲から選択される印加電圧を与える加電圧機構と、
前記加電圧機構が前記印加電圧を与えた際に前記検知極と対極との間に流れる酸化還元電流を測定する電流計とを具備することを特徴とする全有効塩素測定装置。
[2]さらに、演算制御部を備え、該演算制御部は、前記電流計が測定した酸化還元電流に基づき、前記試料液の全有効塩素濃度を求める[1]に記載の全有効塩素測定装置。
[3][2]に記載の全有効塩素測定装置を校正する校正方法であって、塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である校正液を用いることを特徴とする校正方法。
[4]試料液に浸漬した金製の検知極と白金製の対極との間に750±250mVの範囲から選択される印加電圧を与え、該検知極と対極との間に流れる酸化還元電流を測定し、得られた酸化還元電流から前記試料液の全有効塩素濃度を求めることを特徴とする全有効塩素測定方法。
[5]塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である校正液に浸漬した前記検知極と前記対極との間に、前記選択された印加電圧を与え、該検知極と対極との間に流れる酸化還元電流を測定し、得られた酸化還元電流と前記校正液の全有効塩素濃度との対応に基づく検量線を求め、
前記試料液を測定した際の酸化還元電流から、前記検量線を用いて前記試料液の全有効塩素濃度を求める、[4]に記載の全有効塩素測定方法。
[6]前記試料液が臭素を含む、[4]または[5]に記載の全有効塩素測定方法。
In order to achieve the above object, the present invention employs the following configurations.
[1] An apparatus for measuring total available chlorine by a two-electrode polarographic method,
A gold detection electrode immersed in the sample liquid, and a platinum counter electrode,
An applying voltage mechanism for applying an applied voltage selected from a range of 750 ± 250 mV between the detection electrode and the counter electrode;
An ammeter for measuring an oxidation-reduction current flowing between the detection electrode and the counter electrode when the applied voltage mechanism applies the applied voltage.
[2] The total available chlorine measuring apparatus according to [1], further including an arithmetic control unit, wherein the arithmetic control unit obtains a total available chlorine concentration of the sample liquid based on the oxidation-reduction current measured by the ammeter. .
[3] A calibration method for calibrating the total available chlorine measuring apparatus according to [2], wherein a calibration solution containing no halogen other than chlorine and having an electric conductivity of 4 mS / m or more is used. Calibration method.
[4] An applied voltage selected from the range of 750 ± 250 mV is applied between the gold detection electrode immersed in the sample solution and the platinum counter electrode, and an oxidation-reduction current flowing between the detection electrode and the counter electrode is applied. Measuring the total available chlorine concentration of the sample solution from the measured oxidation-reduction current.
[5] The selected applied voltage is applied between the detection electrode and the counter electrode immersed in a calibration solution containing no halogen other than chlorine and having an electric conductivity of 4 mS / m or more, and The oxidation-reduction current flowing between the counter electrode is measured, and a calibration curve based on the correspondence between the obtained oxidation-reduction current and the total available chlorine concentration of the calibration solution is obtained.
The method for measuring total available chlorine according to [4], wherein the total available chlorine concentration of the sample liquid is obtained from the oxidation-reduction current when measuring the sample liquid using the calibration curve.
[6] The method for measuring total available chlorine according to [4] or [5], wherein the sample liquid contains bromine.

本発明の全有効塩素測定装置とその校正方法および全有効塩素測定方法によれば、試薬を用いることなく、二電極式ポーラログラフ法により全有効塩素濃度を求めることができ、かつ海水やボイラー冷却水等の臭素を含む試料液であっても、次亜臭素酸なども含む全有効塩素濃度を、精度良く安定して測定できる。しかも、低濃度の全有効塩素の測定にも対応できる。   According to the total available chlorine measuring apparatus, the calibration method thereof, and the total available chlorine measuring method of the present invention, the total available chlorine concentration can be obtained by a two-electrode polarographic method without using a reagent, and seawater or boiler cooling water can be obtained. Even with a sample liquid containing bromine, the total available chlorine concentration including hypobromous acid and the like can be accurately and stably measured. In addition, it can be used to measure low-concentration total available chlorine.

本発明の第1実施形態に係る全有効塩素測定装置の全体構成図である。FIG. 1 is an overall configuration diagram of a total available chlorine measuring device according to a first embodiment of the present invention. 本発明の第2実施形態に係る全有効塩素測定装置におけるセンサ部の断面図である。It is a sectional view of a sensor part in a total available chlorine measuring device concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る全有効塩素測定装置の全体構成図である。It is a whole block diagram of a total available chlorine measuring device according to a third embodiment of the present invention. 本発明の第4実施形態に係る全有効塩素測定装置におけるセンサ部の断面図である。It is a sectional view of a sensor part in a total available chlorine measuring device concerning a 4th embodiment of the present invention. 本発明の実験例1で得られた検量線である。4 is a calibration curve obtained in Experimental Example 1 of the present invention. 本発明の実験例2で得られた海水に塩素を添加した場合のポーラログラムである。9 is a polarogram when chlorine is added to seawater obtained in Experimental Example 2 of the present invention. 本発明の実験例2で得られた脱塩素水に塩素を添加した場合のポーラログラムである。9 is a polarogram when chlorine is added to the dechlorinated water obtained in Experimental Example 2 of the present invention. 本発明の実験例3で得られた試料液A〜Cのポーラログラムである。9 is a polarogram of sample liquids A to C obtained in Experimental Example 3 of the present invention. 本発明の実験例4で得られた検量線である。4 is a calibration curve obtained in Experimental Example 4 of the present invention. 本発明の実験例4の全有効塩素濃度の測定結果である。It is a measurement result of the total available chlorine concentration of Experimental example 4 of the present invention. 本発明の実験例5の塩素を添加した海水を連続測定した結果である。It is the result of having measured the seawater which added chlorine of Experimental example 5 of this invention continuously. 本発明の実験例6の低濃度の塩素を添加した海水を測定した結果である。It is the result of having measured the seawater to which the low concentration chlorine of Experimental example 6 of this invention was added.

<第1実施形態>
[装置構成]
本発明の第1実施形態に係る二電極式ポーラログラフ法による全有効塩素測定装置について図1を用いて説明する。本実施形態の全有効塩素測定装置は、センサ部1と本体部20とから概略構成されている。
<First embodiment>
[Device configuration]
An apparatus for measuring total available chlorine by a two-electrode polarographic method according to the first embodiment of the present invention will be described with reference to FIG. The total available chlorine measuring apparatus according to the present embodiment is schematically configured by a sensor unit 1 and a main body unit 20.

センサ部1は、試料液Sが導入される測定セル11、下部が試料液Sに浸漬される検知極支持体12、検知極支持体12の先端面に取り付けられた検知極13、下部が試料液Sに浸漬された対極支持体14、対極支持体14の下端側外周面に取り付けられた対極15、検知極13を円運動状に振動させるためのモーター16、検知極支持体12を保持する軸受け17、試料液S中に投入された検知極13洗浄用の多数のビーズ18を有している。なお、測定セル11には、検知極13と対極15との間を仕切るメッシュ状の仕切り板11aが設けられており、ビーズ18が、対極15側に流出しないようになっている。   The sensor unit 1 includes a measurement cell 11 into which the sample liquid S is introduced, a detection electrode support 12 whose lower part is immersed in the sample liquid S, a detection electrode 13 attached to the distal end surface of the detection electrode support 12, and a lower part of the sample. The counter electrode support 14 immersed in the liquid S, the counter electrode 15 attached to the outer peripheral surface on the lower end side of the counter electrode support 14, the motor 16 for vibrating the detection electrode 13 in a circular motion, and the detection electrode support 12 are held. The bearing 17 has a large number of beads 18 for cleaning the detection electrode 13 put in the sample liquid S. The measurement cell 11 is provided with a mesh-shaped partition plate 11a for partitioning between the detection electrode 13 and the counter electrode 15 so that the beads 18 do not flow out to the counter electrode 15 side.

本体部20は、演算制御部21、加電圧機構22、電流計23、表示装置24を有している。検知極13と演算制御部21との間は配線L1で、対極15と演算制御部21との間は配線L2で、モーター16と演算制御部21との間は配線L3で各々接続されている。電流計23は配線L1の途中に、加電圧機構22は配線L2の途中に、各々設けられている。   The main body 20 has an arithmetic control unit 21, an applied voltage mechanism 22, an ammeter 23, and a display device 24. The line L1 is connected between the detection electrode 13 and the arithmetic control unit 21, the line L2 is connected between the counter electrode 15 and the arithmetic control unit 21, and the line L3 is connected between the motor 16 and the arithmetic control unit 21. . The ammeter 23 is provided in the middle of the wiring L1, and the applied voltage mechanism 22 is provided in the middle of the wiring L2.

