JP2017015669A - Residual chlorine measurement method and residual chlorine measurement device - Google Patents

Residual chlorine measurement method and residual chlorine measurement device Download PDF

Info

Publication number
JP2017015669A
JP2017015669A JP2015135750A JP2015135750A JP2017015669A JP 2017015669 A JP2017015669 A JP 2017015669A JP 2015135750 A JP2015135750 A JP 2015135750A JP 2015135750 A JP2015135750 A JP 2015135750A JP 2017015669 A JP2017015669 A JP 2017015669A
Authority
JP
Japan
Prior art keywords
residual chlorine
concentration
sample water
carrier liquid
chlorine concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135750A
Other languages
Japanese (ja)
Inventor
正芳 福岡
Masayoshi Fukuoka
正芳 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Hokuto Denko Corp
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Hokuto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Hokuto Denko Corp filed Critical Meidensha Corp
Priority to JP2015135750A priority Critical patent/JP2017015669A/en
Publication of JP2017015669A publication Critical patent/JP2017015669A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure a residual chlorine concentration.SOLUTION: There is provided a residual chlorine measurement device 1 comprising an injection valve 2 and a flow cell 3. A liquid feed pump 9 pumps a carrier liquid to the injection valve 2. Sample water is injected into the carrier liquid circulating through the injection valve 2, and the carrier liquid including the sample water is supplied to the flow cell 3. The flow cell 3 is provided with a working electrode, a reference electrode and a counter electrode, a potentiostat keeps the potential of the working electrode constant relative to the reference electrode, and a current (or electric charge) flowing between the working electrode and counter electrode is measured. A residual chlorine concentration in the sample water is measured on the basis of the measured electric charge.SELECTED DRAWING: Figure 1

Description

本発明は、残留塩素測定方法及び残留塩素測定装置に関する。特に、電気化学測定法を検出系としたフローインジェクション分析法による残留塩素の測定方法及び測定装置に関する。   The present invention relates to a residual chlorine measuring method and a residual chlorine measuring device. In particular, the present invention relates to a method and an apparatus for measuring residual chlorine by flow injection analysis using an electrochemical measurement method as a detection system.

塩素による消毒は、消毒効果が高く、維持管理が容易である等の理由から、上水と下水の消毒に世界的に広く用いられている。日本においては、水道水の消毒として義務付けられており、下水処理水においても晴天時の高級処理水や雨天時の簡易処理水の消毒に用いられている。そこで、上水道及び下水道において、水質を管理する上で残留塩素の測定は重要な測定項目となっている。   Disinfection with chlorine is widely used worldwide for disinfection of clean water and sewage because of its high disinfection effect and easy maintenance. In Japan, it is obligated to disinfect tap water, and sewage treated water is also used for disinfecting high-quality treated water in fine weather and simple treated water in rainy weather. Therefore, measurement of residual chlorine is an important measurement item in managing water quality in waterworks and sewers.

残留塩素とは、水中に存在する遊離形有効塩素(遊離残留塩素)及びこれらがアンモニア等と結合したクロラミンのような結合形有効塩素(結合残留塩素)をいい、残留塩素濃度とは、遊離残留塩素濃度と結合残留塩素濃度の合量となる。   Residual chlorine refers to free effective chlorine existing in water (free residual chlorine) and bound effective chlorine (bonded residual chlorine) such as chloramine combined with ammonia. Residual chlorine concentration refers to free residual chlorine. It is the total amount of chlorine concentration and combined residual chlorine concentration.

残留塩素の測定法は、上水道では水道法施行規則(厚生労働省令)第17条第2項の規定に基づき厚生労働大臣が定める遊離残留塩素及び結合残留塩素の検査方法が定められている。遊離残留塩素については、(1)ジエチル−p−フェニレンジアミン法(以下、DPD法という)、(2)電流法、(3)吸光光度法、(4)連続自動測定器による吸光光度法、(5)ポーラログラフ法が定められている。また、結合残留塩素については、(1)DPD法、(2)電流法、(3)吸光光度法が定められている。また、下水道では、(1)DPD法、(2)オルトトリジン法(OT法)、(3)オルトトリジン亜ヒ酸法(OTA法)、(4)ヨウ素滴定法、が記載されている(例えば、非特許文献1)。   As for the measurement method of residual chlorine, the inspection method of free residual chlorine and combined residual chlorine specified by the Minister of Health, Labor and Welfare is stipulated in the waterworks based on the provisions of Article 17 Paragraph 2 of the Water Supply Law Enforcement Regulations (Ministry of Health, Labor and Welfare). For free residual chlorine, (1) diethyl-p-phenylenediamine method (hereinafter referred to as DPD method), (2) current method, (3) absorptiometry, (4) absorptiometry using a continuous automatic measuring instrument, 5) The polarographic law is established. In addition, (1) DPD method, (2) current method, and (3) absorptiometric method are defined for bonded residual chlorine. In the sewerage system, (1) DPD method, (2) orthotolidine method (OT method), (3) orthotolidine arsenite method (OTA method), and (4) iodine titration method are described (for example, non- Patent Document 1).

その他、フローインジェクション/電気化学検出法による残留塩素の定量方法(例えば、非特許文献2)や、陽極酸化反応を利用する遊離塩素の定量分析方法(例えば、非特許文献3)が提案されている。電気化学測定法は、電極上での酸化還元反応に伴う電流または電圧変化を測定する方法で、無機化学、分析化学、有機化学、生物学、医学等の幅広い分野で利用されている。また、フローインジェクション分析法は、例えば、試薬溶液を一定流速で流して容量計測を行い、一定量の試料を試薬溶液の流れに注入して、フッ素樹脂製等の配管をフラスコやビーカ等の反応容器に見立てて両液の混合と反応を行う方法である。フローインジェクション分析法は、可動部分が少なく、動くのは溶液の方という特徴があるため、装置化が容易である。   In addition, a method for quantifying residual chlorine by flow injection / electrochemical detection (for example, Non-Patent Document 2) and a method for quantitative analysis of free chlorine using an anodic oxidation reaction (for example, Non-Patent Document 3) have been proposed. . The electrochemical measurement method is a method for measuring a current or voltage change accompanying an oxidation-reduction reaction on an electrode, and is used in a wide range of fields such as inorganic chemistry, analytical chemistry, organic chemistry, biology, and medicine. The flow injection analysis method, for example, performs volume measurement by flowing a reagent solution at a constant flow rate, injects a certain amount of sample into the flow of the reagent solution, and connects a pipe made of fluororesin or the like to a reaction such as a flask or beaker. This is a method of mixing and reacting both liquids as if they were containers. The flow injection analysis method is easy to implement because it has few moving parts and moves as a solution.

フローインジェクション分析法は、試薬溶液と測定に影響を与えない蒸留水等のキャリア液との2本の流路を設け、試料溶液をキャリア液の流れに導入する方法が一般的な構成である。これに対して、試薬溶液の代わりに試料溶液とキャリア液を一定流速で流し、試薬溶液をキャリア液の流れに導入する逆フローインジェクション分析法と呼ばれる方法や、高価な試薬を使用する場合には、試薬溶液をキャリア液に導入した後、検出器のところで一端流れを停止するストップトフロー方式や単一の試料流路に対して複数のキャリア液、試薬溶液の流路を設けて多成分の分析を行う方法等さまざまな方法がある。   The flow injection analysis method generally includes a method of providing two flow paths of a reagent solution and a carrier liquid such as distilled water that does not affect the measurement, and introducing the sample solution into the flow of the carrier liquid. On the other hand, when using a method called reverse flow injection analysis, in which the sample solution and the carrier liquid are flowed at a constant flow rate instead of the reagent solution, and the reagent solution is introduced into the carrier liquid flow, or when an expensive reagent is used. After introducing the reagent solution into the carrier liquid, a multi-component flow system with multiple carrier liquids and reagent solutions is provided for a stopped flow system in which the flow is stopped once at the detector or a single sample flow path. There are various methods such as analysis methods.

また、塩素の監視として用いられる残留塩素計として、いくつかの機種が製品化されている(特許文献1乃至3)。さらに、連続測定方式の残留塩素計では、回転微小電極を用いたポーラログラフ法が主として採用されている。この測定方法では、受水槽に取り付けられた検出器の作用電極(検知電極)と対極に対して、対象となる試料水中の残留塩素の電解還元に最適な一定の電圧をかけることによって、受水槽に試料水が通水されると、残留塩素濃度に比例した還元電流(拡散電流)が作用電極と対極間に流れ、この電流を検出して残留塩素濃度が測定される。   Also, several types of residual chlorine meters used for monitoring chlorine have been commercialized (Patent Documents 1 to 3). Furthermore, in the continuous measurement type residual chlorine meter, a polarographic method using a rotating microelectrode is mainly employed. In this measurement method, by applying a certain voltage optimum for electrolytic reduction of residual chlorine in the target sample water to the working electrode (detection electrode) and counter electrode of the detector attached to the water receiving tank, the water receiving tank When sample water is passed through, a reduction current (diffusion current) proportional to the residual chlorine concentration flows between the working electrode and the counter electrode, and this current is detected to measure the residual chlorine concentration.

また、下水や排水には、一般に結合残留塩素が多く含まれることから、有試薬方式が用いられている。有試薬方式は、用いる試薬を選択することにより、全残留塩素と遊離残留塩素の測定を使い分けているが、同一試薬で遊離残留塩素、結合残留塩素、全残留塩素の分別測定が可能なタイプもある。また、上水用には、無試薬方式が遊離残留塩素のみの測定に用いられている。   In addition, a reagent-based system is used because sewage and wastewater generally contain a large amount of combined residual chlorine. In the reagent-based system, the measurement of total residual chlorine and free residual chlorine is properly used by selecting the reagent to be used, but there are types that can separately measure free residual chlorine, combined residual chlorine, and total residual chlorine with the same reagent. is there. For water supply, the reagentless method is used to measure only free residual chlorine.

