JP2005345222A - Residual chlorine meter - Google Patents

Residual chlorine meter Download PDF

Info

Publication number
JP2005345222A
JP2005345222A JP2004164164A JP2004164164A JP2005345222A JP 2005345222 A JP2005345222 A JP 2005345222A JP 2004164164 A JP2004164164 A JP 2004164164A JP 2004164164 A JP2004164164 A JP 2004164164A JP 2005345222 A JP2005345222 A JP 2005345222A
Authority
JP
Japan
Prior art keywords
electrode
residual chlorine
chlorine meter
liquid
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004164164A
Other languages
Japanese (ja)
Inventor
Yoshikazu Iwamoto
恵和 岩本
Hiromi Okawa
浩美 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004164164A priority Critical patent/JP2005345222A/en
Publication of JP2005345222A publication Critical patent/JP2005345222A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a residual chlorine meter capable of sharply reducing the electrodeposition of metal ions to the surface of a cathode caused by the oxidation reaction of an anode without requiring polishing or the like, capable of extending the life of the anode and capable of always keeping a stable reference potential in the case of a galvanic cell type. <P>SOLUTION: The anode 10 is constituted of a second-class electrode in a state that its electrode main body 18 is immersed in an electrolyte solution 16 of 0.001-0.0001 mol/L of KCl+1 mol/L of KNO<SB>3</SB>housed in a cylindrical body 15 with a liquid communication part 14. An inorganic cationic exchange agent 19 is housed in the cylindrical body 15 of the second-class electrode 10 and a ceramic member 20 is provided to the liquid communication part 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば飲料に供される水道水やプール用水、公衆入浴用水、食品工場用水等のように、各種細菌や微生物等の繁殖防止あるいは伝染性疾患の媒体とならないような衛生管理のために、次亜塩素酸ソーダ等の殺菌消毒剤が投入された水中に残留する全ての有効塩素(遊離残留塩素+結合残留塩素)濃度を監視するために用いられる残留塩素計に関する。詳しくは、被検液(水)に浸漬した対極(以下、アノード電極というものを含む)と作用極(以下、カソード電極というものを含む)との間に流れる拡散電流を測定することにより、前記被検液中の残留塩素濃度を測定するように構成されている残留塩素計に関する。   The present invention is for hygiene management such as, for example, tap water used for beverages, pool water, water for public bathing, water for food factories, etc., and does not become a medium for prevention of breeding of various bacteria and microorganisms or infectious diseases. In addition, the present invention relates to a residual chlorine meter used for monitoring the concentration of all available chlorine (free residual chlorine + combined residual chlorine) remaining in water into which a disinfectant such as sodium hypochlorite has been added. Specifically, by measuring a diffusion current flowing between a counter electrode (hereinafter referred to as an anode electrode) immersed in a test liquid (water) and a working electrode (hereinafter referred to as a cathode electrode), The present invention relates to a residual chlorine meter configured to measure a residual chlorine concentration in a test liquid.

例えば、この種の残留塩素計として知られるポーラログラフ式残留塩素計においては、被検液に浸漬させたカソード、アノード両電極間に電圧を印加することにより、第2種の電極、例えば銀/塩化銀からなるアノード電極側では、
Ag→Ag+ +e-
Ag+ +ClO- →AgCl+1/2O2
なる酸化反応が、また、貴金属、例えば金または白金からなるカソード電極側では、
HClO+e- →1/2H2 +ClO-
なる還元反応が生じ、これら酸化還元反応という電極反応によって、被検液中の残留塩素濃度に比例した電流(拡散電流)がアノード電極からカソード電極に向かって流れることになり、その拡散電流(カソード電極における還元電流)の大きさを測定することにより、被検液の残留塩素濃度を測定するものである。
For example, in a polarographic residual chlorine meter known as this type of residual chlorine meter, a voltage is applied between the cathode and anode electrodes soaked in a test solution, whereby a second type of electrode such as a silver / chloride salt is obtained. On the anode side made of silver,
Ag → Ag + + e
Ag + + ClO → AgCl + 1 / 2O 2
In the cathode electrode side made of a noble metal such as gold or platinum,
HClO + e → 1 / 2H 2 + ClO
Due to these redox reactions, a current (diffusion current) proportional to the residual chlorine concentration in the test solution flows from the anode electrode to the cathode electrode, and the diffusion current (cathode) The residual chlorine concentration of the test solution is measured by measuring the magnitude of the reduction current at the electrode).