検知極13は金製である。また、対極15は白金製である。
検知極支持体12は傾斜状態に配置されており、その長さ方向中間部所定箇所が軸受け17によって保持され、軸受け17による保持箇所を支点として歳差運動できるようになっている。また、検知極支持体12の基端部12aとモーター16の回転軸16aは偏心して係合している。そのため、モーター16の回転軸16aを回転させることにより基端部12aが円運動すると共に、検知極支持体12の先端部に取り付けられた検知極13も振動(円運動)するようになっている。また、配線L1は、検知極支持体12内を通って軸受け17による保持箇所近傍から、検知極13を円運動させても、ねじれたりせずに引き出せるようになっている。
The detection pole 13 is made of gold. The counter electrode 15 is made of platinum.
The sensing pole support 12 is arranged in an inclined state, and a predetermined portion in the middle in the longitudinal direction is held by the bearing 17, and the precession can be performed with the holding location of the bearing 17 as a fulcrum. The base end 12a of the detection pole support 12 and the rotating shaft 16a of the motor 16 are eccentrically engaged. Therefore, by rotating the rotation shaft 16 a of the motor 16, the base end portion 12 a circularly moves, and the detection pole 13 attached to the distal end of the detection pole support 12 also vibrates (circularly moves). . Also, the wiring L1 can be pulled out from the vicinity of the holding position of the bearing 17 through the inside of the detection electrode support 12 without twisting even if the detection electrode 13 is made to circularly move.

ビーズ18は、検知極13の近傍に非固定状態で多数配置されている。ビーズ18は、振動(円運動)する検知極13に接触して、検知極13を研磨するようになっている。ビーズ18の材質としては、セラミックまたはガラスが好ましい。   A large number of beads 18 are arranged near the detection electrode 13 in a non-fixed state. The beads 18 come into contact with the vibrating (circular motion) detection pole 13 to polish the detection pole 13. The material of the beads 18 is preferably ceramic or glass.

検知極13および対極15は、汚れ成分の組成に応じた薬液を用いて洗浄することかできる。例えば、シュウ酸、塩酸、過酸化水素水などを使用した薬液洗浄を行うことができる。また、オゾン洗浄を行ってもよい。また、薬液洗浄等に代えて、若しくは薬液洗浄等と共に、ブラシ洗浄等の物理洗浄を施してもよい。
また、検知極13の清浄を保つため、ビーズ18による機械的研磨に加えて、電解研磨を行うことが好ましい。電解研磨は、検知極と対極との間に測定時とは逆向きに電流が流れるようになっていればよく、適宜周知の方法を採用することができる。
本実施形態の全有効塩素測定装置は、対極15や検知極13の洗浄を行うための自動洗浄機構を備えていてもよい。その場合、定期的な洗浄を自動的に行うことができる。
The detection electrode 13 and the counter electrode 15 can be washed using a chemical solution according to the composition of the dirt component. For example, chemical cleaning using oxalic acid, hydrochloric acid, aqueous hydrogen peroxide, or the like can be performed. Further, ozone cleaning may be performed. Physical cleaning such as brush cleaning may be performed instead of, or in addition to, chemical cleaning.
Further, in order to keep the detection electrode 13 clean, it is preferable to perform electrolytic polishing in addition to mechanical polishing using the beads 18. In the electropolishing, it is sufficient that a current flows between the detection electrode and the counter electrode in a direction opposite to that in the measurement, and a well-known method can be appropriately employed.
The total available chlorine measuring device of the present embodiment may include an automatic cleaning mechanism for cleaning the counter electrode 15 and the detection electrode 13. In that case, periodic cleaning can be performed automatically.

[全有効塩素の測定]
本実施形態の全有効塩素測定装置は、加電圧機構22が、検知極13と対極15との間に印加電圧を与えるようになっている。印加電圧は、750±250mVの範囲から選択され、600〜900mVの範囲から選択されることが好ましく、700〜800mVの範囲から選択されることがより好ましい。
印加電圧が750mV付近であれば、試料液が海水を含むか否かにかかわらず、また、通常の海水の全有効塩素濃度の測定範囲においてプラトー領域が得られるので、塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である水道水等の校正液を用いて、海水または海水を含む試料液の全有効塩素濃度を測定するための検量線を作成できる。
また、全有効塩素が塩素であるか臭素であるかの違いによらず、また、pHの相違によらず、同一の検量線を使用することができる。
[Measurement of total available chlorine]
In the total available chlorine measuring apparatus of the present embodiment, the voltage applying mechanism 22 applies an applied voltage between the detection electrode 13 and the counter electrode 15. The applied voltage is selected from the range of 750 ± 250 mV, preferably from the range of 600 to 900 mV, and more preferably from the range of 700 to 800 mV.
If the applied voltage is around 750 mV, regardless of whether the sample solution contains seawater or not, and since a plateau region can be obtained in the measurement range of the total available chlorine concentration of normal seawater, it does not contain halogens other than chlorine. Using a calibration liquid such as tap water having an electric conductivity of 4 mS / m or more, a calibration curve for measuring the total available chlorine concentration of seawater or a sample liquid containing seawater can be created.
In addition, the same calibration curve can be used regardless of whether the total available chlorine is chlorine or bromine and regardless of the pH.

印加電圧は、全有効塩素濃度の測定範囲に応じて、750±250mVの範囲から適切に選択することが好ましい。
具体的には、測定範囲が2mg/L以下の場合は、700±200mVの範囲から選択することが好ましく、700±100mVの範囲から選択することがより好ましく、700±50mVの範囲から選択することがさらに好ましい。
測定範囲が2mg/L以上の場合は、800±200mVの範囲から選択することが好ましく、800±100mVの範囲から選択することがより好ましく、800±50mVの範囲から選択することがさらに好ましい。
It is preferable that the applied voltage is appropriately selected from the range of 750 ± 250 mV according to the measurement range of the total available chlorine concentration.
Specifically, when the measurement range is 2 mg / L or less, it is preferable to select from the range of 700 ± 200 mV, more preferably to select from the range of 700 ± 100 mV, and to select from the range of 700 ± 50 mV. Is more preferred.
When the measurement range is 2 mg / L or more, it is preferable to select from the range of 800 ± 200 mV, more preferably from the range of 800 ± 100 mV, and even more preferably from the range of 800 ± 50 mV.

また、電流計23は、加電圧機構22が検知極13と対極15との間に上記印加電圧を与えた際に検知極と対極との間に流れる酸化還元電流を、測定するようになっている。
測定対象となる試料液Sに特に限定はないが、本発明は、試料液Sが臭素(臭素イオンまたは臭素酸)を含む海水である場合や、ボイラー冷却水等の海水を含む場合に特に好適に適用できる。
Also, the ammeter 23 measures an oxidation-reduction current flowing between the detection electrode and the counter electrode when the applied voltage mechanism 22 applies the applied voltage between the detection electrode 13 and the counter electrode 15. I have.
Although the sample liquid S to be measured is not particularly limited, the present invention is particularly suitable when the sample liquid S is seawater containing bromine (bromine ion or bromate) or when it contains seawater such as boiler cooling water. Applicable to

本発明の全有効塩素測定方法では、本発明の全有効塩素測定装置で得られた酸化還元電流から演算制御部21が全有効塩素濃度を求める。求められた全有効塩素濃度は、信号D1として表示装置24に与えられ、表示装置24に全有効塩素濃度が表示される。また、全有効塩素濃度の値は、信号D2として、外部の記録計、データロガー、メモリ、プリンター、コンピュータ等に伝達される。なお、信号D2は、デジタル信号でもアナログ信号でもよい。また、有線で伝達されてもよいし、無線で伝達されてもよい。
演算制御部21によって酸化還元電流から全有効塩素濃度を求めるためには、予め校正液を用いて求めた酸化還元電流と全有効塩素濃度との相関関係を示す検量線を用いて演算する。校正液と当該校正液を用いた校正方法については後述する。
In the total available chlorine measuring method of the present invention, the arithmetic and control unit 21 obtains the total available chlorine concentration from the oxidation-reduction current obtained by the total available chlorine measuring device of the present invention. The obtained total available chlorine concentration is given to the display device 24 as a signal D1, and the total available chlorine concentration is displayed on the display device 24. The value of the total available chlorine concentration is transmitted as a signal D2 to an external recorder, data logger, memory, printer, computer, or the like. Note that the signal D2 may be a digital signal or an analog signal. Further, the information may be transmitted by wire or wirelessly.
In order to obtain the total available chlorine concentration from the oxidation-reduction current by the arithmetic and control unit 21, the calculation is performed using a calibration curve indicating a correlation between the oxidation-reduction current and the total available chlorine concentration previously obtained using a calibration liquid. The calibration solution and a calibration method using the calibration solution will be described later.

また、演算制御部21は、電流計23からの電流値を、外部コンピュータに信号D2として出力してもよい。その場合、当該外部コンピュータにおいて、酸化還元電流から全有効塩素濃度を求める演算を行えば、本発明の全有効塩素測定方法を実施することができる。
また、演算制御部21は、電流計23からの電流値を、信号D1として表示装置24に出力してもよい。その場合、操作者が表示装置24らか読み取った電流値と予め求めた検量線に基づき、酸化還元電流から全有効塩素濃度を求めれば、本発明の全有効塩素測定方法を実施することができる。
Further, the arithmetic and control unit 21 may output the current value from the ammeter 23 to the external computer as the signal D2. In this case, if the external computer performs an operation for calculating the total available chlorine concentration from the oxidation-reduction current, the total available chlorine measuring method of the present invention can be implemented.
Further, the arithmetic and control unit 21 may output the current value from the ammeter 23 to the display device 24 as the signal D1. In this case, if the operator obtains the total available chlorine concentration from the oxidation-reduction current based on the current value read from the display device 24 and the previously obtained calibration curve, the total available chlorine measuring method of the present invention can be performed. .