特開2010−185864号公報JP 2010-185864 A 特開2009−085749号公報JP 2009-085749 A 特開2005−345222号公報JP 2005-345222 A 特開2010−197383号公報JP 2010-197383 A 特開2000−119885号公報JP 2000-119885 A

”下水試験法 上巻 2012年”、公益社団法人 日本下水道協会、2012年12月、p365−372"Sewage test method, first volume 2012", Japan Sewerage Association, December 2012, p365-372 ”分析化学”、公益社団法人 日本分析化学会、1999年、Vol.48、No.12、pp1123−1129“Analytical Chemistry”, Japan Analytical Chemical Society, 1999, Vol. 48, no. 12, pp 1123-1129 ”分析化学”、公益社団法人 日本分析化学会、2009年、Vol.58、No.7、pp583−594“Analytical Chemistry”, Japan Analytical Chemical Society, 2009, Vol. 58, no. 7, pp583-594

しかしながら、水道法施行規則で定められた遊離残留塩素及び結合残留塩素の検査方法や、非特許文献1に記載された測定方法は、各種の無機酸や有機化合物を使用するため、試料の調製操作が煩雑である。また、オルトトリジン法(OT法)は、オルトトリジンが発癌性や中程度の急性毒性があることから特定化学物質に指定され、平成14年(2002年)4月1日から削除されている。また、オルトトリジン亜ヒ酸法(OTA法)は、試薬としてメタ亜ヒ酸ナトリウムを使用するが、毒物劇物取締法で指定された毒物で、廃棄の際には都道府県知事等の許可を受けた産業廃棄物業者に処理を委託する必要があり取扱いが厄介である。   However, the inspection method for free residual chlorine and bound residual chlorine specified in the Enforcement Regulations of the Water Supply Law and the measurement method described in Non-Patent Document 1 use various inorganic acids and organic compounds. Is complicated. In addition, the orthotolidine method (OT method) is designated as a specific chemical substance because it has carcinogenicity and moderate acute toxicity, and has been deleted from April 1, 2002. The orthotolidine arsenite method (OTA method) uses sodium meta arsenite as a reagent, but it is a toxic substance specified by the Poisonous and Deleterious Substances Control Law, and is approved by the prefectural governor at the time of disposal. It is necessary to entrust the treatment to an industrial waste supplier, which is difficult to handle.

上水道や下水道の残留塩素をDPD吸光光度法で測定する場合、ポータブルタイプの残留塩素計が広く用いられている。連続で残留塩素を測定する場合には、回転微小電極を用いたポーラログラフ法の連続測定方式の残留塩素計が採用されている。しかし、連続で測定する場合には、還元反応によって作用電極が汚れるため、作用電極にモータを取り付けて回転させ、溶液中に入れたセラミックビーズやガラスビーズと擦り合せて電極面が汚れないように常に研磨する必要がある。そのため、電極面がセラミックビーズやガラスビーズと擦り合わされることで摩耗し、電極の寿命が劣化する問題点がある。   When measuring residual chlorine in waterworks and sewers by the DPD absorption photometry method, a portable type residual chlorine meter is widely used. When continuously measuring residual chlorine, a polarographic continuous measurement residual chlorine meter using a rotating microelectrode is employed. However, when measuring continuously, the working electrode is contaminated by the reduction reaction, so a motor is attached to the working electrode and rotated so that the electrode surface does not become dirty by rubbing with ceramic beads or glass beads placed in the solution. It is always necessary to polish. Therefore, there is a problem that the electrode surface is worn by being rubbed with ceramic beads or glass beads, and the life of the electrode is deteriorated.

上記事情に鑑み、本発明は、試料水中の残留塩素濃度を精度よく測定する測定方法及び測定装置を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a measurement method and a measurement apparatus that accurately measure the residual chlorine concentration in sample water.

上記目的を達成する本発明の残留塩素測定方法は、試料水の残留塩素濃度を測定する残留塩素測定方法であって、純水をキャリア液として流通させ、前記キャリア液に前記試料水を注入し、前記試料水が注入されたキャリア液を所定の速度でフローセルに供給し、前記フローセルに配置された電極間に電圧を印加して検出される電流または電荷に基づいて、前記試料中の残留塩素濃度を測定することを特徴としている。   The residual chlorine measurement method of the present invention that achieves the above object is a residual chlorine measurement method for measuring the residual chlorine concentration of sample water, wherein pure water is circulated as a carrier liquid, and the sample water is injected into the carrier liquid. The carrier liquid injected with the sample water is supplied to the flow cell at a predetermined speed, and the residual chlorine in the sample is determined based on the current or charge detected by applying a voltage between the electrodes arranged in the flow cell. It is characterized by measuring the concentration.

また、上記目的を達成する本発明の残留塩素測定装置は、キャリア液に注入された試料水が所定の速度で導入されるフローセルと、該フローセルに配置される電極間に電圧を印加して検出される電流または電荷に基づいて、前記試料水中の残留塩素濃度を測定する測定手段と、を備え、前記キャリア液は、純水であることを特徴としている。   In addition, the residual chlorine measuring apparatus of the present invention that achieves the above object is detected by applying a voltage between the flow cell into which the sample water injected into the carrier liquid is introduced at a predetermined speed and the electrode disposed in the flow cell. Measuring means for measuring the residual chlorine concentration in the sample water based on the electric current or electric charge, and the carrier liquid is pure water.

以上の発明によれば、試料水中の残留塩素濃度を精度よく測定することができる。   According to the above invention, the residual chlorine concentration in sample water can be measured accurately.

本発明の第1実施形態に係る残留塩素測定装置の概略図である。It is the schematic of the residual chlorine measuring apparatus which concerns on 1st Embodiment of this invention. 電気量に及ぼす印加電圧の影響を示す図である。It is a figure which shows the influence of the applied voltage which acts on the amount of electricity. 電気量に及ぼすキャリア液流速の影響を示す図である。It is a figure which shows the influence of the carrier liquid flow velocity which acts on an electric quantity. 電気化学法による次亜塩素酸ナトリウムの測定結果を示す図である。It is a figure which shows the measurement result of sodium hypochlorite by an electrochemical method. 0〜1mg/Lの次亜塩素酸ナトリウム溶液の測定結果を示す図である。It is a figure which shows the measurement result of 0-1 mg / L sodium hypochlorite solution. 0〜0.08mg/Lの次亜塩素酸ナトリウム溶液の測定結果を示す図である。It is a figure which shows the measurement result of 0-0.08 mg / L sodium hypochlorite solution. 次亜塩素酸ナトリウム(1mg/L)の連続測定結果を示す図である。It is a figure which shows the continuous measurement result of sodium hypochlorite (1 mg / L). 10〜100mg/Lの次亜塩素酸ナトリウム溶液の測定結果を示す図である。It is a figure which shows the measurement result of a 10-100 mg / L sodium hypochlorite solution. 50〜800mg/Lの次亜塩素酸ナトリウム溶液の測定結果を示す図である。It is a figure which shows the measurement result of a 50-800 mg / L sodium hypochlorite solution. 反応時間に対する電気量の変動を示す図である。It is a figure which shows the fluctuation | variation of the electric quantity with respect to reaction time. 遊離残留塩素濃度に及ぼす塩化アンモニウムの影響を示す図である。It is a figure which shows the influence of ammonium chloride which acts on a free residual chlorine concentration. 本発明の第2実施形態に係る残留塩素測定装置の概略図である。It is the schematic of the residual chlorine measuring apparatus which concerns on 2nd Embodiment of this invention. ヨウ化カリウム濃度の効果を示す図である。It is a figure which shows the effect of potassium iodide concentration. 結合残留塩素測定に及ぼすヨウ化カリウムの添加効果を示す図である。It is a figure which shows the addition effect of potassium iodide which acts on a joint residual chlorine measurement. 電気化学法とDPD法との比較を示す図である。It is a figure which shows the comparison with an electrochemical method and DPD method. 遊離塩素と結合塩素が混在する試料水の2流路による電気化学測定結果を示す図である。It is a figure which shows the electrochemical measurement result by two flow paths of the sample water in which free chlorine and combined chlorine are mixed. 電気化学法とDPD法との比較を示す図である。It is a figure which shows the comparison with an electrochemical method and DPD method. 遊離塩素と結合塩素が混在する試料水の全塩素濃度と電気量の関係を示す図である。It is a figure which shows the relationship between the total chlorine concentration of the sample water in which free chlorine and combined chlorine are mixed, and an electric quantity.

本発明の実施形態に係る残留塩素測定方法及び残留塩素測定装置について図面を参照して詳細に説明する。なお、実施形態の説明において残留塩素と記載があるとき、遊離残留塩素と結合残留塩素の合量である全塩素を意味するものとする。また、次亜塩素酸ナトリウムの有効塩素濃度表示(mg/L)並びに遊離残留塩素濃度、残留塩素濃度の表示(mg/L)については、特に記載のない限り、試料中の塩素濃度(Cl mg/L)を表すものとする。   A residual chlorine measuring method and a residual chlorine measuring device according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, when there is description as residual chlorine in description of embodiment, it shall mean the total chlorine which is the total amount of free residual chlorine and combined residual chlorine. In addition, regarding the effective chlorine concentration display (mg / L) of sodium hypochlorite and the display of free residual chlorine concentration and residual chlorine concentration (mg / L), unless otherwise specified, the chlorine concentration (Cl mg) in the sample. / L).

本発明の残留塩素測定方法では、電気化学測定法を検出系としたフローインジェクション分析法により試料水中(例えば、上水や下水中)の残留塩素濃度を測定する。   In the residual chlorine measuring method of the present invention, the residual chlorine concentration in sample water (for example, clean water or sewage) is measured by flow injection analysis using an electrochemical measurement method as a detection system.

[第1実施形態]
図1は、本発明の第1実施形態に係る残留塩素測定装置1の概略図である。残留塩素測定装置1は、キャリア液及び試料水が注入されるインジェクションバルブ2と、フローセル3と、を備える。
[First Embodiment]
FIG. 1 is a schematic view of a residual chlorine measuring apparatus 1 according to the first embodiment of the present invention. The residual chlorine measuring device 1 includes an injection valve 2 into which a carrier liquid and sample water are injected, and a flow cell 3.

インジェクションバルブ2はキャリア液の流れに試料水を導入するための注入手段である。図示されたインジェクションバルブ2は六方ロータリーバルブタイプであるが、注入手段はこの形態に限定されるものではない。また、実施形態の説明では、試料水をインジェクションバルブ2に直接手動注入しているが、別途試料水をインジェクションバルブ2に注入する細管を設けることもできる。インジェクションバルブ2には流路として細管4〜8が接続されている。細管4は、キャリア液を注入するための流路を構成する管である。細管4には、送液ポンプ9が設けられる。細管5はサンプルループを構成した管である。細管6は試料水を含んだキャリア液をフローセル3に供給するための流路を構成した管である。細管7,8はサンプルループ(細管5)やインジェクションバルブ2からオーバーフローした試料水をドレイン部であるドレイン瓶10に移送するための管である。   The injection valve 2 is an injection means for introducing sample water into the carrier liquid flow. The illustrated injection valve 2 is a six-way rotary valve type, but the injection means is not limited to this form. In the description of the embodiment, the sample water is manually injected directly into the injection valve 2, but a thin tube for injecting the sample water into the injection valve 2 can also be provided. Thin tubes 4 to 8 are connected to the injection valve 2 as flow paths. The narrow tube 4 is a tube constituting a flow path for injecting the carrier liquid. The thin tube 4 is provided with a liquid feed pump 9. The thin tube 5 is a tube constituting a sample loop. The narrow tube 6 is a tube constituting a flow path for supplying a carrier liquid containing sample water to the flow cell 3. The thin tubes 7 and 8 are tubes for transferring the sample water overflowed from the sample loop (the thin tube 5) or the injection valve 2 to the drain bottle 10 which is a drain portion.

