JP5023049B2 - Water quality monitoring device - Google Patents

Water quality monitoring device Download PDF

Info

Publication number
JP5023049B2
JP5023049B2 JP2008308630A JP2008308630A JP5023049B2 JP 5023049 B2 JP5023049 B2 JP 5023049B2 JP 2008308630 A JP2008308630 A JP 2008308630A JP 2008308630 A JP2008308630 A JP 2008308630A JP 5023049 B2 JP5023049 B2 JP 5023049B2
Authority
JP
Japan
Prior art keywords
substance
sample water
water
reaction vessel
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008308630A
Other languages
Japanese (ja)
Other versions
JP2010133783A (en
Inventor
智 原口
稔 竹村
剛石 金
彰 森川
修 上野
昭彦 城田
徳介 早見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008308630A priority Critical patent/JP5023049B2/en
Publication of JP2010133783A publication Critical patent/JP2010133783A/en
Application granted granted Critical
Publication of JP5023049B2 publication Critical patent/JP5023049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、原水への特定物質の混入を検出し、物質及び物質の濃度を特定して原水の水質を監視する水質監視装置に関する。   The present invention relates to a water quality monitoring device that detects mixing of a specific substance into raw water, specifies the substance and the concentration of the substance, and monitors the quality of the raw water.

原水への有害物質の混入を検出する方法として、有害物質が生物の活性に与える負荷を計測し、試料水の有害性を総合的に評価する方法がある。特に、酸素電極と微生物膜を組み合わせたバイオセンサを用いて、微生物膜の酸素消費量から微生物膜の呼吸活性をモニタリングする方法は、比較的簡単な装置で試料水への有害物質の混入を連続的に監視することができる(例えば、特許文献1参照)。   As a method for detecting the contamination of harmful substances in raw water, there is a method for comprehensively evaluating the harmfulness of sample water by measuring the load that harmful substances give to the activity of living organisms. In particular, the method of monitoring the respiratory activity of a microbial membrane from the oxygen consumption of the microbial membrane using a biosensor that combines an oxygen electrode and a microbial membrane continuously mixes harmful substances into sample water with a relatively simple device. Can be monitored automatically (see, for example, Patent Document 1).

特許文献1に記載される異常水質検出装置では、鉄酸化細菌の呼吸活性をモニタリングしている。例えば、鉄酸化細菌等の微生物は、特定の物質によって呼吸反応やその他の代謝反応の阻害を受けたり、細胞壁や細胞膜の破壊等が引き起こされることがある。このように微生物を利用して水質の異常を検出する場合、比較的広範囲な有害物質を検出することができる。   The abnormal water quality detection apparatus described in Patent Document 1 monitors the respiratory activity of iron-oxidizing bacteria. For example, microorganisms such as iron-oxidizing bacteria may be inhibited by a specific substance from a respiratory reaction or other metabolic reactions, or a cell wall or cell membrane may be destroyed. Thus, when detecting abnormalities in water quality using microorganisms, a relatively wide range of harmful substances can be detected.

特許文献1に記載されるようなバイオセンサを用いて有害物質の混入を検知した場合、原水に何らかの有害物質が含まれている可能性があることから、取水や送水の停止、汚染源の特定や除去、有害物質の漏洩防止等の対策をとる必要がある。一方、適切な対策をとるためには、有害物質の種類および濃度が特定できていることが望ましい。   When contamination of toxic substances is detected using a biosensor as described in Patent Document 1, there is a possibility that some toxic substances are included in the raw water. It is necessary to take measures such as removal and prevention of leakage of harmful substances. On the other hand, in order to take appropriate measures, it is desirable that the types and concentrations of harmful substances can be specified.

しかしながら、評価指標である呼吸活性の変化からは、有害物質の混入は検出できたとしても、有害物質の種別を識別することは困難である。したがって、バイオセンサのみでは、原水に含まれる化学物質を特定することは困難である。   However, from the change in respiratory activity, which is an evaluation index, it is difficult to identify the type of harmful substance even if contamination of the harmful substance can be detected. Therefore, it is difficult to specify a chemical substance contained in raw water with only a biosensor.

これに対し、有害物質を検出するバイオセンサと試料水に含まれる有害物質の検出を行なう擬似細胞膜センサとの二種類のセンサを併用する方法がある(例えば、特許文献2参照)。   On the other hand, there is a method in which two types of sensors, a biosensor that detects harmful substances and a pseudo cell membrane sensor that detects harmful substances contained in sample water, are used in combination (for example, see Patent Document 2).