演算に用いる酸化還元電流については、温度補正することが好ましい。そのため、本発明の全有効塩素測定装置は、温度センサを備えることが好ましい。試料液温度が充分に一定に保たれている場合や、要求される測定精度が低い場合は、温度補正は省略してもよい。
温度補正とは、酸化還元電流測定の温度依存性を考慮して、基準温度(例えば25℃)における酸化還元電流に換算することを意味する。基準温度が25℃の場合、具体的には以下の式(1)により温度補正を行う。
I(V)25=I(V)t /(1+(α×(t−25)/100)) ・・・(1)
t:測定時の試料液温度(℃)
I(V)t :試料液温度t℃において得られた電圧Vにおける酸化還元電流値
I(V)25:基準温度25℃で温度補正された電圧Vにおける酸化還元電流値
α:1℃当りの電極出力変化量(%)
The temperature of the oxidation-reduction current used in the calculation is preferably corrected. Therefore, the total available chlorine measuring device of the present invention preferably includes a temperature sensor. When the temperature of the sample liquid is kept sufficiently constant or when the required measurement accuracy is low, the temperature correction may be omitted.
The temperature correction means conversion to an oxidation-reduction current at a reference temperature (for example, 25 ° C.) in consideration of the temperature dependence of the measurement of the oxidation-reduction current. When the reference temperature is 25 ° C., specifically, the temperature is corrected by the following equation (1).
I (V) 25 = I (V) t / (1+ (α × (t−25) / 100)) (1)
t: Sample liquid temperature during measurement (° C)
I (V) t : Redox current value at voltage V obtained at sample liquid temperature t ° C. I (V) 25 : Redox current value at voltage V corrected at reference temperature 25 ° C. α: per 1 ° C. Electrode output change (%)

[校正]
本発明の全有効塩素測定装置を校正する校正方法では、塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である校正液を用いる。
試料液が臭素を含む海水等である場合、校正液も海水等に既知濃度の塩素を添加したものを使用すべきとの考え方も存在する。
しかし、本発明者は、海水は種々の成分を含み、かつその組成も絶えず変化するため、校正値に与える影響が予測できず、海水をベースとする校正液を用いることは好ましくないと考えた。そして、本発明の全有効塩素測定装置で、脱塩素水、およびこの脱塩素水に既知濃度の塩素を添加した液、または水道水を校正液として用いることを試みたところ、精度良く安定して測定できる校正が可能であることを見いだした。
[Proofreading]
In the calibration method for calibrating the total available chlorine measuring device of the present invention, a calibration solution containing no halogen other than chlorine and having an electric conductivity of 4 mS / m or more is used.
When the sample liquid is seawater or the like containing bromine, there is an idea that a calibration liquid to which a known concentration of chlorine is added to seawater or the like should be used.
However, the present inventor considered that seawater contains various components, and since its composition also constantly changes, the effect on the calibration value cannot be predicted, and it was considered unfavorable to use a calibration solution based on seawater. . Then, in the total available chlorine measuring apparatus of the present invention, dechlorinated water, and a solution obtained by adding a known concentration of chlorine to this dechlorinated water, or tried to use tap water as a calibration liquid, stably with high accuracy It has been found that calibration that can be measured is possible.

本発明の校正に用いる校正液は、ポーラログラフ法に必要な適度な電気伝導率を有する。具体的には、4mS/m以上であり、4〜5000mS/mであることが好ましい。脱塩素水も純水ではなく、ハロゲンは含まないものの、適度な電気伝導率を与えるイオン成分を含む液である。
水道水は、通常塩素を含み、また、適度な電気伝導率(通常4〜40mS/m)を有するので、そのまま本発明における校正液として使用することができる。また、水道水から塩素を除去すれば脱塩素水とすることができる。水道水は入手が容易であって、これをそのまま校正液として用いることは簡便であり好ましい。
本発明に用いる校正液は、既知濃度の塩素を含む原液を脱塩素水で希釈することによっても調製できる。
The calibration liquid used for the calibration of the present invention has an appropriate electric conductivity required for the polarographic method. Specifically, it is 4 mS / m or more, and preferably 4 to 5000 mS / m. The dechlorinated water is not pure water, and is a liquid containing an ionic component that does not contain halogen but gives an appropriate electric conductivity.
Since tap water usually contains chlorine and has an appropriate electric conductivity (usually 4 to 40 mS / m), it can be used as it is as a calibration solution in the present invention. Further, if chlorine is removed from tap water, dechlorinated water can be obtained. Tap water is easily available, and it is convenient and preferable to use it as it is as a calibration solution.
The calibration solution used in the present invention can also be prepared by diluting a stock solution containing a known concentration of chlorine with dechlorinated water.

上記校正液を用いた校正は、具体的には、校正液に浸漬した前記検知極と前記対極との間に、750±250mVの範囲で選択された印加電圧(試料液を測定する際と同じ印加電圧)を与え、該検知極と対極との間に流れる酸化還元電流を測定する。演算制御部21または演算制御部21からの情報を受けた外部コンピュータは、得られた酸化還元電流と前記校正液の全有効塩素濃度との対応に基づき検量線を求める。
求めた検量線は、演算制御部21または演算制御部21からの情報を受けた外部コンピュータに記憶され、試料液を測定した際の酸化還元電流から試料液の全有効塩素濃度を求める際に使用される。
Specifically, the calibration using the calibration solution is performed by applying an applied voltage selected in the range of 750 ± 250 mV (the same as when measuring the sample solution) between the detection electrode immersed in the calibration solution and the counter electrode. And a redox current flowing between the detection electrode and the counter electrode is measured. The arithmetic control unit 21 or the external computer receiving the information from the arithmetic control unit 21 obtains a calibration curve based on the obtained redox current and the total available chlorine concentration of the calibration liquid.
The obtained calibration curve is stored in the arithmetic control unit 21 or an external computer which receives information from the arithmetic control unit 21 and is used when calculating the total available chlorine concentration of the sample solution from the oxidation-reduction current when the sample solution is measured. Is done.

検量線は、塩素濃度の異なる2種以上の校正液を用いることによって求めることができる。例えば脱塩素水とスパン液(既知濃度の塩素を含む原液を、測定装置の測定範囲を考慮した希釈率で脱塩素水により希釈した液、または水道水)を校正液として検量線を求めることができる。
一旦検量線を作成した後は、定期的に実試料液を用いてスパン校正をすれば、精度の高い検量線が維持できる。
The calibration curve can be obtained by using two or more kinds of calibration solutions having different chlorine concentrations. For example, a calibration curve can be obtained using dechlorinated water and a span solution (a stock solution containing a known concentration of chlorine diluted with dechlorinated water at a dilution rate that takes into account the measurement range of a measuring device, or tap water) as a calibration solution. it can.
Once a calibration curve has been created, a highly accurate calibration curve can be maintained by periodically performing span calibration using the actual sample solution.

<第2実施形態>
[装置構成]
本発明の第2実施形態に係る二電極式ポーラログラフ法による全有効塩素測定装置は、図1のセンサ部1が、図2に示すセンサ部2に変更された他は、第1実施形態と同じである。
<Second embodiment>
[Device configuration]
The total available chlorine measuring apparatus by the two-electrode polarographic method according to the second embodiment of the present invention is the same as the first embodiment except that the sensor unit 1 in FIG. 1 is changed to the sensor unit 2 shown in FIG. It is.

図2はセンサ部2の断面図である。図2に示すセンサ部2は、略円筒状のケース31が設けられ、このケース31の一方の開口部には、中心部に軸方向に沿った貫通孔32aが穿設されている支持基体32が固着されている。この支持基体32の軸方向略中央部には、上下一対の円形の窓32b、32bが、一方の周面から対向する周面に貫通するように、軸方向と直交して穿設されている。また、その先端近くには凹部32cが周方向に形成され、かつ、その凹部32cの全面にわたって対極33が巻き付けられている。   FIG. 2 is a sectional view of the sensor unit 2. The sensor unit 2 shown in FIG. 2 is provided with a substantially cylindrical case 31, and a support base 32 having a through hole 32 a formed in one opening of the case 31 in the center along the axial direction. Is fixed. A pair of upper and lower circular windows 32b, 32b are formed in a substantially central portion of the support base 32 in the axial direction so as to penetrate from one peripheral surface to the opposing peripheral surface at right angles to the axial direction. . A recess 32c is formed in the circumferential direction near the tip, and a counter electrode 33 is wound around the entire surface of the recess 32c.

また、この対極33の下方には、支持基体32の先端を覆うようにしてメッシュからなるキャップ34が螺合している。また、キャップ34内には後述する検知極35を研磨・洗浄するためのビーズ36が多数収納されている。そして、窓32bを内側から覆う位置に内網37が設けられ、ビーズ36の流出を防ぐようになっている。   A mesh cap 34 is screwed below the counter electrode 33 so as to cover the tip of the support base 32. Further, a large number of beads 36 for polishing and cleaning a detection electrode 35 described later are accommodated in the cap 34. An inner net 37 is provided at a position covering the window 32b from the inside to prevent the beads 36 from flowing out.