送液ポンプ9は、細管4に設けられ、キャリア液をインジェクションバルブ2及びフローセル3に送液する。キャリア液は、例えば、純水(逆浸透膜やイオン交換樹脂を通して不純物を取り除いた水や、蒸留した水等)が用いられる。送液ポンプ9とインジェクションバルブ2との間にはダンパ11が設けられる。ダンパ11が、送液ポンプ9の脈流を吸収消去することで、より高感度で安定した分析を行うことができる。   The liquid feeding pump 9 is provided in the thin tube 4 and feeds the carrier liquid to the injection valve 2 and the flow cell 3. As the carrier liquid, for example, pure water (water from which impurities have been removed through a reverse osmosis membrane or an ion exchange resin, distilled water, or the like) is used. A damper 11 is provided between the liquid feed pump 9 and the injection valve 2. The damper 11 absorbs and eliminates the pulsating flow of the liquid feed pump 9, so that a more sensitive and stable analysis can be performed.

フローセル3は、試料水中の残留塩素濃度を定量する。フローセル3は、例えば、特許文献5に示すようなフロー式カラム型電解合成セル等を適用することができる。なお、図1では、図示省略しているが、フローセル3には、例えば、作用電極、参照電極、対極が設けられる。これら電極にはポテンショスタットが接続され、ポテンショスタットの計測データに基づいて演算装置が試料水中の残留塩素濃度を演算する。例えば、ポテンショスタットにより、常に参照電極に対する作用電極の電位が一定に保たれ、作用電極と対極との間に流れる電流(または電荷)が測定される。具体的には、作用電極として、特許文献5に記載されたようなグラッシーカーボンとカーボン繊維からなる電極が用いられる。すなわち、多孔質ガラス管内にカーボン繊維(例えば、100本以上)を軸方向に密に充填し、カーボン繊維にグラッシーカーボン等からなる電極棒を接続して作用電極が構成される。また、参照電極としては、例えば、Ag/AgCl、対極としては、例えば、ステンレス(SUS 316)製の電極が用いられる。なお、各電極は、この例に限定されるものではなく、測定に支障がない作用電極、対極及び参照電極が適宜選択して用いられる。   The flow cell 3 quantifies the residual chlorine concentration in the sample water. As the flow cell 3, for example, a flow column type electrolytic synthesis cell as shown in Patent Document 5 can be applied. Although not shown in FIG. 1, the flow cell 3 is provided with, for example, a working electrode, a reference electrode, and a counter electrode. Potentiostats are connected to these electrodes, and the arithmetic unit calculates the residual chlorine concentration in the sample water based on the potentiostat measurement data. For example, the potential of the working electrode with respect to the reference electrode is always kept constant by a potentiostat, and the current (or charge) flowing between the working electrode and the counter electrode is measured. Specifically, an electrode made of glassy carbon and carbon fiber as described in Patent Document 5 is used as the working electrode. That is, carbon fibers (for example, 100 or more) are densely filled in the porous glass tube in the axial direction, and an electrode rod made of glassy carbon or the like is connected to the carbon fibers to form a working electrode. As the reference electrode, for example, Ag / AgCl, and as the counter electrode, for example, an electrode made of stainless steel (SUS 316) is used. Each electrode is not limited to this example, and a working electrode, a counter electrode, and a reference electrode that do not hinder measurement are appropriately selected and used.

残留塩素測定装置1では、装置外部に置かれたキャリア液が、送液ポンプ9により細管4を介して装置内部に送られる。そして、送液ポンプ9の回転数を調節することにより一定速度で、キャリア液が、ダンパ11→インジェクションバルブ2→フローセル3→ドレイン瓶10まで送液される。   In the residual chlorine measuring device 1, the carrier liquid placed outside the device is sent to the inside of the device via the thin tube 4 by the liquid feed pump 9. Then, the carrier liquid is fed from the damper 11 to the injection valve 2 to the flow cell 3 to the drain bottle 10 at a constant speed by adjusting the rotation speed of the liquid feeding pump 9.

ここで、残留塩素測定装置1により試料水中の残留塩素濃度を測定する実施例を示して、本発明の実施形態に係る残留塩素測定方法について詳細に説明する。   Here, an example in which the residual chlorine concentration in the sample water is measured by the residual chlorine measuring device 1 will be shown, and the residual chlorine measuring method according to the embodiment of the present invention will be described in detail.

まず、インジェクションバルブ2から流路内(細管6及びフローセル3)に導入する試料量の検討を、特許文献4に記載された検討と同様の方法により行った。すなわち、試料量50〜600μLの範囲で残留塩素濃度を測定したところ、特許文献4と同様な直線関係が得られた。そのため、インジェクションバルブ2から流路内に導入する試料量は、電気量が試料量に比較的比例している範囲で、かつ電気量ができるだけ大きい試料量である400μLを選定した。   First, the amount of sample introduced from the injection valve 2 into the flow path (the narrow tube 6 and the flow cell 3) was examined by the same method as the study described in Patent Document 4. That is, when the residual chlorine concentration was measured in the sample amount range of 50 to 600 μL, the same linear relationship as in Patent Document 4 was obtained. Therefore, the sample amount introduced into the flow path from the injection valve 2 was selected to be 400 μL, which is a sample amount in which the amount of electricity is relatively proportional to the amount of sample and the amount of electricity is as large as possible.

試薬は、和光純薬工業(株)製の次亜塩素酸ナトリウム溶液(製品コード番号:197−02206)を用いた。次亜塩素酸ナトリウムは、上水道や下水道等における消毒に用いられる消毒剤である。市販の次亜塩素酸ナトリウム溶液は、遊離有効塩素濃度5〜12wt%、pH12.5〜13.5の強アルカリ性溶液であり、これが所定の注入率で処理水等に注入される。なお、次亜塩素酸ナトリウム溶液の有効塩素濃度は、非特許文献1に記載された方法によって求めることができる。以下の実施例では、試料水の残留塩素濃度を測定するにあたり、予め非特許文献1に記載された方法によって、次亜塩素酸ナトリウム溶液の有効塩素濃度を求めておき、この値に基づいて純水で希釈して各次亜塩素酸ナトリウムの有効塩素濃度となるように調製した試料水を用いた。調製後の試料水のpHは、6〜9であった。   As a reagent, a sodium hypochlorite solution (product code number: 197-02206) manufactured by Wako Pure Chemical Industries, Ltd. was used. Sodium hypochlorite is a disinfectant used for disinfecting water and sewers. A commercially available sodium hypochlorite solution is a strong alkaline solution having a free effective chlorine concentration of 5 to 12 wt% and a pH of 12.5 to 13.5, which is injected into treated water or the like at a predetermined injection rate. In addition, the effective chlorine concentration of a sodium hypochlorite solution can be calculated | required by the method described in the nonpatent literature 1. In the following examples, when measuring the residual chlorine concentration of the sample water, the effective chlorine concentration of the sodium hypochlorite solution is obtained in advance by the method described in Non-Patent Document 1, and the pure chlorine based on this value is obtained. Sample water prepared by diluting with water to obtain an effective chlorine concentration of each sodium hypochlorite was used. The pH of the sample water after preparation was 6-9.

[作用電極の電位]
作用電極の電位(vs Ag/AgCl)は、バックグラウンドや感度等を左右するので、最適な電位を選定しなければならない。表1の条件で、インジェクションバルブ2から流路内に試料水として1mg/Lの有効塩素濃度の次亜塩素酸ナトリウム溶液を導入し、作用電極の電位が0〜80mVとなるように作用電極と対極に電圧を印加し、印加電圧と電気量の関係を求めた。以下の説明では、印加電圧の数値は、作用電極と対極に電圧を印加した際の作用電極の電位を示す。
[Working electrode potential]
The potential of the working electrode (vs Ag / AgCl) affects the background, sensitivity, etc., so an optimal potential must be selected. Under the conditions of Table 1, a sodium hypochlorite solution having an effective chlorine concentration of 1 mg / L is introduced as sample water from the injection valve 2 into the flow path, and the working electrode is set to have a potential of 0 to 80 mV. A voltage was applied to the counter electrode, and the relationship between the applied voltage and the amount of electricity was determined. In the following description, the numerical value of the applied voltage indicates the potential of the working electrode when a voltage is applied to the working electrode and the counter electrode.

Figure 2017015669
Figure 2017015669

図2に示すように、印加電圧(作用電極の電位)を上げると電気量が減少するため、0〜80mVの範囲では、印加電圧は、0mVの時が最も感度が高い測定ができることを示している。   As shown in FIG. 2, when the applied voltage (potential of the working electrode) is increased, the amount of electricity decreases. Therefore, in the range of 0 to 80 mV, the applied voltage can be measured with the highest sensitivity when the voltage is 0 mV. Yes.

[キャリア液流速]
フローインジェクション分析法では、一般的に、キャリア液(すなわち、試料水)の流速は測定値の感度を左右するので、最適な流速を選定しなければならない。キャリア液流速は、フローセル3内の作用電極上での還元反応率に影響する。そして、還元電流のパターンは、キャリア液流速が速くなるとシャープになり、キャリア液流速が遅くなるとブロードになる。
[Carrier liquid flow rate]
In the flow injection analysis method, since the flow rate of the carrier liquid (ie, sample water) generally affects the sensitivity of the measurement value, an optimal flow rate must be selected. The carrier liquid flow rate affects the reduction reaction rate on the working electrode in the flow cell 3. The reduction current pattern becomes sharper as the carrier liquid flow rate increases and becomes broader as the carrier liquid flow rate decreases.

表2の条件でインジェクションバルブ2から流路内に試料水として1mg/Lの有効塩素濃度の次亜塩素酸ナトリウム溶液を導入し、キャリア液流速を0.40〜0.85mL/分に変化させてキャリア液流速と電気量との関係を求めた。   Under the conditions shown in Table 2, a sodium hypochlorite solution having an effective chlorine concentration of 1 mg / L is introduced as sample water from the injection valve 2 into the flow path, and the carrier liquid flow rate is changed to 0.40 to 0.85 mL / min. Thus, the relationship between the carrier liquid flow rate and the amount of electricity was determined.

Figure 2017015669
Figure 2017015669

図3に、キャリア液流速を0.40mL/分としたときに異なる次亜塩素酸濃度において流れた電気量の測定結果を示す。また、各キャリア液流速に対する次亜塩素酸ナトリウム濃度と電気量との相関関係を表3に示す。   FIG. 3 shows the measurement results of the quantity of electricity flowing at different hypochlorous acid concentrations when the carrier liquid flow rate was 0.40 mL / min. Table 3 shows the correlation between the sodium hypochlorite concentration and the amount of electricity for each carrier liquid flow rate.