擬似細胞膜センサでは、特定の化学物質毎に異なる反応が得られるため、有害物質の特定が可能になる。したがって、特許文献2に記載されるような方法では、バイオセンサによる連続的、かつ総括的な有害物質の監視と、擬似細胞膜センサによる化学物質の特定が可能となる。
特開2003−251345号公報 特開2000−167432号公報
In the pseudo cell membrane sensor, since a different reaction is obtained for each specific chemical substance, it is possible to identify a harmful substance. Therefore, the method as described in Patent Document 2 enables continuous and comprehensive monitoring of harmful substances using a biosensor and identification of chemical substances using a pseudo cell membrane sensor.
JP 2003-251345 A JP 2000-167432 A

しかしながら、バイオセンサと擬似細胞膜センサとの2種類の計測器機を利用する場合、2台のセンサが必要となるため、装置が大型化、複雑化するという問題がある。また、擬似細胞膜センサでは、有害物質の種類の特定まですることができるが、濃度の特定は困難である。   However, when two types of measuring instruments, that is, a biosensor and a pseudo cell membrane sensor are used, two sensors are required, which causes a problem that the apparatus becomes large and complicated. Further, with the pseudo cell membrane sensor, it is possible to specify the type of harmful substance, but it is difficult to specify the concentration.

上記課題に鑑み、本発明は、原水への特定物質の混入を検出するとともに、試料水に含まれる物質及び物質の濃度を特定することができる水質監視装置を提供する。   In view of the above problems, the present invention provides a water quality monitoring device capable of detecting the mixing of a specific substance in raw water and specifying the substance contained in the sample water and the concentration of the substance.

本発明に係る水質異常監視は、試料水が送水される測定槽と、測定槽の内部に配置され、微生物を保持する微生物膜を透過する酸素量を測定する酸素電極とを有し、酸素電極によって測定された酸素量に基づいて、試料水への特定の物質の混入の有無を検知するバイオセンサと、試料水が送水される反応容器と、試料水に特定の物質と反応する薬品を注入する薬品注入手段とを有し、薬品を添加後の試料水の変化に応じて、試料水に含まれる物質及び物質の濃度を特定する物質特定装置とを備える。   The water quality abnormality monitoring according to the present invention includes a measurement tank to which sample water is sent, and an oxygen electrode that is disposed inside the measurement tank and measures the amount of oxygen that permeates the microbial membrane holding microorganisms. A biosensor that detects the presence or absence of a specific substance in the sample water, a reaction vessel to which the sample water is fed, and a chemical that reacts with the specific substance is injected into the sample water And a substance specifying device for specifying the substance contained in the sample water and the concentration of the substance in accordance with a change in the sample water after the addition of the medicine.

本発明によれば、原水への特定物質の混入を検出するとともに、試料水に含まれる物質及び物質の濃度を特定することができる。   According to the present invention, it is possible to detect the mixing of a specific substance into raw water and to specify the substance and the concentration of the substance contained in the sample water.

本発明に係る水質監視装置は、水道水源(河川、湖沼、ダム、地下水等)から取水する原水や浄水場で処理される原水を試料水とし、この試料水に含まれる有害物質を検出し、試料水に含まれる物質及び物質の濃度特定して試料水の水質を監視する。試料水の有害物質の一例には、シアン化物や重金属(水銀等)や農薬類が挙げられる。   The water quality monitoring device according to the present invention uses raw water taken from a tap water source (river, lake, dam, groundwater, etc.) or raw water treated at a water purification plant as sample water, and detects harmful substances contained in the sample water. The water quality of the sample water is monitored by specifying the substance contained in the sample water and the concentration of the substance. Examples of harmful substances in sample water include cyanide, heavy metals (such as mercury), and agricultural chemicals.