ケース31の内部にはモーター38が取付けられており、モーター38の回転軸38aには、偏心カップリング41の上方側に固定されている。偏心カップリング41は、カップリングケース42に保持されており、カップリングケース42は、複数本の支柱43で支持基体32の上方に保持されている。
偏心カップリング41の下方側には、略棒状の連結軸44が連結されている。回転軸38aと連結軸44とが作る角度は約3度に設定され、モーター38の駆動により、連結軸44のカップリングケース42に連結している部位が円運動を行うようになっている。
A motor 38 is mounted inside the case 31, and is fixed to a rotation shaft 38 a of the motor 38 above the eccentric coupling 41. The eccentric coupling 41 is held by a coupling case 42, and the coupling case 42 is held above the support base 32 by a plurality of columns 43.
A substantially rod-shaped connection shaft 44 is connected to a lower side of the eccentric coupling 41. The angle formed between the rotation shaft 38a and the connection shaft 44 is set to about 3 degrees, and the portion of the connection shaft 44 connected to the coupling case 42 makes a circular motion by driving the motor 38.

連結軸44の軸方向中央よりやや下側は、軸受け45に挿入されている。軸受け45は、連結軸44方向に円筒状の筒部45aと、この筒部45aの下端側周囲において半径方向に広がったフランジ部45bとからなり、ゴム材で形成されている。筒部45aは連結軸44に高い圧力をもって水密な状態で密着している。また、軸受け45は、その外周面が支持基体32の内周面に水密に接している。   The connection shaft 44 is inserted into the bearing 45 slightly below the axial center. The bearing 45 is composed of a cylindrical portion 45a having a cylindrical shape in the direction of the connecting shaft 44, and a flange portion 45b extending radially around the lower end of the cylindrical portion 45a, and is formed of a rubber material. The cylindrical portion 45a is in close contact with the connecting shaft 44 in a watertight state with high pressure. Further, the outer peripheral surface of the bearing 45 is in water-tight contact with the inner peripheral surface of the support base 32.

連結軸44の軸受け45よりも下端側は、略円筒状の検知極支持体46の上端側に挿入されている。これにより、検知極支持体46が連結軸44の下端側に連結固定され、支持基体32の貫通孔32a内に垂下されている。検知極支持体46の下端には、検知極35が設けられている。
モーター38の駆動により、連結軸44のカップリングケース42に連結している部位が円運動すると、連結軸44は、フランジ部45bの位置する部位を支点とする歳差運動をする。その結果、連結軸44に固定された検知極支持体46の下端に設けられた検知極35も円運動するようになっている。
The lower end of the connecting shaft 44 from the bearing 45 is inserted into the upper end of a substantially cylindrical sensing electrode support 46. As a result, the detection electrode support 46 is connected and fixed to the lower end of the connection shaft 44, and hangs down in the through hole 32 a of the support base 32. The detection pole 35 is provided at the lower end of the detection pole support 46.
When the portion of the connection shaft 44 connected to the coupling case 42 makes a circular motion by the drive of the motor 38, the connection shaft 44 performs precession with the portion where the flange 45b is located as a fulcrum. As a result, the detection pole 35 provided at the lower end of the detection pole support 46 fixed to the connecting shaft 44 also moves circularly.

検知極35のリード線47は、最終的にはコネクター48を経由して本体部20の演算制御部21に連結されている。また、対極33は、コネクター48を経由して本体部20の演算制御部21に連結されている。モーター38も、コネクター48を経由して本体部20の演算制御部21に連結されている。
なお、図2において、リード線47のコネクター48近傍の配線については図示を省略する。また、対極33からコネクター48迄の配線と、モーター38からコネクター48迄の配線についても図示を省略する。
第1実施形態と同様、検知極35は金製であり、対極33は白金製である。
The lead wire 47 of the detection electrode 35 is finally connected to the arithmetic and control unit 21 of the main unit 20 via the connector 48. The counter electrode 33 is connected to the arithmetic and control unit 21 of the main unit 20 via a connector 48. The motor 38 is also connected to the arithmetic and control unit 21 of the main unit 20 via a connector 48.
Note that, in FIG. 2, the illustration of the wiring near the connector 48 of the lead wire 47 is omitted. Also, the wiring from the counter electrode 33 to the connector 48 and the wiring from the motor 38 to the connector 48 are not shown.
As in the first embodiment, the detection electrode 35 is made of gold, and the counter electrode 33 is made of platinum.

本実施形態のセンサ部2の下端を試料液Sに浸すと、試料液Sがキャップ34と窓32bから流入流出する。これにより、試料液Sは検知極35と接触すると共に、支持基体32に巻き付けられている対極33にも接触する。すなわち、検知極35と対極33が試料液Sに浸漬された状態となる。
なお、試料液Sは軸受け45により、軸受け45より上方のケース31内への侵入が阻止されるようになっている。
第2実施形態に係る全有効塩素測定装置は、第1実施形態に係る全有効塩素測定装置と同様に全有効塩素等の測定をすることができる。また、第1実施形態に係る全有効塩素測定装置と同様に校正を行うことができる。
When the lower end of the sensor unit 2 of the present embodiment is immersed in the sample liquid S, the sample liquid S flows in and out of the cap 34 and the window 32b. As a result, the sample liquid S comes into contact with the detection electrode 35 and also comes into contact with the counter electrode 33 wound around the support base 32. That is, the detection electrode 35 and the counter electrode 33 are immersed in the sample liquid S.
The sample liquid S is prevented from entering the case 31 above the bearing 45 by the bearing 45.
The total available chlorine measuring device according to the second embodiment can measure the total available chlorine and the like in the same manner as the total available chlorine measuring device according to the first embodiment. Further, calibration can be performed in the same manner as in the total available chlorine measuring apparatus according to the first embodiment.

<第3実施形態>
[装置構成]
本発明の第3実施形態に係る二電極式ポーラログラフ法による全有効塩素測定装置について図3を用いて説明する。なお、図3において、図1と同様の構成部材には、図1と同一の符号を付してその詳細な説明を省略する。
本実施形態の全有効塩素測定装置は、センサ部3と本体部20と送液部50から概略構成されている。
<Third embodiment>
[Device configuration]
An apparatus for measuring total available chlorine by a two-electrode polarographic method according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof will be omitted.
The total available chlorine measuring apparatus according to the present embodiment is schematically configured by a sensor unit 3, a main body unit 20, and a liquid sending unit 50.

センサ部3は、第1実施形態の測定セル11が、フローセル19に変更された他は、第1実施形態のセンサ部1と同様である。フローセル19には、検知極13と対極15との間を仕切るメッシュ状の仕切り板19aが設けられており、ビーズ18が、対極15側に流出しないようになっている。
送液部50は、フローセル19に試料液Sを送る流入路51と、フローセル19から試料液Sを排出する排出路52と、流入路51に設けられたポンプ53を有している。
ポンプ53と演算制御部21との間は配線L4で各々接続されている。ポンプ53は、演算制御部21からの指示により動作するようになっている。
第3実施形態に係る全有効塩素測定装置は、フローセル19内に試料液Sを流動させる他は、第1実施形態に係る全有効塩素測定装置と同様に全有効塩素等の測定をすることができる。また、第1実施形態に係る全有効塩素測定装置と同様に校正を行うことができる。
The sensor unit 3 is the same as the sensor unit 1 of the first embodiment, except that the measurement cell 11 of the first embodiment is changed to a flow cell 19. The flow cell 19 is provided with a mesh-like partition plate 19a for partitioning between the detection electrode 13 and the counter electrode 15, so that the beads 18 do not flow out to the counter electrode 15 side.
The liquid sending section 50 has an inflow path 51 for sending the sample liquid S to the flow cell 19, a discharge path 52 for discharging the sample liquid S from the flow cell 19, and a pump 53 provided in the inflow path 51.
The pump 53 and the arithmetic and control unit 21 are connected by a wiring L4. The pump 53 operates according to an instruction from the arithmetic and control unit 21.
The total available chlorine measuring apparatus according to the third embodiment can measure the total available chlorine and the like in the same manner as the total available chlorine measuring apparatus according to the first embodiment except that the sample liquid S is caused to flow in the flow cell 19. it can. Further, calibration can be performed in the same manner as in the total available chlorine measuring apparatus according to the first embodiment.

<第4実施形態>
[装置構成]
本発明の第4実施形態に係る二電極式ポーラログラフ法による全有効塩素測定装置は、図3のセンサ部3が、図4に示すセンサ部4に変更された他は、第3実施形態と同じである。
<Fourth embodiment>
[Device configuration]
The total available chlorine measuring apparatus by a two-electrode polarographic method according to the fourth embodiment of the present invention is the same as the third embodiment except that the sensor unit 3 in FIG. 3 is changed to the sensor unit 4 shown in FIG. It is.

図4はセンサ部4の断面図である。センサ部4は、第2実施形態のセンサ部2に、フローセル60が追加された構成となっている。図4において、図2と同一の構成部材については、図2と同一の符号を付して、その詳細な説明を省略する。
フローセル60には、支持基体32が挿入されている。フローセル60の上端側内壁と支持基体32外周の間は、Oリング61を介して液密に固着されている。
フローセル60の先端部の中央には試料液流入用の試料液流入口60aが設けられるとともに、Oリング61近傍の側壁には試料液流出用の試料液流出口60bが設けられている。試料液流入口60aには流入路51が、試料液流出口60bには排出路52が接続される。
FIG. 4 is a sectional view of the sensor unit 4. The sensor unit 4 has a configuration in which a flow cell 60 is added to the sensor unit 2 of the second embodiment. 4, the same components as those in FIG. 2 are denoted by the same reference numerals as in FIG. 2, and detailed description thereof will be omitted.
The support base 32 is inserted into the flow cell 60. The space between the inner wall on the upper end side of the flow cell 60 and the outer periphery of the support base 32 is fixed in a liquid-tight manner via an O-ring 61.
A sample liquid inflow port 60 a for inflow of a sample liquid is provided at the center of the front end of the flow cell 60, and a sample liquid outflow port 60 b for outflow of the sample liquid is provided on a side wall near the O-ring 61. The inflow path 51 is connected to the sample liquid inlet 60a, and the discharge path 52 is connected to the sample liquid outlet 60b.