Figure 2017015669
Figure 2017015669

キャリア液流速が0.50mL/分以下でも次亜塩素酸ナトリウム濃度と電気量との相関関係は、決定係数(R2)が、R2>0.98で良好であったが、測定時間に対する電流値の測定パターンがガウス分布様でなく良好ではなかった。一方で、キャリア液流速が0.55〜0.85mL/分では、次亜塩素酸ナトリウム濃度と電気量との相関関係は、決定係数(R2)が、R2>0.99で良好で、測定時間に対する電流値の測定パターンもガウス分布様であり良好であった。つまり、キャリア液流速が0.85mL/分までであれば、次亜塩素酸ナトリウム濃度と電気量との関係に良好な相関関係が得られることを確認した。 The correlation between the sodium hypochlorite concentration and the quantity of electricity was good when the carrier liquid flow rate was 0.50 mL / min or less, with the coefficient of determination (R 2 ) being R 2 > 0.98. The measurement pattern of the current value was not good because it did not look like a Gaussian distribution. On the other hand, when the carrier liquid flow rate is 0.55 to 0.85 mL / min, the correlation between the sodium hypochlorite concentration and the electric quantity is good when the determination coefficient (R 2 ) is R 2 > 0.99. The measurement pattern of the current value with respect to the measurement time was also good with a Gaussian distribution. That is, when the carrier liquid flow rate was up to 0.85 mL / min, it was confirmed that a good correlation was obtained in the relationship between the sodium hypochlorite concentration and the amount of electricity.

したがって、キャリア液流速は、0.55〜0.85mL/分の範囲であれば、いずれの流速でも良いと考えられるが、キャリア液の消費量はできるだけ抑えた方が望ましいので、表1に示すように、キャリア液流速を0.60mL/分に設定した。   Therefore, it is considered that any flow rate may be used as long as the carrier liquid flow rate is in the range of 0.55 to 0.85 mL / min. However, it is desirable to suppress the consumption amount of the carrier liquid as much as possible. As such, the carrier liquid flow rate was set to 0.60 mL / min.

[DPD法により測定された残留塩素濃度との比較]
図1の残留塩素測定装置1で、0〜10mg/Lの濃度範囲の次亜塩素酸ナトリウム溶液の測定を行った。
[Comparison with residual chlorine concentration measured by DPD method]
With the residual chlorine measuring device 1 in FIG. 1, a sodium hypochlorite solution having a concentration range of 0 to 10 mg / L was measured.

下水では、水再生センターにおける最終処理工程の処理水を消毒するために、次亜塩素酸ナトリウムが使用されている。次亜塩素酸ナトリウムの注入率には法規制がなく、放流水中の大腸菌群数が3,000個/mL以下であることが下水道法で規制されている。一般に、水再生センターでは、晴天時の高級処理水に対する次亜塩素酸ナトリウムの注入率は0.5mg/L程度で、雨天時の簡易処理された処理水の次亜塩素酸ナトリウムの注入率は、3〜7mg/L程度である。これに対して、上水では水道端末で、残留塩素濃度が0.1mg/L以上であることが水道法で規定されている。そのため、実用上、次亜塩素酸ナトリウムの測定範囲は、0〜10mg/Lであれば十分であると考えられる。   In sewage, sodium hypochlorite is used to disinfect the treated water in the final treatment process at the water reclamation center. There is no regulation on the injection rate of sodium hypochlorite, and the sewerage law regulates that the number of coliforms in the effluent is 3,000 / mL or less. In general, in the water reclamation center, the injection rate of sodium hypochlorite for high-grade treated water in fine weather is about 0.5 mg / L, and the injection rate of sodium hypochlorite in treated water during rainy weather is 3-7 mg / L. On the other hand, the water supply law stipulates that the residual chlorine concentration is 0.1 mg / L or more at the tap terminal in tap water. Therefore, practically, it is considered that the measurement range of sodium hypochlorite is 0 to 10 mg / L.

まず、次亜塩素酸ナトリウム溶液を純水で希釈して、次亜塩素酸ナトリウム溶液の有効塩素濃度を、0、0.1、0.5、1、2、3、4、5、7.5、10mg/Lに調製した。そして、キャリア液流速を0.6mL/分とした以外は、表2の条件で、各有効塩素濃度に調製した次亜塩素酸ナトリウム溶液の残留塩素濃度を測定した。残留塩素濃度の測定にあたり、同一濃度の次亜塩素酸ナトリウム溶液を3回測定し、3点の平均値をプロットした。   First, the sodium hypochlorite solution is diluted with pure water, and the effective chlorine concentration of the sodium hypochlorite solution is set to 0, 0.1, 0.5, 1, 2, 3, 4, 5, 7. 5 and 10 mg / L. Then, the residual chlorine concentration of the sodium hypochlorite solution prepared for each effective chlorine concentration was measured under the conditions shown in Table 2 except that the carrier liquid flow rate was 0.6 mL / min. In measuring the residual chlorine concentration, the sodium hypochlorite solution having the same concentration was measured three times, and the average value of the three points was plotted.

図4に示すように、電気量と次亜塩素酸ナトリウム濃度との相関関係は、0〜10mg/Lの範囲で、決定係数(R2)が、R2=0.9984で良好な関係であった。したがって、この相関関係に基づいて、フローセル3において検出された電気量に基づいて、試料水の残留塩素濃度を精度よく検出できることがわかる。 As shown in FIG. 4, the correlation between the amount of electricity and the sodium hypochlorite concentration is in the range of 0 to 10 mg / L, and the coefficient of determination (R 2 ) is good when R 2 = 0.9984. there were. Therefore, based on this correlation, it can be seen that the residual chlorine concentration of the sample water can be accurately detected based on the amount of electricity detected in the flow cell 3.

また、市販の次亜塩素酸ナトリウムから調製した0.1、0.5、1、2mg/Lの次亜塩素酸ナトリウム溶液の残留塩素濃度をDPD法により測定し、比較検証を行った。DPD法による測定では、HACH社製のポケット残留塩素計(Pocket Colorimeter II)を用いた。   In addition, the residual chlorine concentration of 0.1, 0.5, 1, and 2 mg / L sodium hypochlorite solutions prepared from commercially available sodium hypochlorite was measured by the DPD method for comparative verification. In the measurement by the DPD method, a pocket residual chlorine meter (Pocket Colorimeter II) manufactured by HACH was used.

HACH社のポケット残留塩素計の測定範囲は、0.02〜2mg/Lであるので、2mg/Lまでの比較を行った。今回の試料水は市販の次亜塩素酸ナトリウムから調製したため、結合塩素は含まれていないが、遊離塩素(Free)と全塩素(Total)の両方を測定した。   Since the measurement range of HACH's pocket residual chlorine meter is 0.02 to 2 mg / L, comparison was made up to 2 mg / L. Since this sample water was prepared from commercially available sodium hypochlorite, it does not contain bound chlorine, but both free chlorine (Free) and total chlorine (Total) were measured.

Figure 2017015669
Figure 2017015669

表4に示すように、各次亜塩素酸ナトリウム溶液で調製された有効塩素濃度は、DPD法により計測された残留塩素濃度と対応しており、電気化学測定法を検出系としたフローインジェクション分析法により、残留塩素濃度を測定できることがわかる。なお、今回の試料水は結合塩素が含まれていないので、遊離残留塩素が測定対象となる。したがって、残留塩素測定装置1は、少なくとも、0〜10mg/Lの濃度範囲の残留塩素の測定が可能であることがわかる。   As shown in Table 4, the effective chlorine concentration prepared in each sodium hypochlorite solution corresponds to the residual chlorine concentration measured by the DPD method, and the flow injection analysis using the electrochemical measurement method as the detection system. It can be seen that the residual chlorine concentration can be measured by the method. In addition, since the sample water this time does not contain bound chlorine, free residual chlorine is a measurement target. Therefore, it can be seen that the residual chlorine measuring device 1 can measure residual chlorine in a concentration range of 0 to 10 mg / L.

[異なる残留塩素濃度(低濃度)の試料水における残留塩素濃度の測定]
次亜塩素酸ナトリウム溶液を純水で希釈して、次亜塩素酸ナトリウムの有効塩素濃度を、0、0.1、0.2、0.3、0.4、0.6、0.8、1.0mg/Lに調製した。そして、キャリア液流速を0.60mL/分とした以外は、表2の条件で、各有効塩素濃度に調製した次亜塩素酸ナトリウム溶液の残留塩素濃度を測定した。残留塩素濃度の測定にあたり、同一濃度の次亜塩素酸ナトリウム溶液を3回測定し、3点の平均値をプロットした。
[Measurement of residual chlorine concentration in sample water with different residual chlorine concentration (low concentration)]
A sodium hypochlorite solution is diluted with pure water, and the effective chlorine concentration of sodium hypochlorite is 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8. , 1.0 mg / L. The residual chlorine concentration of the sodium hypochlorite solution prepared for each effective chlorine concentration was measured under the conditions shown in Table 2 except that the carrier liquid flow rate was 0.60 mL / min. In measuring the residual chlorine concentration, the sodium hypochlorite solution having the same concentration was measured three times, and the average value of the three points was plotted.

図5に示すように、電気量と次亜塩素酸ナトリウム濃度との相関関係は、0〜1.0mg/Lの範囲で、決定係数(R2)が、R2=0.9987で良好な関係であった。したがって、この相関関係に基づいて、フローセル3において検出された電気量に基づいて、試料水の残留塩素濃度を精度よく検出できることがわかる。 As shown in FIG. 5, the correlation between the quantity of electricity and the sodium hypochlorite concentration is in the range of 0 to 1.0 mg / L, and the coefficient of determination (R 2 ) is good when R 2 = 0.9987. It was a relationship. Therefore, based on this correlation, it can be seen that the residual chlorine concentration of the sample water can be accurately detected based on the amount of electricity detected in the flow cell 3.

さらに、次亜塩素酸ナトリウム溶液を純水で希釈して、有効塩素濃度が0、0.02、0.04、0.06、0.08mg/Lの次亜塩素酸ナトリウム溶液を調製し、各試料において残留塩素濃度を測定した。残留塩素濃度の測定にあたり、同一濃度の次亜塩素酸ナトリウム溶液を3回測定し、3点の平均値をプロットした。   Further, the sodium hypochlorite solution is diluted with pure water to prepare a sodium hypochlorite solution having an effective chlorine concentration of 0, 0.02, 0.04, 0.06, 0.08 mg / L, Residual chlorine concentration was measured in each sample. In measuring the residual chlorine concentration, the sodium hypochlorite solution having the same concentration was measured three times, and the average value of the three points was plotted.