〈第1の実施形態〉
図1に示すように、本発明の第1の実施形態に係る水質監視装置1aは、試料水に含まれる有害物質を検出するバイオセンサ10と、試料水に含まれる物質及び物質の濃度を特定する物質特定装置20aとを備えている。また、図1に示す水質監視装置1aは、バイオセンサ10及び物質特定装置20aに試料水を供給する試料水供給手段30と、バイオセンサ10に基質溶液を供給する基質溶液供給手段40と、バイオセンサ10に洗浄液を供給する洗浄液供給手段50と、バイオセンサ10に校正水を供給する校正水供給手段60とを備えている。さらに、水質監視装置1aは、バイオセンサ10の出力を処理して電流値(測定電流I)を求める出力処理装置70と、出力処理装置70で求められた電流値に応じて物質特定装置20aを制御する制御装置80とを備えている。
<First Embodiment>
As shown in FIG. 1, the water quality monitoring device 1 a according to the first embodiment of the present invention specifies a biosensor 10 that detects a harmful substance contained in sample water, a substance contained in the sample water, and the concentration of the substance. And a substance identification device 20a. 1 includes a sample water supply means 30 for supplying sample water to the biosensor 10 and the substance identification apparatus 20a, a substrate solution supply means 40 for supplying a substrate solution to the biosensor 10, A cleaning liquid supply means 50 for supplying a cleaning liquid to the sensor 10 and a calibration water supply means 60 for supplying calibration water to the biosensor 10 are provided. Further, the water quality monitoring device 1a processes the output of the biosensor 10 to obtain the current value (measured current I), and the substance specifying device 20a according to the current value obtained by the output processing device 70. And a control device 80 for controlling.

バイオセンサ10は、測定槽11と、微生物膜12と、酸素電極13とを有する。測定槽11は、試料水供給手段30からの試料水と基質溶液供給手段40からの基質溶液が供給される。尚、測定槽11への試料水及び基質溶液の供給は、連続的に供給することで水質の連続監視が可能となるが、間欠的に供給することで監視することも可能である。微生物膜12は、酸素電極13の先端に備えられ、微生物が固定化されている。この微生物の一例としては、鉄酸化細菌(Thiobacillus ferrooxidans)が挙げられる。また、酸素電極13は、測定槽11の内部に配置されている。出力処理装置70で測定する酸素電極13からの測定電流Iが予め定められる警報値Aを上回ったとき、試料水には有害物質が含まれていると検出される。   The biosensor 10 includes a measurement tank 11, a microbial membrane 12, and an oxygen electrode 13. The measurement tank 11 is supplied with the sample water from the sample water supply means 30 and the substrate solution from the substrate solution supply means 40. In addition, although supply of the sample water and the substrate solution to the measurement tank 11 can be continuously monitored by supplying continuously, it can also be monitored by supplying intermittently. The microorganism membrane 12 is provided at the tip of the oxygen electrode 13 and microorganisms are immobilized. An example of this microorganism is an iron-oxidizing bacterium (Thiobacillus ferrooxidans). The oxygen electrode 13 is disposed inside the measurement tank 11. When the measurement current I from the oxygen electrode 13 measured by the output processing device 70 exceeds a predetermined alarm value A, it is detected that the sample water contains harmful substances.

測定槽11に送水される液体に応じて微生物膜12に付着している微生物の呼吸活性が変化するため、酸素電極13を介して出力処理装置70で測定される電流値も変化する。例えば、測定槽11に供給される試料水に有害物質が含まれないときは、微生物は基質溶液を栄養源とし、微生物の呼吸が活性化され、酸素は微生物膜12で消費され、酸素電極13に到達する酸素量が減少するため、電流値は下がる。一方、測定槽11に微生物の呼吸活性に影響を与える有害物質を含む試料水が送水されると、微生物膜12に固定される微生物の呼吸が減少し、酸素が微生物膜12で消費されなくなり、電流値が上がる。   Since the respiratory activity of microorganisms adhering to the microorganism film 12 changes according to the liquid fed to the measurement tank 11, the current value measured by the output processing device 70 via the oxygen electrode 13 also changes. For example, when no harmful substances are contained in the sample water supplied to the measurement tank 11, the microorganisms use the substrate solution as a nutrient source, respiration of the microorganisms is activated, oxygen is consumed by the microorganism film 12, and the oxygen electrode 13 Since the amount of oxygen that reaches is reduced, the current value decreases. On the other hand, when sample water containing harmful substances that affect the respiratory activity of microorganisms is sent to the measurement tank 11, the respiration of microorganisms fixed to the microorganism membrane 12 decreases, and oxygen is not consumed by the microorganism membrane 12, The current value increases.