本実施形態のセンサ部4のフローセル60の試料液流入口60aから試料液Sを流すと、試料液Sの一部がキャップ34内に侵入して窓32bを介して試料液流出口60bから流出する。これにより、試料液Sは検知極35と接触する。また、試料液Sの一部は試料液流入口60aから流入した後、支持基体32の外側を通過して試料液流出口60bから流出する。これにより、試料液Sは支持基体32に巻き付けられている対極33に接触する。すなわち、フローセル60の試料液流入口60aから試料液Sを流すことにより、検知極35と対極33が試料液Sに浸漬した状態となる。   When the sample liquid S flows from the sample liquid inlet 60a of the flow cell 60 of the sensor unit 4 of this embodiment, a part of the sample liquid S enters the cap 34 and flows out of the sample liquid outlet 60b through the window 32b. I do. Thereby, the sample liquid S comes into contact with the detection electrode 35. Further, after a part of the sample liquid S flows in from the sample liquid inlet 60a, it passes outside the support base 32 and flows out from the sample liquid outlet 60b. As a result, the sample liquid S comes into contact with the counter electrode 33 wound around the support base 32. That is, by flowing the sample liquid S from the sample liquid inlet 60a of the flow cell 60, the detection electrode 35 and the counter electrode 33 are immersed in the sample liquid S.

第4実施形態に係る全有効塩素測定装置は、第3実施形態に係る全有効塩素測定装置と同様に全有効塩素等の測定をすることができる。また、第3実施形態に係る全有効塩素測定装置と同様に校正を行うことができる。   The total available chlorine measuring device according to the fourth embodiment can measure the total available chlorine and the like in the same manner as the total available chlorine measuring device according to the third embodiment. Further, calibration can be performed in the same manner as in the total available chlorine measuring apparatus according to the third embodiment.

<その他の実施形態>
上記各実施形態では、検知極に接する試料液を検知極表面に対して積極的に流動させる方法によりポーラログラフ法に必要な拡散層の厚みの再現性を得る方法を採用したが、検知極に接する狭い範囲の試料液の流動を抑制する方法により、拡散層の厚みの再現性を得る方法を採用してもよい。当該方法を採用した装置としては、例えば、特開2015−34740号に記載された酸化還元電流測定装置が挙げられる。
<Other embodiments>
In each of the above embodiments, a method of obtaining the reproducibility of the thickness of the diffusion layer necessary for the polarographic method by a method of positively flowing the sample liquid in contact with the detection electrode to the surface of the detection electrode is employed. A method of obtaining the reproducibility of the thickness of the diffusion layer by a method of suppressing the flow of the sample liquid in a narrow range may be adopted. As an apparatus employing the method, for example, an oxidation-reduction current measuring apparatus described in JP-A-2015-34740 can be mentioned.

以下、本発明の効果を明らかにするための実験例を示す。
[実験例1]
海水に既知濃度の塩素を添加した際の全有効塩素濃度を、全塩素DPD試薬を用いて、測定した。
(a)試料液
以下の試料液について、全有効塩素濃度を測定した。
・海水、
・海水に、濃度既知の次亜塩素酸ナトリウム溶液を、試料液1Lに対する塩素の添加量が、0.15mgとなるように添加した試料液、
・海水に、濃度既知の次亜塩素酸ナトリウム溶液を、試料液1Lに対する塩素の添加量が、0.25mgとなるように添加した試料液、
・海水に、濃度既知の次亜塩素酸ナトリウム溶液を、試料液1Lに対する塩素の添加量が、0.65mgとなるように添加した試料液。
Hereinafter, experimental examples for clarifying the effects of the present invention will be described.
[Experimental example 1]
The total available chlorine concentration when a known concentration of chlorine was added to seawater was measured using a total chlorine DPD reagent.
(A) Sample solution The total available chlorine concentration of the following sample solutions was measured.
・ Seawater,
A sample solution obtained by adding a known concentration of sodium hypochlorite solution to seawater so that the amount of chlorine added to 1 L of the sample solution is 0.15 mg;
A sample solution obtained by adding a known concentration of sodium hypochlorite solution to seawater so that the amount of chlorine added to 1 L of the sample solution is 0.25 mg;
A sample liquid obtained by adding a known concentration of sodium hypochlorite solution to seawater so that the amount of chlorine added to 1 L of the sample liquid is 0.65 mg.

(b)全塩素試薬
全塩素を測定するDPD試薬として、下記成分を含む、HACH社製の全塩素試薬(品目コード:HACH0582)を用いた。
ヨウ化カリウム:20.0〜30.0質量%、
N,N−ジエチル−フェニレンジアミン塩:1.0〜5.0質量%、
カルボン酸塩:40.0〜50.0質量%、
リン酸水素二ナトリウム:20.0〜30.0質量%、
エチレンジアミン四酢酸二ナトリウム:1.0質量%未満。
(B) Total chlorine reagent As a DPD reagent for measuring total chlorine, a total chlorine reagent (item code: HACH0582) manufactured by HACH and containing the following components was used.
Potassium iodide: 20.0-30.0% by mass,
N, N-diethyl-phenylenediamine salt: 1.0 to 5.0% by mass,
Carboxylates: 40.0 to 50.0% by mass,
Disodium hydrogen phosphate: 20.0 to 30.0% by mass,
Disodium ethylenediaminetetraacetate: less than 1.0% by mass.

(c)全有効塩素濃度の測定
セル長50mmの吸収セルに全塩素試薬と試料液10mL〜20mLの一定量を採り、光電分光光度計(HACH社製DR2700)を用いて、混和してから10秒後における波長510nmにおける吸光度を測定し、予め作成した検量線から、全有効塩素濃度を求めた。結果を図5に示す。
(C) Measurement of total available chlorine concentration A fixed amount of the total chlorine reagent and 10 mL to 20 mL of the sample solution was taken in an absorption cell having a cell length of 50 mm, and mixed with a photoelectric spectrophotometer (DR2700 manufactured by HACH). The absorbance at a wavelength of 510 nm after 2 seconds was measured, and the total available chlorine concentration was determined from a previously prepared calibration curve. FIG. 5 shows the results.

なお、図5の縦軸の全有効塩素濃度(測定値)を求めるための検量線は、以下の脱塩素水および標準試料を、試料液と同様にして測定することにより作成した。
脱塩素水:水道水を活性炭で処理して、塩素を除去した水(以下の実験例についても同じ)。
標準試料:有効塩素濃度約12%の次亜塩素酸ナトリウム溶液を脱塩素水で希釈して調製した。調製した標準試料の全有効塩素濃度は、上記「(c)全有効塩素濃度の測定」に従って求めた(以下の実験例についても同じ)。
The calibration curve for obtaining the total available chlorine concentration (measured value) on the vertical axis in FIG. 5 was created by measuring the following dechlorinated water and a standard sample in the same manner as the sample liquid.
Dechlorinated water: tap water treated with activated carbon to remove chlorine (the same applies to the following experimental examples).
Standard sample: prepared by diluting a sodium hypochlorite solution having an effective chlorine concentration of about 12% with dechlorinated water. The total available chlorine concentration of the prepared standard sample was determined according to the above "(c) Measurement of total available chlorine concentration" (the same applies to the following experimental examples).

図5に示すように、添加濃度に対する測定値の傾きは0.5409と小さかった。この原因は不明であるが、海水中の成分の影響により添加した塩素が消費されたため、海水を含まない場合よりも吸光度が低く出たことによると思われる。
しかしながら、添加濃度と測定値との間には良好な相関関係が得られた(R=0.9953)。
このため、上記全塩素試薬を用いて測定した吸光度から上記検量線によって求めた全有効塩素濃度は、海水中の全有効塩素濃度の指標として有効であることが確認できた。
As shown in FIG. 5, the slope of the measured value with respect to the added concentration was as small as 0.5409. Although the cause is unknown, it is considered that the added chlorine was consumed due to the influence of the components in the seawater, and the absorbance was lower than in the case where no seawater was contained.
However, a good correlation was obtained between the added concentration and the measured value (R 2 = 0.9953).
For this reason, it was confirmed that the total available chlorine concentration obtained by the above calibration curve from the absorbance measured using the total chlorine reagent was effective as an index of the total available chlorine concentration in seawater.