ところで、このポーラログラフ式の残留塩素計として、従来、白金によりディスク状に形成されたカソード電極の外周に、該カソード電極の20倍以上の表面積を有するように、白金により螺旋状に形成されるアノード電極を巻付けたものが知られている(例えば、特許文献1参照)。   By the way, as a polarographic residual chlorine meter, an anode formed in a spiral shape with platinum so as to have a surface area more than 20 times that of the cathode electrode on the outer periphery of the cathode electrode formed in a disk shape with platinum. An electrode wound is known (for example, see Patent Document 1).

また、それ以外の残留塩素計として、合成樹脂製筒体からなる電極本体の先端に金または白金からなる電極チップを固定し、この電極チップにリード線を接続してなるカソード電極における電極本体の外周部に、アノード電極として細い銀線を螺旋状に巻付けた上、その螺旋状銀線に電解処理等によって塩化銀をメッキコーティングしたガルバニ電池式の残留塩素計も知られている(例えば、特許文献2参照)。   In addition, as other residual chlorine meters, an electrode tip made of gold or platinum is fixed to the tip of an electrode body made of a synthetic resin cylinder, and a lead wire is connected to the electrode tip. A galvanic cell type residual chlorine meter is also known in which a thin silver wire is spirally wound around the outer periphery as an anode electrode, and silver chloride is plated on the spiral silver wire by electrolytic treatment or the like (for example, Patent Document 2).

特開昭55−87942号公報JP 55-87942 A 特開昭62−43556号公報JP 62-43556 A

上記したような従来の残留塩素計では、アノード電極側の酸化反応により溶解した金属イオンがカソード電極の電極面に電着されるために、連続測定を行なう場合、両電極間への印加電圧が経時的に変化してカソード電極での還元電流値が不安定となり、その結果、還元電流値の計測による残留塩素濃度の測定値に誤差を生じやすい。このような金属イオンの電着による測定誤差を少なくするためには、カソード電極にモータを取り付けて駆動回転させるとともに、被検液中に例えばセラミックビーズなどを収容して、回転するカソード電極の電極面とセラミックビーズとを擦り合わせて電極面を常に研磨することが考えられているが、この場合は、カソード電極の研磨のために複雑な機構を必要とし、計器全体の大型化、コストアップは避けられない。   In the conventional residual chlorine meter as described above, the metal ions dissolved by the oxidation reaction on the anode electrode side are electrodeposited on the electrode surface of the cathode electrode. Therefore, when performing continuous measurement, the applied voltage between both electrodes is It changes over time and the reduction current value at the cathode electrode becomes unstable. As a result, an error is likely to occur in the measurement value of the residual chlorine concentration by measurement of the reduction current value. In order to reduce measurement errors due to such metal ion electrodeposition, a motor is attached to the cathode electrode to rotate it, and for example, ceramic beads are accommodated in the test liquid, and the cathode electrode rotates. It is considered that the electrode surface is always polished by rubbing the surface and ceramic beads, but in this case, a complicated mechanism is required for polishing the cathode electrode, which increases the size and cost of the entire instrument. Unavoidable.

また、白金や銀等の金属からなるアノード電極が裸のまま又は塩化銀をメッキコーティングしたものであるために、被検液への浸漬状態で使用される残留塩素の濃度測定時はもとより、非測定時にも徐々に溶解し、さらに、溶解した銀イオン等の金属イオンが塩と反応して溶解クロロ醋イオン(AgCl2-)等を生成し、その結果、溶解が一層促進されるために、アノード電極の消耗が激しくて耐久寿命に欠けるという問題があった。 In addition, since the anode electrode made of a metal such as platinum or silver is bare or is plated with silver chloride, it is not only used for measuring the concentration of residual chlorine used in the immersion state in the test solution. It dissolves gradually at the time of measurement, and further, the dissolved metal ions such as silver ions react with the salt to generate dissolved chloroanions (AgCl2 ) and the like, and as a result, the dissolution is further promoted. There was a problem that the electrode was consumed very much and lacked the durability life.