物質特定装置20aは、反応容器21aと、薬品注入手段22と、比色表23と、攪拌装置24とを有する。反応容器21aには、供給される所定量の液体(試料水)を貯水することが可能であり、所定量以上の液体が流入した場合には排水として反応容器21aから排出される。反応容器21aは、内部が見えるように容器の少なくとも一部が透明部材211で形成されている。図1に示す反応容器21aは、前面(紙面)の一部のみが透明部材211であるが、全体が透明部材211で形成されていてもよい。   The substance identification device 20 a includes a reaction vessel 21 a, a chemical injection unit 22, a colorimetric table 23, and a stirring device 24. A predetermined amount of liquid (sample water) to be supplied can be stored in the reaction vessel 21a, and when a predetermined amount or more of liquid flows in, it is discharged from the reaction vessel 21a as waste water. At least a part of the reaction container 21a is formed of a transparent member 211 so that the inside can be seen. In the reaction vessel 21 a shown in FIG. 1, only a part of the front surface (paper surface) is the transparent member 211, but the whole may be formed of the transparent member 211.

薬品注入手段22は、試料水に特定の物質と反応する薬品を注入する。この薬品注入手段22は、図1に示すように反応容器21aに流入した試料水に薬品を注入してもよいし、反応容器21aに流入する前の試料水に薬品を注入してもよい。特定の物質が含まれる試料水に薬品を注入したとき、試料水の色が変化する。この試料水の色の変化は、反応容器21aの透明部材211を通して把握することができる。   The chemical injection means 22 injects a chemical that reacts with a specific substance into the sample water. This chemical injection means 22 may inject the chemical into the sample water flowing into the reaction vessel 21a as shown in FIG. 1, or may inject the chemical into the sample water before flowing into the reaction vessel 21a. When a chemical is injected into sample water containing a specific substance, the color of the sample water changes. This change in the color of the sample water can be grasped through the transparent member 211 of the reaction vessel 21a.

比色表23は、薬品の添加によって変化する試料水の色の例のリストである。薬品添加後の試料水の色は、試料水に含まれる物質の種類と物質の濃度によって異なる。したがって、比色表23では、薬品添加後に変化する試料水の色の例と、この色の場合に試料水に含まれると推定される物質及び物質の濃度とを関連付けてリストしている。この比色表23は、この比色表23でリストされる色と透明部材211を介して観察される反応容器21a内の試料水の色とを比較することができるように反応容器21aの近傍に配置されている。   The colorimetric table 23 is a list of examples of the color of the sample water that changes with the addition of chemicals. The color of the sample water after chemical addition varies depending on the type of substance and the concentration of the substance contained in the sample water. Therefore, in the colorimetric table 23, an example of the color of the sample water that changes after the addition of the chemical, a substance that is estimated to be included in the sample water in the case of this color, and a concentration of the substance are listed in association with each other. The colorimetric table 23 is arranged in the vicinity of the reaction vessel 21a so that the color listed in the colorimetric table 23 can be compared with the color of the sample water in the reaction vessel 21a observed through the transparent member 211. Is arranged.

攪拌装置24は、マグネットスターラーや攪拌扇等、反応容器21a内の試料水と薬品を攪拌する手段である。この攪拌装置24で攪拌されることで、試料水と薬品が十分に混合されて試料水に特定の物質が含まれているときには試料水の色を変化させることができる。   The stirring device 24 is a means for stirring sample water and chemicals in the reaction vessel 21a, such as a magnetic stirrer or a stirring fan. By stirring with the stirring device 24, when the sample water and the chemical are sufficiently mixed and the sample water contains a specific substance, the color of the sample water can be changed.

このように、反応容器21a内で試料水と薬品を混合した後、透明部材211を介して把握することのできる試料水の色と比色表でリストされる色とを対比することで、試料水に含まれる物質及び物質の濃度を容易に特定することができる。   In this way, after mixing the sample water and the chemical in the reaction vessel 21a, the sample water color that can be grasped through the transparent member 211 is compared with the color listed in the colorimetric table. The substance contained in water and the concentration of the substance can be easily specified.

ここで、試料水に含まれる物質によって反応する薬品が異なる。したがって、水質監視装置1aで複数の物質特定装置20aを備えていれば、含有物質の特定の精度を向上させることができる。すなわち、複数の物質特定装置20aの薬品注入手段22でそれぞれ異なる種類の薬品を注入し、各比色表23がそれぞれ薬品に応じたリストであれば、水質監視装置1aでは、より多くの物質及び物質の濃度を特定することが可能になる。   Here, the chemicals to be reacted differ depending on the substances contained in the sample water. Therefore, if the water quality monitoring device 1a includes a plurality of substance specifying devices 20a, it is possible to improve the accuracy of specifying contained substances. That is, if different types of chemicals are injected by the chemical injection means 22 of the plurality of substance specifying devices 20a, and each colorimetric table 23 is a list corresponding to the chemicals, the water quality monitoring device 1a has more substances and It becomes possible to specify the concentration of the substance.