[実験例2]
第4実施形態の全有効塩素測定装置を用いて、印加電圧と酸化還元電流との関係を示すポーラログラムを調べた。ただし、加電圧機構22としては、電圧を連続的に変化させられるものを用い、検知極13としては直径2mmの金電極を用い、線速度で約100cm/sが得られる程度の回転を与えた。対極15は白金電極とした。試料液としては、海水に塩素(次亜塩素酸ナトリウム溶液)を添加した試料液と、脱塩素水に塩素(次亜塩素酸ナトリウム溶液)を添加した試料液を用いた。
海水に塩素を添加した場合のポーラログラムを図6に、脱塩素水に塩素を添加した場合のポーラログラムを図7に示す。
[Experimental example 2]
The polarogram showing the relationship between the applied voltage and the oxidation-reduction current was examined using the total available chlorine measuring apparatus of the fourth embodiment. However, a mechanism capable of continuously changing the voltage was used as the applied voltage mechanism 22, a gold electrode having a diameter of 2 mm was used as the detection electrode 13, and rotation was performed so that a linear velocity of about 100 cm / s was obtained. . The counter electrode 15 was a platinum electrode. As the sample solution, a sample solution obtained by adding chlorine (sodium hypochlorite solution) to seawater and a sample solution obtained by adding chlorine (sodium hypochlorite solution) to dechlorinated water were used.
FIG. 6 shows a polarogram when chlorine is added to seawater, and FIG. 7 shows a polarogram when chlorine is added to dechlorinated water.

図6において、Tの後に記載した数値は、実験例1と同様に全塩素試薬を用いて測定した全有効塩素濃度である。例えば「T0.493mg/L」として示したポーラログラムは、実験例1と同様にして測定した全有効塩素濃度が0.493mg/Lである試料液(海水に塩素を添加した試料液)のポーラログラムを示す。   In FIG. 6, the numerical value described after T is the total available chlorine concentration measured using the total chlorine reagent as in Experimental Example 1. For example, the polarogram indicated as “T 0.493 mg / L” is a polarogram of a sample solution (sample solution obtained by adding chlorine to seawater) having a total available chlorine concentration of 0.493 mg / L measured in the same manner as in Experimental Example 1. 2 shows a program.

図7において、Fの後に記載した数値は、遊離塩素を測定するDPD試薬を用いた他は実験例1と同様にして測定した遊離塩素濃度である。例えば「F0.48mg/L」として示したポーラログラムは、遊離塩素を測定するDPD試薬を用いた他は実験例1と同様にして測定した遊離塩素濃度が0.48mg/Lである試料液(脱塩素水に塩素を添加した試料液)のポーラログラムを示す。
脱塩素水に塩素(次亜塩素酸ナトリウム溶液)を添加した試料液は、遊離塩素以外の有効塩素を含まないので、図7において、Fの後に記載した数値は、遊離塩素濃度であるとともに、全有効塩素濃度でもある。
In FIG. 7, the numerical value described after F is the free chlorine concentration measured in the same manner as in Experimental Example 1 except that the DPD reagent for measuring free chlorine was used. For example, the polarogram shown as "F0.48 mg / L" is a sample solution having a free chlorine concentration of 0.48 mg / L measured in the same manner as in Experimental Example 1 except that a DPD reagent for measuring free chlorine was used. 2 shows a polarogram of a sample solution obtained by adding chlorine to dechlorinated water).
Since the sample solution obtained by adding chlorine (sodium hypochlorite solution) to dechlorinated water does not contain available chlorine other than free chlorine, the value described after F in FIG. It is also the total available chlorine concentration.

なお、遊離塩素を測定するDPD試薬としては、下記成分を含む、HACH社製の遊離塩素試薬(品目コード:HACH0578)を用いた。
N,N−ジエチル−フェニレンジアミン塩:5.0質量%未満、
カルボン酸塩:60.0〜70.0質量%、
リン酸水素二ナトリウム:30.0〜40.0質量%、
エチレンジアミン四酢酸二ナトリウム:5.0質量%未満。
As a DPD reagent for measuring free chlorine, a free chlorine reagent (item code: HACH0578) manufactured by HACH and containing the following components was used.
N, N-diethyl-phenylenediamine salt: less than 5.0% by mass,
Carboxylates: 60.0 to 70.0% by mass,
Disodium hydrogen phosphate: 30.0 to 40.0% by mass,
Disodium ethylenediaminetetraacetate: less than 5.0% by mass.

図6、図7のいずれにおいても、全有効塩素濃度が高くなるほどプラトー領域(印加電圧が若干変化しても、電流がほとんど変化しない領域)が高電圧側にシフトする傾向がみられたが、図6と図7の全有効塩素濃度がほぼ等しいポーラログラムを比較すると、両者のプラトー領域は、ほぼ等しかった。
すなわち、図6の全有効塩素濃度が0.493mg/Lである試料液と図7の遊離塩素濃度(全有効塩素濃度)が0.48mg/Lである試料液のプラトーは約600mV付近にあり、図6の全有効塩素濃度が1.202mg/Lである試料液と図7の遊離塩素濃度(全有効塩素濃度)が1.00mg/Lである試料液のプラトーは約700mV付近にあった。
6 and 7, the plateau region (the region where the current hardly changes even if the applied voltage slightly changes) tends to shift to the higher voltage side as the total available chlorine concentration increases. Comparing the polarograms of FIG. 6 and FIG. 7 in which the total available chlorine concentration is almost equal, the plateau regions of both were almost equal.
That is, the plateau of the sample solution having a total available chlorine concentration of 0.493 mg / L in FIG. 6 and the sample solution having a free chlorine concentration (total available chlorine concentration) of 0.48 mg / L in FIG. 7 is around 600 mV. The plateau of the sample solution having a total available chlorine concentration of 1.202 mg / L in FIG. 6 and the sample solution having a free chlorine concentration (total available chlorine concentration) of 1.00 mg / L in FIG. 7 was around 700 mV. .

このことから、試料液がどの程度海水を含むかは、良好なプラトー領域となる印加電圧の範囲に影響を与えないことがわかった。
したがって、塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である校正液を用いて、海水または海水を含む試料液の全有効塩素濃度を測定するための検量線を作成できることがわかった。
From this, it was found that the extent to which the sample solution contained seawater did not affect the range of the applied voltage that resulted in a favorable plateau region.
Therefore, it can be seen that a calibration curve for measuring the total available chlorine concentration of seawater or a sample solution containing seawater can be prepared using a calibration solution containing no halogen other than chlorine and having an electric conductivity of 4 mS / m or more. Was.

また、図6、図7におけるいずれの試料液でも、印加電圧750mV付近で、良好なプラトー領域が得られた。また、図7より、全有効塩素濃度が3mg/L程度の試料液の場合、約900mV前後でプラトー領域が得られると考えられる。
この結果と、通常、海水の全有効塩素濃度の測定範囲は、低濃度側では2mg/L以下、高濃度側では2mg/L以上であることを考慮すると、印加電圧は750±250mVの範囲とすべきことがわかった。
また、特に正確な測定を行うためには、測定範囲に応じて、750±250mVの範囲で印加電圧を適切に選択すべきこと(全有効塩素濃度の測定範囲が高くなる程、750±250mVの範囲で高電圧側の印加電圧を選択すべきこと)がわかった。
6 and 7, a good plateau region was obtained near the applied voltage of 750 mV. From FIG. 7, it is considered that a plateau region can be obtained at about 900 mV in the case of a sample solution having a total available chlorine concentration of about 3 mg / L.
Considering this result and that the measurement range of the total available chlorine concentration of seawater is usually 2 mg / L or less on the low concentration side and 2 mg / L or more on the high concentration side, the applied voltage is in the range of 750 ± 250 mV. I knew what to do.
In addition, in order to perform particularly accurate measurement, it is necessary to appropriately select an applied voltage in the range of 750 ± 250 mV according to the measurement range (the higher the measurement range of the total available chlorine concentration, the more the applied voltage becomes 750 ± 250 mV). The application voltage on the high voltage side should be selected within the range).

[実験例3]
実験例2と同じ装置を用いて同じ測定条件で、下記試料液A〜Cについて、印加電圧と酸化還元電流との関係を示すポーラログラムを調べた。結果を図8に示す。
試料液A:脱塩素水に濃度既知の次亜塩素酸ナトリウム溶液を、添加後の試料液1Lに対する遊離塩素濃度が、2mg/Lとなるように添加した試料液、
試料液B:試料液Aの1Lに、臭化カリウムを0.6g添加した試料、
試料液C:試料液Aの1Lに、臭化カリウムを0.6g、無水酢酸ナトリウムを0.2g、酢酸を0.2mL添加した試料。
[Experimental example 3]
Polarograms showing the relationship between the applied voltage and the oxidation-reduction current were examined for the following sample solutions A to C using the same apparatus as in Experimental Example 2 and under the same measurement conditions. FIG. 8 shows the results.
Sample liquid A: a sample liquid obtained by adding a known concentration of sodium hypochlorite solution to dechlorinated water so that the free chlorine concentration per 1 L of the sample liquid after addition is 2 mg / L,
Sample liquid B: a sample obtained by adding 0.6 g of potassium bromide to 1 L of sample liquid A,
Sample liquid C: A sample obtained by adding 0.6 g of potassium bromide, 0.2 g of anhydrous sodium acetate, and 0.2 mL of acetic acid to 1 L of sample liquid A.

試料液Aは遊離塩素(次亜塩素酸)を含む。これに対して、試料液B、Cは添加された臭化カリウムによって次亜臭素酸を含む。
また、試料液BのpHは約7.5であるが、バッファー成分を含む試料液CのpHは約4.0である。
図8に示すように、印加電圧を750mV付近における電流値は、試料液A〜Cの間で大きな差がなかった。
このことから、印加電圧を750mV付近とすれば、遊離塩素であるか次亜臭素酸であるかの違いによらず、また、pHの相違によらず、同一の検量線を使用できることがわかった。
Sample solution A contains free chlorine (hypochlorous acid). On the other hand, the sample solutions B and C contain hypobromous acid due to the added potassium bromide.
The pH of the sample solution B is about 7.5, while the pH of the sample solution C containing the buffer component is about 4.0.
As shown in FIG. 8, there was no significant difference between the sample liquids A to C in the current value when the applied voltage was around 750 mV.
From this, it was found that, when the applied voltage was around 750 mV, the same calibration curve could be used irrespective of the difference between free chlorine and hypobromite and regardless of the pH. .