さらに、カソード及びアノードの両電極が金や白金等の貴金属及び銀等の卑金属の組み合わせからなるガルバニ電池式の残留塩素計の場合は、銀等の卑金属からなるアノード電極の酸化反応により溶出される銀イオン等の金属イオンがカソード極に電着めっきされ還元電流値の変化をきたしたり、被検液中に塩化物イオンが妨害物質として入り込み、例えば水道水中の塩化物イオン濃度によって濃度測定に必要な基準電位が大きく変動することなり、その結果、被検液の種類や性状によってはプラトー領域の電流を得られず、還元電流値の測定による所定の残留塩素濃度測定が行えない場合があるという問題もあった。   Furthermore, in the case of a galvanic cell type residual chlorine meter in which both the cathode and anode electrodes are a combination of a noble metal such as gold or platinum and a base metal such as silver, it is eluted by an oxidation reaction of the anode electrode made of a base metal such as silver. Metal ions such as silver ions are electrodeposited on the cathode electrode, causing a reduction in the reduction current value, or chloride ions enter the test solution as interfering substances. For example, the concentration of chloride ions in tap water is necessary for concentration measurement. As a result, the plateau current may not be obtained depending on the type and properties of the test solution, and the predetermined residual chlorine concentration may not be measured by measuring the reduction current value. There was also a problem.

本発明は上記のような実情に鑑みてなされたもので、その目的は、電極研磨等の複雑な機構を要することなく、アノード電極側の酸化反応に伴う金属イオンのカソード電極面への電着を大幅に低減して残留塩素濃度の連続測定を常に高精度に行なうことができるとともに、アノード電極の耐久寿命を延長化でき、また、ガルバニ電池式の場合、被検液の塩化物濃度等にかかわらず常に安定した基準電位を維持することができる残留塩素計を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to electrodeposit metal ions on the cathode electrode surface accompanying the oxidation reaction on the anode electrode side without requiring a complicated mechanism such as electrode polishing. The continuous measurement of residual chlorine concentration can be performed with high accuracy at all times, and the durability of the anode electrode can be extended. In the case of the galvanic cell type, the chloride concentration of the test solution can be reduced. Regardless, the object is to provide a residual chlorine meter that can always maintain a stable reference potential.

上記目的を達成するために、本発明に係る残留塩素計は、被検液に浸漬した対極と作用極との間に流れる拡散電流を測定することにより、前記被検液中の残留塩素濃度を測定するように構成されている残留塩素計において、前記対極が、その電極本体を液絡部付き筒体内に収容された液間電位差の発生しにくい電解質溶液中に浸漬状態に設けて構成されていることを特徴としている。   In order to achieve the above object, the residual chlorine meter according to the present invention measures the concentration of residual chlorine in the test liquid by measuring the diffusion current flowing between the counter electrode immersed in the test liquid and the working electrode. In the residual chlorine meter configured to measure, the counter electrode is configured so as to be immersed in an electrolyte solution in which the electrode body is housed in a tubular body with a liquid junction portion and is unlikely to generate a liquid-liquid potential difference. It is characterized by being.

上記のような特徴構成を有する本発明の残留塩素計によれば、対極(アノード電極)側の電極本体の酸化反応により溶解した金属イオンを筒体内に収容された電解質溶液中に溶出させてその溶解金属イオンが作用極(カソード電極)の電極面に電着されることを極減することができる。したがって、カソード電極側にその電極面を常に研磨するための複雑な機構を付設しなくても、カソード電極での還元電流値を安定化して、還元電流値の計測による残留塩素濃度の連続測定を常に精度よく行なうことができる。しかも、アノード電極が酸化還元物質共存による影響を受けず、その消耗を可及的に減少することができるので、アノード電極、ひいては、残留塩素計の耐久寿命の延長化を図ることができるという効果を奏する。   According to the residual chlorine meter of the present invention having the above-described characteristic configuration, the metal ions dissolved by the oxidation reaction of the electrode body on the counter electrode (anode electrode) side are eluted into the electrolyte solution contained in the cylinder, and the Electrodeposition of dissolved metal ions on the electrode surface of the working electrode (cathode electrode) can be minimized. Therefore, it is possible to stabilize the reduction current value at the cathode electrode and continuously measure the residual chlorine concentration by measuring the reduction current value without providing a complicated mechanism for constantly polishing the electrode surface on the cathode electrode side. It can always be performed accurately. In addition, since the anode electrode is not affected by the coexistence of the redox substance, and its consumption can be reduced as much as possible, it is possible to extend the durability life of the anode electrode and thus the residual chlorine meter. Play.