なお、図1に示す例では、反応容器21aの透明部材211を介して試料水の色を観察することができるが、反応容器21aが透明部材211で形成されていない場合、反応容器21aから薬品を注入後の試料水が供給される透明の観察用の容器を備えていてもよい。このような透明用の容器を備えている場合、比色表23は観察用の容器の近傍に配置されている。   In the example shown in FIG. 1, the color of the sample water can be observed through the transparent member 211 of the reaction vessel 21a. However, when the reaction vessel 21a is not formed of the transparent member 211, the chemical from the reaction vessel 21a A transparent observation container to which the sample water after the injection is supplied may be provided. When such a transparent container is provided, the colorimetric table 23 is arranged in the vicinity of the observation container.

試料水供給手段30は、バルブ31及びポンプ32を介して試料水を測定槽11に供給する。   The sample water supply means 30 supplies sample water to the measurement tank 11 via the valve 31 and the pump 32.

基質溶液供給手段40は、微生物膜12に保持される微生物の栄養源である基質溶液を備えており、微生物を活性化させるためにこの基質溶液をバルブ41及びポンプ42を介して測定槽11に供給する。例えば、微生物膜12に保持する微生物が鉄酸化細菌であるとき、鉄酸化細菌の栄養源である2価の鉄イオンを含む溶液を基質溶液とする。   The substrate solution supply means 40 includes a substrate solution that is a nutrient source of microorganisms held in the microorganism film 12, and this substrate solution is supplied to the measurement tank 11 via the valve 41 and the pump 42 in order to activate the microorganisms. Supply. For example, when the microorganisms retained on the microbial membrane 12 are iron-oxidizing bacteria, a solution containing divalent iron ions, which are nutrient sources for the iron-oxidizing bacteria, is used as the substrate solution.

洗浄液供給手段50は、バイオセンサ10を洗浄する洗浄液を備えており、バイオセンサ10を長期間使用しても有害物質の検出の安定性を維持するためにこの洗浄液をバルブ51及びポンプ42を介して測定槽11に供給する。例えば、微生物膜12に保持する微生物が鉄酸化細菌であるとき、硫酸水溶液(pH2〜3)を洗浄液とすることができる。   The cleaning liquid supply means 50 includes a cleaning liquid for cleaning the biosensor 10, and this cleaning liquid is supplied via the valve 51 and the pump 42 in order to maintain the stability of detection of harmful substances even when the biosensor 10 is used for a long period of time. To supply to the measuring tank 11. For example, when the microorganism held in the microorganism film 12 is an iron-oxidizing bacterium, an aqueous sulfuric acid solution (pH 2 to 3) can be used as a cleaning solution.

校正水供給手段60は、バイオセンサ10における検出の精度を校正する校正水を備えており、バルブ61及びポンプ32を介して校正水を測定槽11に供給する。   The calibration water supply means 60 includes calibration water for calibrating the detection accuracy of the biosensor 10, and supplies calibration water to the measurement tank 11 via the valve 61 and the pump 32.

図2を用いて、出力処理装置70によって検出されるバイオセンサ10での電流の変化の一例を説明する。図2に示す例では、出力処理装置70が測定時(検出時)に測定した測定電流Iが警報値Aを上回ったときに試料水に有害物質が含まれていると検出する。まず、測定中(t0〜t1)にはバルブ31及びバルブ41が開き、バイオセンサ10には試料水供給手段30から試料水が供給され、基質溶液供給手段40から基質溶液が供給されている。 An example of a change in current in the biosensor 10 detected by the output processing device 70 will be described with reference to FIG. In the example shown in FIG. 2, when the measurement current I measured at the time of measurement (detection) by the output processing device 70 exceeds the alarm value A, it is detected that the sample water contains harmful substances. First, during the measurement (t 0 to t 1 ), the valve 31 and the valve 41 are opened, the sample water is supplied from the sample water supply means 30 to the biosensor 10, and the substrate solution is supplied from the substrate solution supply means 40. Yes.