図6に示すように、電気量と次亜塩素酸ナトリウム濃度との相関関係は、0〜0.08mg/Lの範囲で、決定係数(R2)が、R2=0.9976で良好な関係であった。したがって、この相関関係に基づいて、フローセル3において検出された電気量に基づいて、試料水の残留塩素濃度を精度よく検出できることがわかる。 As shown in FIG. 6, the correlation between the quantity of electricity and the sodium hypochlorite concentration is in the range of 0 to 0.08 mg / L, and the coefficient of determination (R 2 ) is good when R 2 = 0.9976. It was a relationship. Therefore, based on this correlation, it can be seen that the residual chlorine concentration of the sample water can be accurately detected based on the amount of electricity detected in the flow cell 3.

図5及び図6の結果から、残留塩素測定装置1は、1.0mg/L以下の濃度の次亜塩素酸ナトリウムも測定可能であることがわかった。なお、今回の試料水は、市販の次亜塩素酸ナトリウム溶液を用いて調製された試料であるので、試料水中に結合塩素が含まれていない。したがって、残留塩素測定装置1の測定対象は遊離残留塩素であり、その測定範囲は、1.0mg/L以下も測定可能で、少なくとも0.02mg/L以上の遊離残留塩素濃度の測定が可能である。   From the results of FIGS. 5 and 6, it was found that the residual chlorine measuring device 1 can also measure sodium hypochlorite having a concentration of 1.0 mg / L or less. In addition, since the sample water this time is a sample prepared using a commercially available sodium hypochlorite solution, the sample water does not contain bound chlorine. Therefore, the measurement target of the residual chlorine measuring device 1 is free residual chlorine, and the measurement range is 1.0 mg / L or less, and the measurement of free residual chlorine concentration of at least 0.02 mg / L is possible. is there.

[残留塩素濃度の連続測定]
残留塩素測定装置1で、残留塩素濃度を連続して測定した。
[Continuous measurement of residual chlorine concentration]
Residual chlorine concentration was continuously measured with the residual chlorine measuring device 1.

次亜塩素酸ナトリウム溶液を純水で希釈して、有効塩素濃度1.0mg/Lの次亜塩素酸ナトリウム溶液を調製した。そして、キャリア液流速を0.60mL/分とした以外は、表2の条件で、調製した試料水の残留塩素濃度を連続測定した。   A sodium hypochlorite solution was diluted with pure water to prepare a sodium hypochlorite solution having an effective chlorine concentration of 1.0 mg / L. Then, the residual chlorine concentration of the prepared sample water was continuously measured under the conditions shown in Table 2 except that the carrier liquid flow rate was 0.60 mL / min.

図7に示すように、全70測定の変動係数(CV)は、CV=4.89%であった。これにより、残留塩素測定装置1は、連続測定を行った場合でも十分精度が確保されていることがわかる。   As shown in FIG. 7, the coefficient of variation (CV) for all 70 measurements was CV = 4.89%. Thereby, it can be seen that the residual chlorine measuring device 1 is sufficiently accurate even when continuous measurement is performed.

[異なる残留塩素濃度(高濃度)の試料水における残留塩素濃度の測定]
次亜塩素酸ナトリウム溶液を純水で希釈して、有効塩素濃度が10、20、30、40、50、60、70、80、90、100mg/Lの次亜塩素酸ナトリウム溶液を調製した。そして、残留塩素測定装置1で、調製した試料水の残留塩素濃度を測定した。測定条件は、キャリア液流速を0.60mL/分とした以外は、表2の条件と同じ条件で行った。残留塩素濃度の測定にあたり、同一濃度の次亜塩素酸ナトリウムを3回測定し、3点の平均値をプロットした。
[Measurement of residual chlorine concentration in sample water with different residual chlorine concentration (high concentration)]
The sodium hypochlorite solution was diluted with pure water to prepare sodium hypochlorite solutions having effective chlorine concentrations of 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mg / L. And the residual chlorine measuring apparatus 1 measured the residual chlorine concentration of the prepared sample water. The measurement conditions were the same as those in Table 2 except that the carrier liquid flow rate was 0.60 mL / min. In measuring the residual chlorine concentration, sodium hypochlorite having the same concentration was measured three times, and the average value of three points was plotted.

図8に示すように、電気量と次亜塩素酸ナトリウム濃度との相関関係は、0〜100mg/Lの範囲で、決定係数(R2)が、R2=0.9973で良好な関係であった。したがって、この相関関係に基づいて、フローセル3において検出された電気量に基づいて、試料水の残留塩素濃度を精度よく検出できることがわかる。 As shown in FIG. 8, the correlation between the amount of electricity and the sodium hypochlorite concentration is in the range of 0 to 100 mg / L, and the coefficient of determination (R 2 ) is a good relationship with R 2 = 0.9973. there were. Therefore, based on this correlation, it can be seen that the residual chlorine concentration of the sample water can be accurately detected based on the amount of electricity detected in the flow cell 3.

また、次亜塩素酸ナトリウム溶液を純水で希釈して、有効塩素濃度50、100、200、400、600、800mg/Lの次亜塩素酸ナトリウム溶液を調製し、同様の条件で残留塩素測定装置1で残留塩素濃度を測定した。残留塩素濃度の測定にあたり、同一濃度の次亜塩素酸ナトリウムを3回測定し、3点の平均値をプロットした。   Also, dilute sodium hypochlorite solution with pure water to prepare sodium hypochlorite solutions with effective chlorine concentrations of 50, 100, 200, 400, 600, and 800 mg / L, and measure residual chlorine under the same conditions. The residual chlorine concentration was measured with the apparatus 1. In measuring the residual chlorine concentration, sodium hypochlorite having the same concentration was measured three times, and the average value of three points was plotted.

図9に示すように、電気量と次亜塩素酸ナトリウム濃度との相関関係は、50〜800mg/Lの範囲で、決定係数(R2)が、R2=0.9989で良好な関係であった。したがって、この相関関係に基づいて、フローセル3において検出された電気量に基づいて、試料水の残留塩素濃度を精度よく検出できることがわかる。 As shown in FIG. 9, the correlation between the amount of electricity and the sodium hypochlorite concentration is in the range of 50 to 800 mg / L, and the coefficient of determination (R 2 ) is a good relationship with R 2 = 0.9989. there were. Therefore, based on this correlation, it can be seen that the residual chlorine concentration of the sample water can be accurately detected based on the amount of electricity detected in the flow cell 3.

電解質溶液であっても高濃度まで電気量と濃度が比例関係にあるわけではなく、濃度が高くなるとイオン化しにくくなること、イオン同士の相互作用のために電流が流れにくくなり、比例関係が崩れると推定される。しかしながら、図8及び図9に示した結果より、有効塩素濃度が800mg/Lまでは電気量と濃度の関係が比例関係にあることが確認できた。なお、今回の試料水は、市販の次亜塩素酸ナトリウム溶液から調製したため、結合塩素が含まれていない。つまり、残留塩素測定装置1は、少なくとも、有効塩素濃度が800mg/Lまでは、精度良く遊離残留塩素濃度を測定可能である。   Even in the case of an electrolyte solution, the amount of electricity and the concentration are not in a proportional relationship up to a high concentration. When the concentration is high, it becomes difficult to ionize, and current does not flow easily due to interaction between ions, and the proportional relationship is lost. It is estimated to be. However, from the results shown in FIG. 8 and FIG. 9, it was confirmed that the relationship between the amount of electricity and the concentration was proportional up to an effective chlorine concentration of 800 mg / L. In addition, since this sample water was prepared from a commercially available sodium hypochlorite solution, it does not contain bound chlorine. That is, the residual chlorine measuring device 1 can accurately measure the free residual chlorine concentration at least until the effective chlorine concentration is 800 mg / L.

[遊離残留塩素に及ぼす塩化アンモニウムの影響]
次亜塩素酸ナトリウムと塩化アンモニウムを反応させて、反応時間に対する電気量を残留塩素測定装置1により測定した。この測定により残留塩素測定装置1の測定対象が、遊離残留塩素のみであるか、または結合残留塩素を含んだ残留塩素を測定しているかを確認した。
[Influence of ammonium chloride on free residual chlorine]
Sodium hypochlorite and ammonium chloride were reacted, and the amount of electricity with respect to the reaction time was measured by the residual chlorine measuring device 1. By this measurement, it was confirmed whether the measurement target of the residual chlorine measuring device 1 is only free residual chlorine or measuring residual chlorine containing combined residual chlorine.

まず、1mg/Lの次亜塩素酸ナトリウム溶液500mLと1mg/Lの塩化アンモニウム溶液50mLを混合し、混合溶液において残留塩素濃度の経時変化を測定した。測定結果を図10に示す。   First, 500 mL of a 1 mg / L sodium hypochlorite solution and 50 mL of a 1 mg / L ammonium chloride solution were mixed, and the change over time in the residual chlorine concentration was measured in the mixed solution. The measurement results are shown in FIG.

また、HACH社製のポケット残留塩素計を用いて、DPD法による混合溶液中の遊離残留塩素濃度を測定した。遊離残留塩素濃度と電気量との関係を図11に示す。   Moreover, the free residual chlorine concentration in the mixed solution by DPD method was measured using the pocket residual chlorine meter made from HACH. FIG. 11 shows the relationship between the free residual chlorine concentration and the amount of electricity.

図10に示すように、反応時間の経過とともに測定される電気量が減少していることが確認された。これは、反応時間の経過とともに結合塩素が生成し、次亜塩素酸ナトリウム(遊離塩素)濃度が減少するのにともなって電気量が減少したものと推定される。また、図11に示すように、フローセル3で検出される電気量は、DPD法で測定された遊離残留塩素濃度と相関性があり、残留塩素測定装置1が、遊離残留塩素を測定していることを示唆している。   As shown in FIG. 10, it was confirmed that the amount of electricity measured as the reaction time passed decreased. It is presumed that the amount of electricity decreased with the generation of bound chlorine as the reaction time passed and the concentration of sodium hypochlorite (free chlorine) decreased. Moreover, as shown in FIG. 11, the quantity of electricity detected by the flow cell 3 is correlated with the free residual chlorine concentration measured by the DPD method, and the residual chlorine measuring device 1 measures the free residual chlorine. Suggests that.

以上のような本発明の第1実施形態に係る残留塩素測定装置1によれば、試料水中の遊離残留塩素を精度良く測定することができる。また、残留塩素濃度を専門知識と熟練を要する煩雑な操作を必要とせず、簡便に、短時間(例えば、5分程度)で測定できる。   According to the residual chlorine measuring apparatus 1 according to the first embodiment of the present invention as described above, free residual chlorine in the sample water can be measured with high accuracy. Further, the residual chlorine concentration can be measured easily and in a short time (for example, about 5 minutes) without requiring a complicated operation requiring specialized knowledge and skill.