加えて、請求項2に記載のように、前記対極(アノード電極)の電極本体が銀/塩化銀等の第2種の電極からなり、前記作用極(カソード電極)が金、白金等の貴金属からなる残留塩素計において、前記液絡部付き筒体内に収容する電解質溶液として、塩化カリウム及び硝酸カリウムを溶媒に解離させたものを用いて、溶液の塩化物イオン濃度を低くすることにより、特にガルバニ電池式のものにおいては、例えば水道水等の被検液の塩化物イオン濃度に影響されることなく、一定の基準電位を維持することが可能で、被検液の種類や性状にかかわらずプラトー領域の電流を安定よく確保して還元電流値の測定による所定の残留塩素濃度測定を確実に行なうことができる。また、硝酸カリウム、特に、高濃度の硝酸カリウム溶液の使用により、液絡部の液間電位発生を著しく減少させることができる。なお、第2種の電極とは、金属極をその難溶性の塩基で被覆したものをいう。   In addition, as described in claim 2, the electrode body of the counter electrode (anode electrode) is composed of a second type electrode such as silver / silver chloride, and the working electrode (cathode electrode) is a noble metal such as gold or platinum. In the residual chlorine meter, the electrolyte solution to be accommodated in the cylinder with the liquid junction is a galvanic solution by reducing the chloride ion concentration of the solution by using potassium chloride and potassium nitrate dissociated in a solvent. In the battery type, for example, it is possible to maintain a constant reference potential without being affected by the chloride ion concentration of the test solution such as tap water, and the plateau regardless of the type and properties of the test solution. A predetermined residual chlorine concentration measurement can be reliably performed by ensuring a stable current in the region and measuring a reduction current value. Further, the use of potassium nitrate, particularly a high-concentration potassium nitrate solution, can significantly reduce the generation of liquid junction potential at the liquid junction. The second type electrode refers to a metal electrode covered with a hardly soluble base.

本発明に係る残留塩素計において、請求項3に記載のように、前記アノード電極を構成する第2種の電極の筒体内に、電極本体の酸化反応により溶出される金属イオンを捕捉するイオントラップ剤を収納するとともに、その液絡部に前記金属イオンの拡散を防止するセラミック部材を設けた構成を採用することによって、電極本体の酸化反応により溶出される銀イオン等の金属イオンや溶解クロロ醋イオン(AgCl2-)等をイオントラップ剤に捕捉(吸着)して、塩化銀等の塩化物の生成を防止するとともに、セラミック部材によって、それらイオンが電解質溶液中に拡散することを抑制でき、これによって、第2種電極の液絡部を閉塞することによる液間電位の変動を防止し、常に一定のブラトー領域の印加電圧を与えることができる。 In the residual chlorine meter according to the present invention, as described in claim 3, an ion trap that traps metal ions eluted by an oxidation reaction of the electrode body in the cylinder of the second type electrode constituting the anode electrode By adopting a configuration in which a ceramic member that prevents the diffusion of the metal ions is provided in the liquid junction portion, the metal ions such as silver ions and the dissolved chloro ion (AgCl2 -) or the like is captured (adsorbed) to the ion trapping agent, thereby preventing the formation of chlorides, such as silver chloride, a ceramic member, can be suppressed that they ions diffuse in the electrolyte solution, which Therefore, it is possible to prevent the fluctuation of the liquid potential caused by closing the liquid junction part of the second type electrode, and to always apply a constant voltage applied to the plateau region.

以下、本発明の一実施例を、図面を参照しながら説明する。
図1は本発明に係る残留塩素計1全体の構成を示す外観斜視図であり、この残留塩素計1は、残留塩素濃度の測定値を表示する表示部2と操作部3を有する計器本体4と、残留塩素センサ部5と、この残留塩素センサ部5と前記計器本体4を雌雄のコネクタ6,7を介して着脱自在に接続する信号伝送用コード8とを備えてなる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an external perspective view showing the overall configuration of a residual chlorine meter 1 according to the present invention. This residual chlorine meter 1 has a display unit 2 for displaying a measured value of residual chlorine concentration and an instrument body 4 having an operation unit 3. And a residual chlorine sensor section 5 and a signal transmission cord 8 for detachably connecting the residual chlorine sensor section 5 and the instrument body 4 via male and female connectors 6 and 7.

図2は前記残留塩素センサ部5の構成を示す要部の拡大縦断面図であり、この残留塩素センサ部5は、前記信号伝送用コード8及びコネクタ6,7を介して計器本体4に内蔵されている測定検出回路9に接続されるアノード電極(対極)10と、カソード電極(作用極)11とを有し、それら両電極10,11を液槽12内に導入された水道水等の被検液13に浸漬させた状態で、前記測定検出回路9から両電極10,11間に電圧を印加し、そのとき、両電極10,11間に流れる拡散電流を測定検出回路9で検出して表示部2に表示させることにより、被検液13中の残留塩素濃度を測定するように構成されている。   FIG. 2 is an enlarged vertical cross-sectional view of the main part showing the configuration of the residual chlorine sensor unit 5. This residual chlorine sensor unit 5 is built in the instrument body 4 via the signal transmission cord 8 and the connectors 6 and 7. An anode electrode (counter electrode) 10 connected to the measurement detection circuit 9 and a cathode electrode (working electrode) 11, and both the electrodes 10, 11 are made of tap water or the like introduced into the liquid tank 12. A voltage is applied between the electrodes 10 and 11 from the measurement detection circuit 9 while being immersed in the test solution 13, and at this time, a diffusion current flowing between the electrodes 10 and 11 is detected by the measurement detection circuit 9. By displaying on the display unit 2, the residual chlorine concentration in the test liquid 13 is measured.