ここで、長時間測定が行なわれることでバイオセンサ10の有害物質の検出精度が劣ることがあるため、測定電流Iの安定性が損なわれた場合や定期的等の所定のタイミングでバイオセンサ10が洗浄される。洗浄時(t1〜t2)には、バルブ31及びバルブ51が開き、バイオセンサ10には、試料水供給手段30から試料水が供給され、洗浄液供給手段50から洗浄液が供給されてバイオセンサ10が洗浄される。洗浄時には、バイオセンサ10に基質溶液が供給されないため、微生物膜12に保持される微生物の呼吸活性が低下し、図2に示すように出力処理装置70で測定される測定電流Iは高くなる。 Here, since the detection accuracy of the harmful substance of the biosensor 10 may be inferior due to the long-time measurement, the biosensor 10 is at a predetermined timing such as when the stability of the measurement current I is impaired or periodically. Is washed. At the time of cleaning (t 1 to t 2 ), the valve 31 and the valve 51 are opened, the sample water is supplied from the sample water supply means 30 to the biosensor 10, and the cleaning liquid is supplied from the cleaning liquid supply means 50 to the biosensor. 10 is washed. At the time of washing, since the substrate solution is not supplied to the biosensor 10, the respiratory activity of the microorganisms held in the microorganism film 12 is reduced, and the measurement current I measured by the output processing device 70 is increased as shown in FIG.

洗浄後は、スパン校正のため、バルブ51及びバルブ61が開き、バイオセンサ10には、洗浄液供給手段50から洗浄液が供給され、校正水供給手段60から校正水が供給されてバイオセンサ10が校正される。スパン校正時(t2〜t3)にも、基質溶液は供給されないため、微生物膜12に保持される微生物の呼吸活性の低下が継続し、図2に示すように出力処理装置70で測定される測定電流Iは高くなる。 After the cleaning, for the span calibration, the valve 51 and the valve 61 are opened, the cleaning liquid is supplied from the cleaning liquid supply means 50 to the biosensor 10, and the calibration water is supplied from the calibration water supply means 60 to calibrate the biosensor 10. Is done. At the time of span calibration (t 2 to t 3 ), since the substrate solution is not supplied, the respiratory activity of the microorganisms held in the microorganism film 12 continues to decrease, and is measured by the output processing device 70 as shown in FIG. The measured current I increases.

スパン校正後は、ゼロ校正のため、バルブ41及びバルブ61が開き、バイオセンサ10には、基質溶液供給手段40から基質溶液が供給され、校正水供給手段60から校正水が供給されてバイオセンサ10が校正される。ゼロ校正時(t3〜t4)になると、バイオセンサ10に基質溶液が供給され、微生物膜12に保持される微生物の呼吸活性が増加し、図2に示すように出力処理装置70で測定される測定電流Iは低くなる。 After the span calibration, the valve 41 and the valve 61 are opened for zero calibration, the biosensor 10 is supplied with the substrate solution from the substrate solution supply means 40, and the calibration water is supplied from the calibration water supply means 60 to the biosensor. 10 is calibrated. At the time of zero calibration (t 3 to t 4 ), the substrate solution is supplied to the biosensor 10, and the respiratory activity of the microorganisms held in the microbial membrane 12 is increased, which is measured by the output processing device 70 as shown in FIG. The measured current I is low.

ゼロ校正後は、測定のため、バルブ31及びバルブ41が開き、バイオセンサ10には、試料水供給手段30から試料水が供給され、基質溶液供給手段40から基質溶液が供給される。測定時(t4〜)にも基質溶液が供給されているため、試料水が有害物質を含まない限り、微生物膜12に保持される微生物の呼吸が活性化され、出力処理装置70で測定される測定電流Iは、警報値Aよりも低い状態が継続する。その後、例えばt5の時点で有害物質が含有される試料水がバイオセンサ10に供給された場合、微生物の呼吸活性が低下して出力処理装置70で測定される測定電流Iは上昇し、警報値Aを上回る。 After the zero calibration, the valve 31 and the valve 41 are opened for measurement, the sample water is supplied from the sample water supply means 30 to the biosensor 10, and the substrate solution is supplied from the substrate solution supply means 40. Since the substrate solution is also supplied at the time of measurement (from t 4 ), respiration of microorganisms held in the microorganism film 12 is activated and measured by the output processing device 70 unless the sample water contains harmful substances. The measured current I remains lower than the alarm value A. Thereafter, for example, when sample water containing a harmful substance is supplied to the biosensor 10 at time t 5 , the respiratory activity of the microorganisms decreases and the measurement current I measured by the output processing device 70 increases, causing an alarm. Above the value A.