すなわち、クーロメトリックタイプのフローセル3を用いた電気化学測定法を残留塩素濃度の最終検出系としたフローインジェクション分析法を用いることで、連続的に、精度良く、迅速に、残留塩素濃度を測定することができる。電気化学測定法は、高感度測定が可能である反面、電極表面の汚染等により再現性が低下する問題があるが、クーロメトリ法を用いると、試料溶液中の対象成分の全量が検出されるため、再現性が低下する問題点を改善できる。   That is, by using a flow injection analysis method in which an electrochemical measurement method using a coulometric type flow cell 3 is used as a final detection system for residual chlorine concentration, the residual chlorine concentration is continuously and accurately measured. be able to. The electrochemical measurement method is capable of high-sensitivity measurement, but there is a problem that the reproducibility is reduced due to contamination of the electrode surface. However, if the coulometry method is used, the total amount of the target component in the sample solution is detected. The problem that the reproducibility deteriorates can be improved.

また、残留塩素の検出系が回転電極でないため、回転電極を用いた場合のセラミックスやガラスビーズが電極面と擦り合されることによる電極面の摩耗が生じず、電極の寿命が短くなることがない。さらに、キャリア液(例えば、純水)を常時、作用電極の中を流れるようにし、測定時に数百μL程度の試料水をインジェクションするように構成することで、極少量の試料水が測定経路内に短時間、存在するだけとなり、測定経路並びに作用電極が汚れにくい。このように、測定経路及びフローセルの経時劣化の少ない装置構成とすることで、連続して測定を行っても、検出精度が低下することなく残留塩素濃度を測定することができる。   In addition, since the residual chlorine detection system is not a rotating electrode, there is no wear of the electrode surface due to rubbing of the ceramic or glass beads with the electrode surface when the rotating electrode is used, and the life of the electrode is shortened. Absent. In addition, a carrier liquid (for example, pure water) always flows through the working electrode, and is configured to inject several hundred μL of sample water at the time of measurement. The measurement path and the working electrode are not easily contaminated. As described above, the device configuration with little deterioration with time of the measurement path and the flow cell can measure the residual chlorine concentration without lowering the detection accuracy even if the measurement is continuously performed.

また、残留塩素濃度の測定にあたり試薬を用いないため、煩雑な試薬調製の必要がなく、試薬費用が発生しない。また、比色や滴定等の操作が不要であるため、試料水に着色があっても、迅速に精度よく残留塩素濃度の測定が可能である。   In addition, since no reagent is used for measuring the residual chlorine concentration, there is no need for complicated reagent preparation, and reagent costs are not generated. Further, since operations such as colorimetry and titration are not required, the residual chlorine concentration can be measured quickly and accurately even if the sample water is colored.

なお、本発明の測定システムは、オゾン等の強力な酸化剤が妨害物質として想定される。しかし、殺菌剤として、塩素系薬剤以外の酸化剤の併用がなければ、本発明の測定システムの適用が可能であり、例えば、次亜塩素酸ナトリウムを注入した、下水処理場の滅菌後の放流水の測定においても、問題なく測定が可能であることが確認できた(第2実施形態に係る残留塩素測定装置も同様である)。   In the measurement system of the present invention, a strong oxidizing agent such as ozone is assumed as an interfering substance. However, the measurement system of the present invention can be applied if the oxidant other than the chlorinated chemical is not used as the bactericidal agent. For example, the discharge after sterilization of the sewage treatment plant into which sodium hypochlorite has been injected. It was confirmed that the water measurement can be performed without any problem (the same applies to the residual chlorine measuring apparatus according to the second embodiment).

[第2実施形態]
図12は、本発明の第2実施形態に係る残留塩素測定装置12の概略図である。第2実施形態の残留塩素測定装置12は、フローセル3に送液される試料水中にヨウ化カリウムを注入する経路(細管13)を備えたことが第1実施形態の残留塩素測定装置1と異なる。よって、図1の残留塩素測定装置1と同じ構成については、同じ符号を付し、異なる構成について詳細に説明する。
[Second Embodiment]
FIG. 12 is a schematic view of a residual chlorine measuring device 12 according to the second embodiment of the present invention. The residual chlorine measuring device 12 of the second embodiment differs from the residual chlorine measuring device 1 of the first embodiment in that it has a path (capillary tube 13) for injecting potassium iodide into the sample water sent to the flow cell 3. . Therefore, the same components as those in the residual chlorine measuring device 1 in FIG.

図12に示すように、第2実施形態の残留塩素測定装置12は、キャリア液及び試料水が注入されるインジェクションバルブ2と、フローセル3と、を備える。   As shown in FIG. 12, the residual chlorine measuring device 12 of the second embodiment includes an injection valve 2 into which a carrier liquid and sample water are injected, and a flow cell 3.

インジェクションバルブ2には流路として細管4〜8が接続されている。細管6とフローセル3との間には、混合容器14が設けられる。   Thin tubes 4 to 8 are connected to the injection valve 2 as flow paths. A mixing container 14 is provided between the narrow tube 6 and the flow cell 3.

混合容器14は、試料水が注入されたキャリア液と試薬溶液(例えば、ヨウ化カリウム溶液)とを混合する。混合容器14には、細管13を介して送液ポンプ15が接続され、送液ポンプ15により試薬溶液が注入される。なお、送液ポンプ15と混合容器14との間にはダンパ16が設けられ、ダンパ16により送液ポンプ15の脈流が吸収消去される。   The mixing container 14 mixes a carrier solution into which sample water is injected and a reagent solution (for example, potassium iodide solution). A liquid feed pump 15 is connected to the mixing container 14 via a thin tube 13, and a reagent solution is injected by the liquid feed pump 15. A damper 16 is provided between the liquid feed pump 15 and the mixing container 14, and the damper 16 absorbs and eliminates the pulsating flow of the liquid feed pump 15.

このように、残留塩素測定装置12は、試料水をフローセル3に送液する経路(細管6)と、試料水に試薬溶液を注入する経路(細管13)の2流路で構成される。そして、装置外部に置かれたキャリア液が、送液ポンプ9により細管4を介して装置内部に送られ、送液ポンプ9の回転数を調節することにより一定速度で、キャリア液が、ダンパ11→インジェクションバルブ2→混合容器14へと送液され、混合容器14で試薬溶液が混合された後、フローセル3→ドレイン瓶10へと送液される。   As described above, the residual chlorine measuring device 12 is configured with two flow paths, that is, a path for sending sample water to the flow cell 3 (thin tube 6) and a path for injecting the reagent solution into the sample water (thin tube 13). Then, the carrier liquid placed outside the apparatus is sent to the inside of the apparatus by the liquid feed pump 9 through the thin tube 4, and the carrier liquid is made to be the damper 11 at a constant speed by adjusting the rotation speed of the liquid feed pump 9. → Injection valve 2 → Feed to mixing container 14, reagent solution is mixed in mixing container 14, and then fed to flow cell 3 → drain bottle 10.

ここで、残留塩素測定装置12により試料水中の残留塩素濃度を測定する実施例を示して、本発明の実施形態に係る残留塩素測定方法について詳細に説明する。なお、残留塩素測定装置12においても、キャリア液流速が、次亜塩素酸ナトリウム濃度と電気量の関係に及ぼす影響は、図1の残留塩素測定装置1と同様の傾向を示した。   Here, an example in which the residual chlorine concentration in the sample water is measured by the residual chlorine measuring device 12 will be shown, and the residual chlorine measuring method according to the embodiment of the present invention will be described in detail. In the residual chlorine measuring device 12 as well, the influence of the carrier liquid flow rate on the relationship between the sodium hypochlorite concentration and the quantity of electricity showed the same tendency as the residual chlorine measuring device 1 in FIG.

[試料水に注入されるヨウ化カリウム濃度]
まず、最適ヨウ化カリウム濃度について検討した。
[Potassium iodide concentration injected into sample water]
First, the optimum potassium iodide concentration was examined.

3.2mg/Lの次亜塩素酸ナトリウム溶液50mLに、3.2mg/Lの塩化アンモニウム溶液10mLを添加し、正確に5分間反応させ、クロラミンを生成させた。つまり、遊離塩素と結合塩素が混在する混合液を調製した。   To 50 mL of a 3.2 mg / L sodium hypochlorite solution, 10 mL of a 3.2 mg / L ammonium chloride solution was added and reacted for exactly 5 minutes to produce chloramine. That is, a mixed liquid in which free chlorine and combined chlorine were mixed was prepared.

この混合液5mLを試験管に分取し、種々の濃度に調製したヨウ化カリウムを0.5mL添加して試験管ミキサで混合し、混合液を試料水として電気量を測定した。   5 mL of this mixed solution was dispensed into a test tube, 0.5 mL of potassium iodide prepared in various concentrations was added and mixed with a test tube mixer, and the amount of electricity was measured using the mixed solution as sample water.

図13に示すように、混合液に添加されるヨウ化カリウム溶液の濃度は、0.2モル/L以上であれば、安定した測定値を示した。したがって、以下の残留塩素濃度測定では、ヨウ化カリウム濃度を0.25モル/Lとした。なお、添加されるヨウ化カリウム濃度は、試料水中に含まれる結合塩素濃度に応じて適宜設定されることとなる。   As shown in FIG. 13, when the concentration of the potassium iodide solution added to the mixed solution was 0.2 mol / L or more, a stable measurement value was shown. Therefore, in the following residual chlorine concentration measurement, the potassium iodide concentration was set to 0.25 mol / L. In addition, the potassium iodide concentration to be added is appropriately set according to the combined chlorine concentration contained in the sample water.

[残留塩素濃度の測定に及ぼすヨウ化カリウムの添加効果]
次に、残留塩素濃度の測定に及ぼすヨウ化カリウムの添加効果について検討した。
[Effect of potassium iodide on the measurement of residual chlorine concentration]
Next, the effect of adding potassium iodide on the measurement of residual chlorine concentration was examined.

次亜塩素酸ナトリウムの有効塩素濃度を、0、2、4、6、8、10mg/Lの濃度に調製した次亜塩素酸ナトリウム溶液50mlに、3.2mg/Lの塩化アンモニウム溶液10mLを添加し、正確に5分間反応させ、クロラミンを生成させた。つまり、遊離塩素と結合塩素が混在する混合液を調製した。   Add 10 mL of 3.2 mg / L ammonium chloride solution to 50 mL of sodium hypochlorite solution adjusted to 0, 2, 4, 6, 8, 10 mg / L effective chlorine concentration of sodium hypochlorite And reacted exactly for 5 minutes to produce chloramine. That is, a mixed liquid in which free chlorine and combined chlorine were mixed was prepared.