上記残留塩素センサ部5におけるアノード電極10は、その下端部に液絡部14を有する、例えばガラス管状体からなる筒体15内に前記被検液13との間で液間電位差の発生しにくい電解質溶液16が収容され、この電解質溶液16中に第2種の電極として、銀棒17の先端に塩化銀を溶融付着してなる銀/塩化銀からなる電極本体18を浸漬状態に設けて構成されている。前記電解質溶液16は、例えば、0.001〜0.0001mol/Lの塩化カリウム(KCl)及び1mol/Lの硝酸カリウム(KNO3 )を溶媒(水)に解離させたものである。 The anode electrode 10 in the residual chlorine sensor unit 5 has a liquid junction 14 at the lower end thereof. For example, a liquid potential difference is hardly generated between the test solution 13 and the tube 15 made of a glass tubular body. An electrolyte solution 16 is accommodated, and an electrode body 18 made of silver / silver chloride formed by melting and adhering silver chloride to the tip of a silver bar 17 is provided in the electrolyte solution 16 as a second type electrode in an immersed state. Has been. The electrolyte solution 16 is obtained by, for example, dissociating 0.001 to 0.0001 mol / L potassium chloride (KCl) and 1 mol / L potassium nitrate (KNO 3 ) into a solvent (water).

また、前記筒体15内の底部には、アノード電極10の電極本体18の酸化反応により溶出される銀イオン(Ag+ )及び溶解クロロ醋イオン(AgCl2-等)を脱離し捕捉するイオントラップ剤として、無機質陽イオン交換剤19が収納されているとともに、前記液絡部14には、セラミック部材20が設けられている。前記無機質陽イオン交換剤19は、例えばZrO2 系のもので、具体的には、東亜合成化学工業株式会社製の商品名IXE(イグゼ)が用いられる。また、前記多孔質セラミック部材20としては、例えばAl23 系の多孔性セラミックが用いられる。 Further, an ion trapping agent that desorbs and captures silver ions (Ag + ) and dissolved chloroanions (AgCl 2 − and the like) eluted by the oxidation reaction of the electrode body 18 of the anode electrode 10 at the bottom of the cylindrical body 15. As described above, the inorganic cation exchanger 19 is accommodated, and the liquid junction portion 14 is provided with a ceramic member 20. The inorganic cation exchanger 19 is, for example, a ZrO 2 type, and specifically, trade name IXE manufactured by Toa Gosei Chemical Co., Ltd. is used. In addition, as the porous ceramic member 20, for example, an Al 2 O 3 based porous ceramic is used.

一方、下端部が前記筒体15の底部よりも突出するように前記筒体15に貫通し固定された合成樹脂製の内筒21の下端に金(Au)または白金(Pt)からなる電極チップ22が水密状態に固定保持されており、この電極チップ22に電気的に接続されたリード線23を前記内筒21に挿通させて前記信号伝送用コード8に接続することによって、前記カソード電極11が構成されている。   On the other hand, an electrode chip made of gold (Au) or platinum (Pt) at the lower end of an inner cylinder 21 made of synthetic resin that is penetrated and fixed to the cylinder 15 so that the lower end protrudes from the bottom of the cylinder 15. 22 is fixedly held in a watertight state, and a lead wire 23 electrically connected to the electrode chip 22 is inserted into the inner cylinder 21 and connected to the signal transmission cord 8, whereby the cathode electrode 11. Is configured.