[実験例4]
印加電圧を800mVとした第4実施形態の全有効塩素測定装置の校正を、脱塩素水と水道水からなるスパン液(遊離塩素を含むが、他のハロゲンを含まない。)を用いて行った。全有効塩素測定装置の検知極13としては直径2mmの金電極を用い、線速度で約100cm/sが得られる程度の回転を与えた。対極15は白金電極とした。スパン液について、実験例1と同様に全塩素試薬を用いて測定したところ、全有効塩素濃度は0.68mg/Lであった。得られた検量線を図9に示す。
得られた図9の検量線は、全有効塩素測定装置に記憶させた。
[Experimental example 4]
Calibration of the total available chlorine measuring apparatus of the fourth embodiment with an applied voltage of 800 mV was performed using a span solution (containing free chlorine but not other halogens) composed of dechlorinated water and tap water. . A gold electrode having a diameter of 2 mm was used as the detection electrode 13 of the total available chlorine measuring device, and the rotation was applied to a linear velocity of about 100 cm / s. The counter electrode 15 was a platinum electrode. When the span liquid was measured using the total chlorine reagent in the same manner as in Experimental Example 1, the total available chlorine concentration was 0.68 mg / L. The obtained calibration curve is shown in FIG.
The obtained calibration curve of FIG. 9 was stored in the total available chlorine measuring apparatus.

以下の試料液の全有効塩素濃度を、図9の検量線を記憶させた前記の全有効塩素測定装置を用いて測定した。結果を表1及び図10に示す。
なお、表1と図10における「添加濃度」は、海水に対する塩素の添加濃度、または水道水の全塩素試薬を用いて測定した全有効塩素濃度である。また、表1の酸化還元電流は全有効塩素測定装置を用いて得られた値であり、表1および図10の測定値は、酸化還元電流から、図9の検量線を用いて求めた全有効塩素濃度である。
The total available chlorine concentration of the following sample liquids was measured using the above-mentioned total available chlorine measuring device in which the calibration curve of FIG. 9 was stored. The results are shown in Table 1 and FIG.
The “additional concentration” in Table 1 and FIG. 10 is the concentration of chlorine added to seawater or the total available chlorine concentration measured using a total chlorine reagent in tap water. In addition, the oxidation-reduction current in Table 1 is a value obtained by using a total available chlorine measuring apparatus, and the measurement values in Table 1 and FIG. 10 are obtained from the oxidation-reduction current using the calibration curve in FIG. Effective chlorine concentration.

(試料液)
・海水に、濃度既知の次亜塩素酸ナトリウム溶液を、試料液1Lに対する塩素の添加量が0.45mgとなるように添加した試料液、
・海水に、濃度既知の次亜塩素酸ナトリウム溶液を、試料液1Lに対する塩素の添加量が1.04mgとなるように添加した試料液、
・海水に、濃度既知の次亜塩素酸ナトリウム溶液を、試料液1Lに対する塩素の添加量が2.75mgとなるように添加した試料液、
・水道水:実験例1と同様にして測定した全有効塩素濃度が0.75mg/Lの水道水。
(Sample liquid)
A sample solution obtained by adding a sodium hypochlorite solution of known concentration to seawater so that the amount of chlorine added to 1 L of the sample solution is 0.45 mg;
A sample solution obtained by adding a known concentration of sodium hypochlorite solution to seawater so that the amount of chlorine added to 1 L of the sample solution is 1.04 mg;
A sample liquid obtained by adding a known concentration of sodium hypochlorite solution to seawater so that the amount of chlorine added to 1 L of the sample liquid is 2.75 mg;
-Tap water: Tap water having a total available chlorine concentration of 0.75 mg / L measured in the same manner as in Experimental Example 1.

Figure 2020003382
Figure 2020003382

表1および図10に示すように、測定値は添加濃度と良く一致しており、添加濃度と測定値との間には良好な相関関係が見られた。
また、図10では、水道水のデータと海水に塩素を添加した試料液のデータとが同じ直線上に乗っていることが確認できた。
このことから、水道水等の塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である校正液を用いて得られた検量線は、海水に塩素を添加した試料液の測定にも有効であることがわかった。
As shown in Table 1 and FIG. 10, the measured value was in good agreement with the additive concentration, and a good correlation was observed between the additive concentration and the measured value.
Further, in FIG. 10, it was confirmed that the data of tap water and the data of the sample liquid obtained by adding chlorine to seawater were on the same straight line.
From this, the calibration curve obtained using a calibration solution that does not contain halogen other than chlorine such as tap water and has an electric conductivity of 4 mS / m or more can be used for measurement of a sample solution obtained by adding chlorine to seawater. It turned out to be effective.

[実験例5]
海水に、濃度既知の次亜塩素酸ナトリウム溶液を、海水1Lに対する塩素の添加量が0.5mgとなるように添加した試料液を、実験例4により校正した第4実施形態の全有効塩素測定装置により測定し、測定結果の経時変化を調べた。結果を図11に示す。
図11に示すように、測定値は時間経過と共に低下したが、その低下の状況は、なだらかな曲線上に添うものであった。
これは、添加した次亜塩素酸ナトリウムと海水中の臭素やアンモニア性窒素との反応により生じた次亜臭素酸やブロモアミン類が、海水中の成分により消費されたり、分解したりして減少していく状況を正しくとらえているものと考えられる。
[Experimental example 5]
A sample liquid in which a known concentration of sodium hypochlorite solution was added to seawater so that the amount of chlorine added to 1 L of seawater was 0.5 mg, and the total available chlorine measurement of the fourth embodiment was calibrated by Experimental Example 4. The measurement was performed using an apparatus, and the change over time in the measurement results was examined. The results are shown in FIG.
As shown in FIG. 11, the measured value decreased with the passage of time, but the state of the decrease was along a gentle curve.
This is because hypobromite and bromoamines generated by the reaction of added sodium hypochlorite with bromine and ammoniacal nitrogen in seawater are consumed or decomposed by components in seawater and reduced. It is thought that the situation that goes is correctly caught.

[実験例6]
実験例4により校正した全有効塩素測定装置によって海水を連続測定しながら、濃度既知の次亜塩素酸ナトリウム溶液の一定量を順次添加し、測定値の変化を調べた。結果を表2および図12に示す。
表2および図12におけるNo.1〜4は、各々下記の時点での測定であることを示す。
また、表2および図12におけるDPD値は、実験例1と同様に全塩素試薬を用いて測定した全有効塩素濃度であり、測定値は全有効塩素測定装置によって得られた値である。
[Experimental example 6]
While continuously measuring seawater with the total available chlorine measuring device calibrated in Experimental Example 4, a fixed amount of sodium hypochlorite solution of known concentration was sequentially added, and the change in the measured value was examined. The results are shown in Table 2 and FIG.
In Table 2 and FIG. 1 to 4 indicate that the measurement was performed at the following times.
The DPD values in Table 2 and FIG. 12 are the total available chlorine concentrations measured using the total chlorine reagent in the same manner as in Experimental Example 1, and the measured values are values obtained by the total available chlorine measuring device.

NO.1:次亜塩素酸ナトリウム溶液を添加する前。
NO.2:海水1Lに対する塩素の添加量が0.02mgとなる量の次亜塩素酸ナトリウム溶液を1回目に添加した時点。
NO.3:海水1Lに対する塩素の添加量が0.02mgとなる量の次亜塩素酸ナトリウム溶液を2回目に添加した時点。
NO.4:海水1Lに対する塩素の添加量が0.02mgとなる量の次亜塩素酸ナトリウム溶液を3回目に添加した時点。
NO. 1: Before adding the sodium hypochlorite solution.
NO. 2: The time when sodium hypochlorite solution was added for the first time so that the amount of chlorine added to 1 L of seawater was 0.02 mg.
NO. 3: The time when the sodium hypochlorite solution was added for the second time so that the amount of chlorine added to 1 L of seawater was 0.02 mg.
NO. 4: The time when the sodium hypochlorite solution was added for the third time so that the amount of chlorine added to 1 L of seawater was 0.02 mg.

Figure 2020003382
Figure 2020003382

表2および図12に示すように、全有効塩素濃度が極めて低濃度であるにもかかわらず、DPD値と測定値との間には、良好な相関関係が得られた。また、例えばNO.1の時点の測定結果を基に、実験例4の校正により得た検量線のゼロ点を補正すれば、DPD値と測定値を一層高い精度で一致させることが可能であることもわかった。   As shown in Table 2 and FIG. 12, a good correlation was obtained between the DPD value and the measured value even though the total available chlorine concentration was extremely low. In addition, for example, NO. It was also found that if the zero point of the calibration curve obtained by the calibration of Experimental Example 4 was corrected based on the measurement result at the time point 1, the DPD value and the measured value could be matched with higher accuracy.