この混合液5mLを試験管に分取し、0.25モル/Lのヨウ化カリウムを0.5mL添加して試験管ミキサで混合し、混合液を試料水として電気量を測定した。   5 mL of this mixed solution was dispensed into a test tube, 0.5 mL of 0.25 mol / L potassium iodide was added and mixed with a test tube mixer, and the amount of electricity was measured using the mixed solution as sample water.

図14に示すように、遊離塩素と結合塩素が混在する試料水であっても、ヨウ化カリウムを添加することで、結合塩素の測定が可能であった。   As shown in FIG. 14, even in the sample water in which free chlorine and combined chlorine are mixed, it is possible to measure combined chlorine by adding potassium iodide.

つまり、遊離残留塩素は、酸化力が強いために、第1実施形態の残留塩素測定装置1と同様に直接フローセル3で測定が可能である。一方、結合残留塩素は、酸化力が弱いが、ヨウ化カリウムを加えると、I-をI2に容易に酸化させる。そして、このI2がI-となるときの電気量はフローセル3で測定可能であるので、この電気量に基づいて結合残留塩素が測定可能であるものと考えられる。 That is, since free residual chlorine has a strong oxidizing power, it can be directly measured by the flow cell 3 in the same manner as the residual chlorine measuring apparatus 1 of the first embodiment. On the other hand, bonded residual chlorine is weak in oxidizing power, but when potassium iodide is added, I is easily oxidized to I 2 . Since the electric quantity when I 2 becomes I can be measured by the flow cell 3, it is considered that the combined residual chlorine can be measured based on the electric quantity.

[DPD法により測定された残留塩素濃度との比較]
1.6mg/Lに調製した次亜塩素酸ナトリウム溶液470mLに、1.6mg/Lの塩化アンモニウム溶液を100mL添加して、30分毎に電気量と全塩素濃度(残留塩素濃度)を、ヨウ化カリウムを添加した場合と、純水を添加した場合と、の両方で測定した。
[Comparison with residual chlorine concentration measured by DPD method]
100 mL of 1.6 mg / L ammonium chloride solution was added to 470 mL of sodium hypochlorite solution prepared to 1.6 mg / L, and the amount of electricity and total chlorine concentration (residual chlorine concentration) were changed every 30 minutes. The measurement was performed both when potassium chloride was added and when pure water was added.

電気化学法の測定は、30分毎に次亜塩素酸ナトリウム溶液と塩化アンモニウム溶液の混合液から10mLを適当な容器に分取して、ヨウ化カリウムまたは純水を1mL添加して混合した後、フローセル3を利用してバッチ試験にて電気量を測定した。   In the measurement of the electrochemical method, 10 mL of a mixture of a sodium hypochlorite solution and an ammonium chloride solution is taken into an appropriate container every 30 minutes, and 1 mL of potassium iodide or pure water is added and mixed. The quantity of electricity was measured in a batch test using the flow cell 3.

DPD法は、HACH社製のポケット残留塩素計で全塩素濃度を測定した。   In the DPD method, the total chlorine concentration was measured with a pocket residual chlorine meter manufactured by HACH.

図15に、残留塩素測定装置12での測定結果と、DPD法による残留塩素濃度の測定結果との関係を示す。   FIG. 15 shows the relationship between the measurement result of the residual chlorine measuring device 12 and the measurement result of the residual chlorine concentration by the DPD method.

図15に示すように、ヨウ化カリウム溶液を添加して残留塩素濃度を測定することで、遊離塩素と結合塩素が混在した場合であっても、電気量とDPD法による全塩素濃度の相関関係は、R2=0.9847と高い相関関係が得られ、しかも、安定した結果が得られた。一方、ヨウ化カリウム溶液を添加せずに、純水を添加した場合は、遊離塩素と結合塩素が混在すると直線性がなく、電気量が不安定な結果となった。 As shown in FIG. 15, by adding a potassium iodide solution and measuring the residual chlorine concentration, even when free chlorine and combined chlorine are mixed, the correlation between the amount of electricity and the total chlorine concentration by the DPD method Was highly correlated with R 2 = 0.9847, and a stable result was obtained. On the other hand, when pure water was added without adding the potassium iodide solution, when free chlorine and bonded chlorine were mixed, there was no linearity and the amount of electricity was unstable.

つまり、試料水にヨウ化カリウムを添加することで、結合塩素の測定が可能となり、全塩素濃度の測定が可能となる。   That is, by adding potassium iodide to the sample water, it becomes possible to measure bound chlorine and to measure the total chlorine concentration.

[異なる残留塩素濃度の試料水における残留塩素濃度の測定]
残留塩素測定装置12を用いて異なる残留塩素濃度の試料水に対して残留塩素濃度の測定を行った。残留塩素濃度の測定にあたり、残留塩素測定装置1と同様に測定条件の設定を行った。つまり、測定条件は、第1実施形態の測定条件に準じて設定した。
[Measurement of residual chlorine concentration in sample water with different residual chlorine concentrations]
Using the residual chlorine measuring device 12, the residual chlorine concentration was measured for sample water having different residual chlorine concentrations. In measuring the residual chlorine concentration, the measurement conditions were set in the same manner as the residual chlorine measuring device 1. That is, the measurement conditions were set according to the measurement conditions of the first embodiment.

例えば、キャリア液流速は、第1実施形態と同様に0.6mL/分と設定した。また、試薬溶液の流速が次亜塩素酸ナトリウム濃度と電気量の関係に及ぼす影響について検討したところ、キャリア液流速と同様の傾向を示したので、試薬溶液の流速を0.6mL/分と設定した。つまり、キャリア液と試薬溶液の流速を各々0.6mL/分と設定したので、フローセル3への送液量は、キャリア液と試薬溶液の合量で1.2mL/分であった。また、印加電圧は、第1実施形態と同様に0Vとした。残留塩素測定装置12の試験条件を表5に示す。   For example, the carrier liquid flow rate was set to 0.6 mL / min as in the first embodiment. In addition, when the influence of the flow rate of the reagent solution on the relationship between the sodium hypochlorite concentration and the quantity of electricity was examined, it showed the same tendency as the carrier solution flow rate, so the flow rate of the reagent solution was set to 0.6 mL / min. did. That is, since the flow rates of the carrier liquid and the reagent solution were each set to 0.6 mL / min, the liquid feeding amount to the flow cell 3 was 1.2 mL / min as the total amount of the carrier liquid and the reagent solution. The applied voltage was set to 0 V as in the first embodiment. Table 5 shows the test conditions of the residual chlorine measuring device 12.

Figure 2017015669
Figure 2017015669

次亜塩素酸ナトリウムの有効塩素濃度を0、2、4、6、8、10mg/Lの濃度に調製した次亜塩素酸ナトリウム溶液50mLに、35.2mg/Lの塩化アンモニウム溶液10mLを添加し、正確に5分反応させクロラミンを生成させた。つまり、遊離塩素と結合塩素が混在する試料水であって有効塩素濃度の異なる試料水を調製し、各試料水の残留塩素濃度の測定を行った。   10 mL of 35.2 mg / L ammonium chloride solution was added to 50 mL of sodium hypochlorite solution prepared so that the effective chlorine concentration of sodium hypochlorite was adjusted to 0, 2, 4, 6, 8, 10 mg / L. For exactly 5 minutes to produce chloramine. That is, sample water in which free chlorine and combined chlorine are mixed and sample water having different effective chlorine concentrations was prepared, and the residual chlorine concentration of each sample water was measured.

図16に試料水の有効塩素濃度と電気量との関係を示す。また、図17にDPD法により測定された全塩素濃度の測定結果を示す。   FIG. 16 shows the relationship between the effective chlorine concentration of sample water and the amount of electricity. FIG. 17 shows the measurement result of the total chlorine concentration measured by the DPD method.

図16の結果から、相関性の高い直線性並びに決定係数R2が得られており、信頼性の高い測定が期待される。また、図17の結果からヨウ化カリウムと反応させることにより、遊離塩素と結合塩素が混在した場合であっても、電気量とDPD法による全塩素濃度の相関関係は、R2=0.9998と高い相関関係が得られ、しかも安定した結果が得られた。したがって、この相関関係に基づいて、フローセル3において検出された電気量に基づいて、試料水の残留塩素濃度を精度よく検出できることがわかる。 From the results shown in FIG. 16, a highly correlated linearity and a determination coefficient R 2 are obtained, and a highly reliable measurement is expected. Moreover, even if it is a case where free chlorine and combined chlorine are mixed by making it react with potassium iodide from the result of FIG. 17, the correlation between the amount of electricity and the total chlorine concentration by the DPD method is R 2 = 0.9998. A high correlation was obtained, and a stable result was obtained. Therefore, based on this correlation, it can be seen that the residual chlorine concentration of the sample water can be accurately detected based on the amount of electricity detected in the flow cell 3.

[異なる残留塩素濃度の試料水における残留塩素濃度の測定]
次亜塩素酸ナトリウム溶液に添加する塩化アンモニウム溶液の濃度を変えた試料水を調製し、表5に示した測定条件で残留塩素濃度の測定を行った。
[Measurement of residual chlorine concentration in sample water with different residual chlorine concentrations]
Sample water was prepared by changing the concentration of the ammonium chloride solution added to the sodium hypochlorite solution, and the residual chlorine concentration was measured under the measurement conditions shown in Table 5.

まず、次亜塩素酸ナトリウムの有効塩素濃度を0、2、4、6,8、10mg/Lの濃度に調製した次亜塩素酸ナトリウム溶液50mLに、0、3.2、6.4、9.6、12.8、16.0、22.4、28.8、35.2mg/Lの各濃度の塩化アンモニウム溶液を、それぞれ10mLを添加し、正確に5分反応させて濃度の異なるクロラミンを生成させた。すなわち、遊離塩素と結合塩素が混在する試料水であって、遊離残留塩素濃度及び結合残留塩素濃度の異なる試料水を調製し、調製した試料水の残留塩素濃度を測定した。   First, 0, 3.2, 6.4, 9 was added to 50 mL of sodium hypochlorite solution prepared by adjusting the effective chlorine concentration of sodium hypochlorite to 0, 2, 4, 6, 8, 10 mg / L. , 12.8, 16.0, 22.4, 28.8, 35.2 mg / L of ammonium chloride solution of each concentration, 10 mL each was added and reacted for exactly 5 minutes to give different concentrations of chloramines Was generated. That is, sample water in which free chlorine and combined chlorine are mixed and sample water having different free residual chlorine concentration and combined residual chlorine concentration was prepared, and the residual chlorine concentration of the prepared sample water was measured.