上記のように構成された残留塩素計1においては、アノード電極(対極)10及びカソード電極(作用極)11を液槽12内に導入された水道水等の被検液13に浸漬させた状態で、計器本体4の測定検出回路9から両電極10,11間に電圧を印加すると、アノード電極10側で酸化反応が、また、カソード電極11側で還元反応が生じ、これら酸化還元反応という電極反応により、被検液13中の残留塩素濃度に比例した電流(拡散電流)がアノード電極10からカソード電極11に向かって流れることになり、その拡散電流の大きさを測定検出回路9で検出して表示部2に表示させることにより、被検液13の残留塩素濃度を測定する。   In the residual chlorine meter 1 configured as described above, the anode electrode (counter electrode) 10 and the cathode electrode (working electrode) 11 are immersed in a test solution 13 such as tap water introduced into the liquid tank 12. When a voltage is applied between the electrodes 10 and 11 from the measurement detection circuit 9 of the meter body 4, an oxidation reaction occurs on the anode electrode 10 side and a reduction reaction occurs on the cathode electrode 11 side. Due to the reaction, a current (diffusion current) proportional to the residual chlorine concentration in the test solution 13 flows from the anode electrode 10 toward the cathode electrode 11, and the magnitude of the diffusion current is detected by the measurement detection circuit 9. By displaying on the display unit 2, the residual chlorine concentration of the test solution 13 is measured.

ここで、前記アノード電極10側の銀/塩化銀からなる電極本体18の酸化反応により溶解した銀イオン(Ag+ )や溶解クロロ醋イオン(AgCl2-等)は筒体15内の電解質溶液16中に設けられた無機質陽イオン交換剤19により捕捉され、塩化銀の生成が防止される。また、無機質陽イオン交換剤19の下部の液絡部14に設けられているセラミック部材20により、捕捉された銀イオン(Ag+ )や溶解クロロ醋イオン(AgCl2-等)が被検液13中に拡散することが防止される。これによって、銀イオン(Ag+ )や溶解クロロ醋イオン(AgCl2-等)がカソード電極11の電極チップ22表面に電着されることを極減することが可能であり、カソード電極11側にその電極チップ22表面を研磨するための複雑な機構を付設しなくても、カソード電極11での還元電流値を安定化して、残留塩素濃度の連続測定を常に精度よく行なうことができる。 Here, silver ions (Ag + ) and dissolved chloroanions (AgCl 2 − and the like) dissolved by the oxidation reaction of the electrode body 18 made of silver / silver chloride on the anode electrode 10 side are contained in the electrolyte solution 16 in the cylinder 15. Is captured by the inorganic cation exchange agent 19 provided in the substrate, and the formation of silver chloride is prevented. The trapped silver ions (Ag + ) and dissolved chloroanions (AgCl 2 etc.) are contained in the test liquid 13 by the ceramic member 20 provided in the liquid junction 14 below the inorganic cation exchanger 19. Is prevented from diffusing. As a result, it is possible to reduce the electrodeposition of silver ions (Ag + ) and dissolved chloroanions (AgCl 2 etc.) onto the surface of the electrode tip 22 of the cathode electrode 11, Even if a complicated mechanism for polishing the surface of the electrode tip 22 is not provided, the reduction current value at the cathode electrode 11 can be stabilized and the continuous measurement of the residual chlorine concentration can always be accurately performed.

また、アノード電極10が酸化還元物質共存による影響を受けず、その消耗が可及的に減少されるので、アノード電極10、ひいては、残留塩素計1の残留塩素センサ部5の耐久寿命を延長化することができる。   Further, since the anode electrode 10 is not affected by the coexistence of the redox substance and its consumption is reduced as much as possible, the durability life of the anode electrode 10 and consequently the residual chlorine sensor portion 5 of the residual chlorine meter 1 is extended. can do.

さらに、前記液絡部14付き筒体15内に収容する電解質溶液16として、0.001〜0.0001mol/LのKCl+1mol/LのKNO3 溶液を用いることにより、この電解質溶液16の塩化物イオン濃度が低くなり、例えば水道水等の被検液13の塩化物イオン濃度に影響されることなく、一定の基準電位を維持することが可能で、被検液13の種類や性状にかかわらずプラトー領域の電流を得るための印加電圧を安定よく確保して還元電流値の測定による所定の残留塩素濃度測定を確実に行なうことができる。また、1mol/LのKNO3 という高濃度の硝酸カリウム溶液を使用することにより、液絡部14の液間電位発生を著しく減少させることができるとともに、アノード電極10の電極面及び硝酸カリウム溶液界面の電気二重層によりインピーダンスを低減し測定感度の向上を達成することができる。 Further, by using 0.001 to 0.0001 mol / L KCl + 1 mol / L KNO 3 solution as the electrolyte solution 16 accommodated in the tubular body 15 with the liquid junction part 14, chloride ions of the electrolyte solution 16 are used. It is possible to maintain a constant reference potential without being affected by the chloride ion concentration of the test liquid 13 such as tap water, and the plateau regardless of the type and properties of the test liquid 13. The applied voltage for obtaining the current in the region can be secured stably, and the predetermined residual chlorine concentration can be reliably measured by measuring the reduction current value. In addition, by using a potassium nitrate solution having a high concentration of 1 mol / L KNO 3 , it is possible to remarkably reduce the generation of liquid junction potential at the liquid junction 14, as well as the electricity between the electrode surface of the anode electrode 10 and the potassium nitrate solution interface. The double layer can reduce impedance and achieve improved measurement sensitivity.