[実験例7]
実験例4により校正した第4実施形態の全有効塩素測定装置によって、脱塩素水と脱塩素水に塩素の添加量が0.03mgとなる量の次亜塩素酸ナトリウム溶液を添加した低濃度試料液とを交互に測定し、1回目から4回目までの低濃度試料液の測定結果の再現性を調べた。結果を表3に示す。
表3に示すように、全有効塩素濃度が極めて低濃度であるにもかかわらず、全有効塩素測定装置により高い再現性が得られた。
[Experimental example 7]
A low-concentration sample in which dechlorinated water and a sodium hypochlorite solution having an amount of chlorine added to dechlorinated water of 0.03 mg were added to the dechlorinated water by the total available chlorine measuring device of the fourth embodiment calibrated in Experimental Example 4. The liquid and the liquid were alternately measured, and the reproducibility of the measurement results of the low-concentration sample liquid from the first time to the fourth time was examined. Table 3 shows the results.
As shown in Table 3, high reproducibility was obtained with the total available chlorine measuring device, even though the total available chlorine concentration was extremely low.

Figure 2020003382
Figure 2020003382

1〜4…センサ部、11…測定セル、12…検知極支持体、13、35…検知極、
14…対極支持体、15、33…対極、16、38…モーター、17、45…軸受け、
18、36…ビーズ、19、60…フローセル、20…本体部、
21…演算制御部、22…加電圧機構、23…電流計、24…表示装置、
50…送液部、53…ポンプ、S…試料液
1-4 sensor part, 11 measurement cell, 12 detection electrode support, 13, 35 detection electrode,
14 ... counter electrode support, 15, 33 ... counter electrode, 16, 38 ... motor, 17, 45 ... bearing,
18, 36: beads, 19, 60: flow cell, 20: body,
21: arithmetic control unit, 22: applied voltage mechanism, 23: ammeter, 24: display device,
50: liquid sending section, 53: pump, S: sample liquid

Claims (6)

二電極式ポーラログラフ法による全有効塩素測定装置であって、
試料液に浸漬される金製の検知極、及び白金製の対極と、
前記検知極と対極との間に、750±250mVの範囲から選択される印加電圧を与える加電圧機構と、
前記加電圧機構が前記印加電圧を与えた際に前記検知極と対極との間に流れる酸化還元電流を測定する電流計とを具備することを特徴とする全有効塩素測定装置。
An apparatus for measuring total available chlorine by a two-electrode polarographic method,
A gold detection electrode immersed in the sample liquid, and a platinum counter electrode,
An applying voltage mechanism for applying an applied voltage selected from a range of 750 ± 250 mV between the detection electrode and the counter electrode;
An ammeter for measuring an oxidation-reduction current flowing between the detection electrode and the counter electrode when the applied voltage mechanism applies the applied voltage.
さらに、演算制御部を備え、該演算制御部は、前記電流計が測定した酸化還元電流に基づき、前記試料液の全有効塩素濃度を求める請求項1に記載の全有効塩素測定装置。   The total available chlorine measuring apparatus according to claim 1, further comprising an arithmetic control unit, wherein the arithmetic control unit obtains a total available chlorine concentration of the sample liquid based on the oxidation-reduction current measured by the ammeter. 請求項2に記載の全有効塩素測定装置を校正する校正方法であって、塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である校正液を用いることを特徴とする校正方法。   3. A calibration method for calibrating an apparatus for measuring total available chlorine according to claim 2, wherein a calibration liquid containing no halogen other than chlorine and having an electric conductivity of 4 mS / m or more is used. 試料液に浸漬した金製の検知極と白金製の対極との間に750±250mVの範囲から選択される印加電圧を与え、該検知極と対極との間に流れる酸化還元電流を測定し、得られた酸化還元電流から前記試料液の全有効塩素濃度を求めることを特徴とする全有効塩素測定方法。   An applied voltage selected from the range of 750 ± 250 mV is applied between the gold detection electrode immersed in the sample solution and the platinum counter electrode, and an oxidation-reduction current flowing between the detection electrode and the counter electrode is measured. A method for measuring the total available chlorine, wherein the total available chlorine concentration of the sample liquid is obtained from the obtained oxidation-reduction current. 塩素以外のハロゲンを含まず、電気伝導率が4mS/m以上である校正液に浸漬した前記検知極と前記対極との間に、前記選択された印加電圧を与え、該検知極と対極との間に流れる酸化還元電流を測定し、得られた酸化還元電流と前記校正液の全有効塩素濃度との対応に基づく検量線を求め、
前記試料液を測定した際の酸化還元電流から、前記検量線を用いて前記試料液の全有効塩素濃度を求める、請求項4に記載の全有効塩素測定方法。
Applying the selected applied voltage between the detection electrode and the counter electrode immersed in a calibration solution containing no halogen other than chlorine and having an electric conductivity of 4 mS / m or more, Measure the oxidation-reduction current flowing between, to obtain a calibration curve based on the correspondence between the obtained oxidation-reduction current and the total available chlorine concentration of the calibration solution,
The total available chlorine measuring method according to claim 4, wherein the total available chlorine concentration of the sample liquid is obtained from the oxidation-reduction current when the sample liquid is measured using the calibration curve.
前記試料液が臭素を含む、請求項4または5に記載の全有効塩素測定方法。   The total available chlorine measuring method according to claim 4 or 5, wherein the sample liquid contains bromine.
JP2018124176A 2018-06-29 2018-06-29 Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method Active JP7093005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124176A JP7093005B2 (en) 2018-06-29 2018-06-29 Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124176A JP7093005B2 (en) 2018-06-29 2018-06-29 Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method

Publications (2)

Publication Number Publication Date
JP2020003382A true JP2020003382A (en) 2020-01-09
JP7093005B2 JP7093005B2 (en) 2022-06-29

Family

ID=69099504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124176A Active JP7093005B2 (en) 2018-06-29 2018-06-29 Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method

Country Status (1)

Country Link
JP (1) JP7093005B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162662U (en) * 1986-04-03 1987-10-16
JPH0543064U (en) * 1991-11-14 1993-06-11 横河電機株式会社 Combined effective chlorine countermeasure type reagentless type free chlorine meter
JP2000074877A (en) * 1998-08-26 2000-03-14 Noritz Corp Device for measuring residual chlorine concentration
JP2001349866A (en) * 2000-06-06 2001-12-21 Dkk Toa Corp Apparatus for measuring residual chlorine
JP2003294701A (en) * 2002-03-29 2003-10-15 Dkk Toa Corp Oxidation-reduction current measurement method and measurement device therefor
US20160299096A1 (en) * 2015-04-08 2016-10-13 Digital Concepts Of Missouri, Inc. Sensor with memory storing calibration information
JP2016191605A (en) * 2015-03-31 2016-11-10 東亜ディーケーケー株式会社 Residual chlorine measurement device
JP2018124130A (en) * 2017-01-31 2018-08-09 東亜ディーケーケー株式会社 Device and method for measuring residual chlorine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162662U (en) * 1986-04-03 1987-10-16
JPH0543064U (en) * 1991-11-14 1993-06-11 横河電機株式会社 Combined effective chlorine countermeasure type reagentless type free chlorine meter
JP2000074877A (en) * 1998-08-26 2000-03-14 Noritz Corp Device for measuring residual chlorine concentration
JP2001349866A (en) * 2000-06-06 2001-12-21 Dkk Toa Corp Apparatus for measuring residual chlorine
JP2003294701A (en) * 2002-03-29 2003-10-15 Dkk Toa Corp Oxidation-reduction current measurement method and measurement device therefor
JP2016191605A (en) * 2015-03-31 2016-11-10 東亜ディーケーケー株式会社 Residual chlorine measurement device
US20160299096A1 (en) * 2015-04-08 2016-10-13 Digital Concepts Of Missouri, Inc. Sensor with memory storing calibration information
JP2018124130A (en) * 2017-01-31 2018-08-09 東亜ディーケーケー株式会社 Device and method for measuring residual chlorine

Also Published As

Publication number Publication date
JP7093005B2 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
US3413199A (en) Method for measurement of residual chlorine or the like
US4049382A (en) Total residual chlorine
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
US3956094A (en) Apparatus for monitoring available chlorine in swimming pools
US4581121A (en) Free chlorine gas analyzer
WO2015020188A1 (en) Residual-chlorine measurement device, and residual-chlorine measurement method
JP6372302B2 (en) Free residual chlorine measuring device
US4028197A (en) Method for monitoring available chlorine in swimming pools
JP4894004B2 (en) Urea concentration measuring method and urea concentration measuring device
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP4463382B2 (en) Residual chlorine measuring device
JP7177341B2 (en) Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
JP7231814B2 (en) Calibration method of residual chlorine measuring device
US4441979A (en) Nutating probe for gas analysis
ITMI961330A1 (en) SYSTEM FOR MONITORING BIOCIDAL TREATMENTS
WO2021222872A1 (en) Detection of oxidant in seawater
JP2000221165A (en) Apparatus for measuring concentration of residual chlorine
JP3533573B1 (en) Automatic chlorine concentration measuring device and chlorine concentration measuring method
JP2005345222A (en) Residual chlorine meter
JP2000131276A (en) Potable type residual chlorine meter
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
US20230002252A1 (en) Method for optical activation of the sensor surface, in particular for zero chlorine sensors
JP3702125B2 (en) Equipment for measuring residual chlorine in sewage treated water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R150 Certificate of patent or registration of utility model

Ref document number: 7093005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150