図18に示すように、試料水にヨウ化カリウムを添加することにより、遊離塩素と結合塩素が混在した場合であっても電気量とDPD法による全塩素濃度との相関関係は、R2=0.9917と高い相関関係となった。したがって、この相関関係に基づいて、フローセル3において検出された電気量に基づいて、試料水の残留塩素濃度を精度よく検出できることがわかる。つまり、残留塩素測定装置12により、遊離塩素と結合塩素が混在する試料水の残留塩素濃度が安定して測定できる。 As shown in FIG. 18, by adding potassium iodide to the sample water, the correlation between the amount of electricity and the total chlorine concentration by the DPD method is R 2 = The correlation was as high as 0.9917. Therefore, based on this correlation, it can be seen that the residual chlorine concentration of the sample water can be accurately detected based on the amount of electricity detected in the flow cell 3. That is, the residual chlorine measuring device 12 can stably measure the residual chlorine concentration of the sample water in which free chlorine and combined chlorine are mixed.

以上のような本発明の第2実施形態に係る残留塩素測定装置12によれば、試料水に結合残留塩素が含まれる場合も、精度よく残留塩素(全残留塩素、遊離残留塩素、結合残留塩素)を測定することができる。   According to the residual chlorine measuring apparatus 12 according to the second embodiment of the present invention as described above, even when the sample water contains bound residual chlorine, the residual chlorine (total residual chlorine, free residual chlorine, combined residual chlorine) can be accurately obtained. ) Can be measured.

つまり、試料水の結合残留塩素と反応する試薬を試料水に混合することで、結合残留塩素を含む全残留塩素を測定することができる。また、第1実施形態に係る残留塩素測定装置1と同様の方法により、遊離残留塩素のみを測定することもできるので、全残留塩素から遊離残留塩素を除いた結合残留塩素濃度を算出することもできる。   That is, by mixing a reagent that reacts with bound residual chlorine in the sample water into the sample water, it is possible to measure the total residual chlorine including the bound residual chlorine. Moreover, since only free residual chlorine can also be measured by the same method as the residual chlorine measuring apparatus 1 according to the first embodiment, the combined residual chlorine concentration obtained by removing free residual chlorine from all residual chlorine can also be calculated. it can.

また、第1実施形態に係る残留塩素測定装置1と同様に、専門知識や熟練を要する煩雑な操作を必要とせず、簡便かつ迅速に、精度良く残留塩素濃度の測定を行うことができる。また、試料水に着色があっても迅速に精度良く塩素濃度の測定ができる。また、連続的に精度良く残留塩素濃度が測定でき、電極面の摩耗や測定経路や作用電極の汚染の少ない測定を行うことができる。   Further, similarly to the residual chlorine measuring apparatus 1 according to the first embodiment, it is possible to measure the residual chlorine concentration easily and quickly with high accuracy without requiring a complicated operation requiring specialized knowledge and skill. Even if the sample water is colored, the chlorine concentration can be measured quickly and accurately. In addition, the residual chlorine concentration can be measured continuously and accurately, and measurement with little abrasion of the electrode surface, contamination of the measurement path and working electrode can be performed.

なお、本発明の残留塩素測定方法及び残留塩素測定装置は、実施形態に限定されるものではなく、発明の特徴を損なわない範囲で適宜設計変更が可能であり、設計変更された形態も本発明の技術範囲に属する。   The residual chlorine measuring method and the residual chlorine measuring apparatus of the present invention are not limited to the embodiments, and can be appropriately changed in design without impairing the features of the invention. Belongs to the technical scope of

例えば、実施形態の説明では、殺菌効果のある塩素系薬剤として次亜塩素酸ナトリウムを使用したが、次亜塩素酸ナトリウム以外にも、次亜塩素酸カリウムを用いた場合の残留塩素濃度の測定に適用することができる。その他、次亜塩素酸ナトリウムをはじめとして、水道法で消毒剤として認められている薬剤である、次亜塩素酸カルシウム、液化塩素等の塩素系薬剤に対しても適用可能である。   For example, in the description of the embodiment, sodium hypochlorite is used as a chlorinating agent having a bactericidal effect, but in addition to sodium hypochlorite, measurement of residual chlorine concentration when potassium hypochlorite is used. Can be applied to. In addition to sodium hypochlorite, it can also be applied to chlorinated chemicals such as calcium hypochlorite and liquefied chlorine, which are recognized as disinfectants in the Water Supply Law.

また、実施形態の説明では、手動で試料水を注入しているが、所定の期間毎に自動で試料水を注入する構成とすることで、試料水の残留塩素濃度の自動測定及び残留塩素濃度の監視を行うことができる。   In the description of the embodiment, the sample water is manually injected. However, by automatically injecting the sample water every predetermined period, the automatic measurement of the residual chlorine concentration of the sample water and the residual chlorine concentration are performed. Can be monitored.

1,12…残留塩素測定装置
2…インジェクションバルブ
3…フローセル
4〜8,13…細管
9,15…送液ポンプ
10…ドレイン瓶
11,16…ダンパ
14…混合容器
DESCRIPTION OF SYMBOLS 1,12 ... Residual chlorine measuring device 2 ... Injection valve 3 ... Flow cell 4-8, 13 ... Thin tube 9, 15 ... Liquid feed pump 10 ... Drain bottle 11, 16 ... Damper 14 ... Mixing container

Claims (5)

試料水の残留塩素濃度を測定する残留塩素測定方法であって、
純水をキャリア液として流通させ、
前記キャリア液に前記試料水を注入し、
前記試料水が注入されたキャリア液を所定の速度でフローセルに供給し、
前記フローセルに配置された電極間に電圧を印加して検出される電流または電荷に基づいて、前記試料中の残留塩素濃度を測定する
ことを特徴とする残留塩素測定方法。
A residual chlorine measurement method for measuring the residual chlorine concentration of sample water,
Distribute pure water as carrier liquid,
Injecting the sample water into the carrier liquid,
Supplying the carrier liquid injected with the sample water to the flow cell at a predetermined speed;
A residual chlorine measurement method, comprising: measuring a residual chlorine concentration in the sample based on a current or a charge detected by applying a voltage between electrodes arranged in the flow cell.
前記フローセルに供給されるキャリア液にヨウ化カリウム溶液を注入する
ことを特徴とする請求項1に記載の残留塩素測定方法。
The residual chlorine measuring method according to claim 1, wherein a potassium iodide solution is injected into a carrier liquid supplied to the flow cell.
前記キャリア液の流速は、0.55〜0.85mL/分である
ことを特徴とする請求項1または請求項2に記載の残留塩素測定方法。
The residual chlorine measuring method according to claim 1 or 2, wherein a flow rate of the carrier liquid is 0.55 to 0.85 mL / min.
キャリア液に注入された試料水が所定の速度で導入されるフローセルと、
該フローセルに配置される電極間に電圧を印加して検出される電流または電荷に基づいて、前記試料水中の残留塩素濃度を測定する測定手段と、を備え、
前記キャリア液は、純水である
ことを特徴とする残留塩素測定装置。
A flow cell into which the sample water injected into the carrier liquid is introduced at a predetermined rate;
Measuring means for measuring a residual chlorine concentration in the sample water based on a current or a charge detected by applying a voltage between the electrodes arranged in the flow cell;
The residual chlorine measuring device, wherein the carrier liquid is pure water.
前記フローセルに導入されるキャリア液にヨウ化カリウム溶液を注入する手段を有する
ことを特徴とする請求項4に記載の残留塩素測定装置。
5. The residual chlorine measuring apparatus according to claim 4, further comprising means for injecting a potassium iodide solution into the carrier liquid introduced into the flow cell.
JP2015135750A 2015-07-07 2015-07-07 Residual chlorine measurement method and residual chlorine measurement device Pending JP2017015669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135750A JP2017015669A (en) 2015-07-07 2015-07-07 Residual chlorine measurement method and residual chlorine measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135750A JP2017015669A (en) 2015-07-07 2015-07-07 Residual chlorine measurement method and residual chlorine measurement device

Publications (1)

Publication Number Publication Date
JP2017015669A true JP2017015669A (en) 2017-01-19

Family

ID=57827835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135750A Pending JP2017015669A (en) 2015-07-07 2015-07-07 Residual chlorine measurement method and residual chlorine measurement device

Country Status (1)

Country Link
JP (1) JP2017015669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144532A (en) * 2017-04-19 2017-09-08 江苏脉科技有限公司 A kind of effective chlorine in-line analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144532A (en) * 2017-04-19 2017-09-08 江苏脉科技有限公司 A kind of effective chlorine in-line analyzer

Similar Documents

Publication Publication Date Title
Vikesland et al. Effect of natural organic matter on monochloramine decomposition: pathway elucidation through the use of mass and redox balances
US5503720A (en) Process for the quantitative determination of electrochemically reducible or oxidizable substances, particularly peracetic acid mixed with other oxidizing substances
JP6856867B2 (en) Reagent-free free residual chlorine measuring device and reagent-free free residual chlorine measuring method
JP4463405B2 (en) Sensor for redox current measuring device and redox current measuring device
US10473618B2 (en) Residual chlorine measuring apparatus and method of measuring residual chlorine
JP5023049B2 (en) Water quality monitoring device
WO2015020188A1 (en) Residual-chlorine measurement device, and residual-chlorine measurement method
Cecconi et al. ISE-ammonium sensors in WRRFs: field assessment of their influencing factors
US20160061791A1 (en) Automatic Ammonium Analyzer
JP2017015669A (en) Residual chlorine measurement method and residual chlorine measurement device
KR100724707B1 (en) Method of Determinnig Injection Amount of Chlorine/Dechlorination Agent, Controller and Wastewater Purification Apparatus Using the same
EP2844993A1 (en) Method and apparatus for measuring and controllng electrolytically-active species concentration in aqueous solutions
JP6191404B2 (en) Sludge activity measuring apparatus and sludge activity measuring method
JP4931627B2 (en) Phosphorus measuring method and apparatus
Engelhardt et al. Chlorination, chloramination and chlorine measurement
JP4292380B2 (en) Concentration management method and concentration management apparatus for water treatment chemicals
JP7231814B2 (en) Calibration method of residual chlorine measuring device
Guwy et al. A technique for monitoring hydrogen peroxide concentration off-line and on-line
JP7177341B2 (en) Reagentless residual chlorine measuring device and reagentless residual chlorine measuring method
Gumbi et al. Direct spectrophotometric detection of the endpoint in metachromatic titration of polydiallyldimethylammonium chloride in water
JP2001349866A (en) Apparatus for measuring residual chlorine
Malkov et al. Comparison of on-line chlorine analysis methods and instrumentation built on amperometric and colorimetric technologies
KR101758823B1 (en) The method for analysis of Chemical Oxygen Demand
JP7093005B2 (en) Reagent-free total effective chlorine measuring device and its calibration method and reagent-free total effective chlorine measuring method
JP2022131955A (en) Measuring method for hexamethylenetetramine, measuring method for substances to which water purification treatment is difficult to be applied, and measuring device