なお、上記実施例では、アノード電極10の電極本体18が銀/塩化銀からなり、カソード電極11の電極チップ22が金または白金からなるガルバニ電池式の残留塩素計1に適用したものについて説明したが、電極本体18が銀/塩化銀等の第2種の電極からなり、電極チップ22が金や白金等の貴金属からなるポーラロ式の残留塩素計に適用してもよいこともちろんである。この場合でも、カソード電極11への金属イオンの電着防止効果並びに耐久寿命の延長化効果を同様に達成できるものである。   In the above embodiment, the electrode body 18 of the anode electrode 10 made of silver / silver chloride and the electrode tip 22 of the cathode electrode 11 applied to the galvanic cell type residual chlorine meter 1 made of gold or platinum has been described. However, it goes without saying that the electrode main body 18 may be made of a second type electrode such as silver / silver chloride, and the electrode tip 22 may be applied to a polaro residual chlorine meter made of a noble metal such as gold or platinum. Even in this case, the effect of preventing the electrodeposition of metal ions on the cathode electrode 11 and the effect of extending the durability life can be achieved in the same manner.

本発明に係る残留塩素計全体の構成を示す外観斜視図である。It is an external appearance perspective view which shows the structure of the whole residual chlorine meter which concerns on this invention. 同上残留塩素計における残留塩素センサ部の構成を示す要部の拡大縦断面図である。It is an expanded vertical sectional view of the principal part which shows the structure of the residual chlorine sensor part in a residual chlorine meter same as the above.

符号の説明Explanation of symbols

1 残留塩素計
10 アノード電極(対極)
11 カソード電極(作用極)
13 被検液
14 液絡部
15 筒体
16 電解質溶液(0.001〜0.0001mol/LのKCl+1mol/LのK NO3 溶液)
19 無機質陽イオン交換剤(イオントラップ剤)
20 セラミック部材
1 Residual chlorine meter 10 Anode electrode (counter electrode)
11 Cathode electrode (working electrode)
13 Test solution 14 Liquid junction 15 Tube 16 Electrolyte solution (0.001 to 0.0001 mol / L KCl + 1 mol / L KNO 3 solution)
19 Inorganic cation exchanger (ion trapping agent)
20 Ceramic parts

Claims (4)

被検液に浸漬した対極と作用極との間に流れる拡散電流を測定することにより、前記被検液中の残留塩素濃度を測定するように構成されている残留塩素計において、
前記対極が、その電極本体を液絡部付き筒体内に収容された液間電位差の発生しにくい電解質溶液中に浸漬状態に設けて構成されていることを特徴とする残留塩素計。
In the residual chlorine meter configured to measure the residual chlorine concentration in the test liquid by measuring the diffusion current flowing between the counter electrode immersed in the test liquid and the working electrode,
The residual chlorine meter, wherein the counter electrode is configured so as to be immersed in an electrolyte solution in which an electrode main body is contained in a cylinder with a liquid junction portion and is less likely to generate an inter-liquid potential difference.
前記対極の電極本体が、銀/塩化銀等の第2種の電極からなり、前記作用極が金、白金等の貴金属からなり、かつ、前記電解質溶液が塩化カリウム及び硝酸カリウムを溶媒に解離させたものである請求項1に記載の残留塩素計。   The electrode body of the counter electrode is made of a second type electrode such as silver / silver chloride, the working electrode is made of a noble metal such as gold or platinum, and the electrolyte solution dissociates potassium chloride and potassium nitrate into a solvent. The residual chlorine meter according to claim 1, wherein 前記対極を構成する第2種の電極の筒体内には、電極本体の酸化反応により溶出される金属イオンを捕捉するイオントラップ剤が収納されているとともに、その液絡部には前記金属イオンの拡散を防止するセラミック部材が設けられている請求項1または2に記載の残留塩素計。   In the cylinder of the second type electrode constituting the counter electrode, an ion trap agent for trapping metal ions eluted by the oxidation reaction of the electrode body is housed, and the liquid ion portion contains the metal ions. The residual chlorine meter according to claim 1 or 2, wherein a ceramic member for preventing diffusion is provided. 前記イオントラップ剤が、無機質陽イオン交換剤である請求項3に記載の残留塩素計。   The residual chlorine meter according to claim 3, wherein the ion trapping agent is an inorganic cation exchanger.
JP2004164164A 2004-06-02 2004-06-02 Residual chlorine meter Withdrawn JP2005345222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164164A JP2005345222A (en) 2004-06-02 2004-06-02 Residual chlorine meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164164A JP2005345222A (en) 2004-06-02 2004-06-02 Residual chlorine meter

Publications (1)

Publication Number Publication Date
JP2005345222A true JP2005345222A (en) 2005-12-15

Family

ID=35497754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164164A Withdrawn JP2005345222A (en) 2004-06-02 2004-06-02 Residual chlorine meter

Country Status (1)

Country Link
JP (1) JP2005345222A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1870159A1 (en) * 2005-04-08 2007-12-26 Sumitomo Chemical Company, Limited Method for producing supported ruthenium oxide and method for producing chlorine
WO2011122765A2 (en) * 2010-03-31 2011-10-06 서울대학교 산학협력단 Reference potential adjustment device and a measuring device equipped with the same
KR101683418B1 (en) * 2016-04-05 2016-12-06 대윤계기산업 주식회사 coulometric titration-based portable-type chloride measurement system in concrete
KR101753329B1 (en) 2016-09-12 2017-07-03 대윤계기산업 주식회사 coulometric titration-based portable-type chloride measuring apparatus
WO2017175953A1 (en) * 2016-04-05 2017-10-12 Dae Yoon Scale Industrial Co., Ltd. Coulometric titration-based portable chloride measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1870159A1 (en) * 2005-04-08 2007-12-26 Sumitomo Chemical Company, Limited Method for producing supported ruthenium oxide and method for producing chlorine
EP1870159A4 (en) * 2005-04-08 2009-09-16 Sumitomo Chemical Co Method for producing supported ruthenium oxide and method for producing chlorine
WO2011122765A2 (en) * 2010-03-31 2011-10-06 서울대학교 산학협력단 Reference potential adjustment device and a measuring device equipped with the same
WO2011122765A3 (en) * 2010-03-31 2011-12-29 서울대학교 산학협력단 Reference potential adjustment device and a measuring device equipped with the same
KR101683418B1 (en) * 2016-04-05 2016-12-06 대윤계기산업 주식회사 coulometric titration-based portable-type chloride measurement system in concrete
WO2017175953A1 (en) * 2016-04-05 2017-10-12 Dae Yoon Scale Industrial Co., Ltd. Coulometric titration-based portable chloride measuring apparatus
KR101753329B1 (en) 2016-09-12 2017-07-03 대윤계기산업 주식회사 coulometric titration-based portable-type chloride measuring apparatus

Similar Documents

Publication Publication Date Title
US8329024B2 (en) Electrochemical device and method for long-term measurement of hypohalites
US8142641B2 (en) Electrochemical sensor
KR100481663B1 (en) Biosensor contained mesoporous platinum and method of determining concentration using same
JP6240543B2 (en) Electrode tip and method for quantitative determination of chemical substance
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
JP6304677B2 (en) Residual chlorine measuring device and residual chlorine measuring method
JPWO2020091033A1 (en) Tripolar electrode having a conductive diamond electrode as a reference electrode, an apparatus, and an electrochemical measurement method
JP2005345222A (en) Residual chlorine meter
JP6518937B2 (en) Solid-type residual chlorine sensor and water meter equipped with the same
JP4671565B2 (en) Diaphragm electrode
JP5935037B2 (en) Polarographic residual chlorine sensor
JP4217077B2 (en) Stabilization method of diaphragm type electrode
JP3530627B2 (en) Method and apparatus for measuring oxygen content in gas
Bier Introduction to oxidation reduction potential measurement
JP7177341B2 (en) Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
JP3838435B2 (en) Hypochlorous acid concentration measuring device
JP2000131276A (en) Potable type residual chlorine meter
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP3813606B2 (en) Combined electrode of electrolysis electrode and redox potential measurement electrode
Haider et al. Electrodes in potentiometry
KR200344894Y1 (en) Gas Permeable Membrane Type Residual Chlorine Sensor On Electrochemistry And Measurement Equipment Use Thereof
JP2004053613A (en) Oxidation-reduction potential measuring device
JP2015034740A (en) Oxidation-reduction current measuring electrode unit and oxidation-reduction current measuring apparatus
JP5212306B2 (en) Diaphragm electrochemical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100126