制御装置80は、測定時に出力処理装置70で測定される測定電流Iが警報値を上回ったとき、バルブ33を開に制御するとともにポンプ34を起動するように制御し、試料水供給手段30が供給する試料水を物質特定装置20に送水する。また、制御装置80は、物質特定装置20aを起動する。具体的には、薬品注入手段22が試料水に薬品を注入するように制御する。   The control device 80 controls the valve 33 to be opened and the pump 34 to be started when the measured current I measured by the output processing device 70 exceeds the alarm value at the time of measurement. The supplied sample water is sent to the substance identification device 20. In addition, the control device 80 activates the substance specifying device 20a. Specifically, the chemical injection means 22 is controlled to inject the chemical into the sample water.

すなわち、図3に示すフローチャートにあるように、制御装置80は、出力処理装置70から電流値(測定電流I)を入力すると(S01)、この測定電流Iが警報値A以上であるか否かを判定する(S02)。   That is, as shown in the flowchart of FIG. 3, when the control device 80 inputs a current value (measured current I) from the output processing device 70 (S01), whether or not the measured current I is greater than or equal to the alarm value A. Is determined (S02).

入力した測定電流Iが警報値A以上であるときには(S02でYES)、試料水に有害物質が含まれていると考えられるため、制御装置80は、物質特定装置20aを起動し、試料水に含まれる有害物質を特定するように、物質特定装置20a、バルブ33及びポンプ34を制御する(S03)。   When the input measurement current I is greater than or equal to the alarm value A (YES in S02), since the sample water is considered to contain harmful substances, the control device 80 activates the substance specifying device 20a and sets the sample water to the sample water. The substance specifying device 20a, the valve 33 and the pump 34 are controlled so as to specify the harmful substances contained (S03).

一方、入力した測定電流Iが警報値A以下であるときには(S02でNO)、試料水には有害物質は含まれていないと考えられるため、制御装置80は物質特定装置20aを起動せずに、ステップS01に戻り、同様の処理を繰り返す。   On the other hand, when the input measurement current I is equal to or lower than the alarm value A (NO in S02), it is considered that the sample water does not contain harmful substances, so the control device 80 does not activate the substance identification device 20a. Returning to step S01, the same processing is repeated.

上述した水質監視装置1aによれば、バイオセンサ10と物質特定装置20aとを有することで、試料水に有害物質を含んでいる場合、バイオセンサ10で有害物質の混入を検出する他、物質特定装置20aによって、有害物質及び有害物質の混入濃度を特定することができる。   According to the above-described water quality monitoring device 1a, by including the biosensor 10 and the substance specifying device 20a, when the sample water contains a harmful substance, the biosensor 10 detects the contamination of the harmful substance, and also specifies the substance. With the device 20a, it is possible to identify harmful substances and the concentration of harmful substances.

また、上述したように、連続的に動作させることのできるバイオセンサ10で有害物質を検出した場合にのみ制御装置80の制御によって連続的な監視に適していない物質特定装置20aでの特定を行なうようにすることで、物質特定装置20aを有効に使用することができる。   Further, as described above, only when the harmful substance is detected by the biosensor 10 that can be operated continuously, the control by the control device 80 performs the specification by the substance specifying device 20a that is not suitable for continuous monitoring. By doing so, the substance identification device 20a can be used effectively.

なお、上述の説明では、水質監視装置1aは、バイオセンサ10による検出で試料水に有害物質を含んでいた場合に制御装置80が物質特定装置20aを起動していたが、ユーザの操作によって物質特定装置20aを起動するようにしても良い。   In the above description, the water quality monitoring device 1a is configured so that the control device 80 activates the substance specifying device 20a when the sample water contains a harmful substance as detected by the biosensor 10, but the substance is detected by the user's operation. The specific device 20a may be activated.

〈第2の実施形態〉
図4に示すように、本発明の第2の実施形態に係る水質監視装置1bは、試料水に含まれる有害物質を検出するバイオセンサ10と、試料水に含まれる物質を特定する物質特定装置20bとを備えている。
<Second Embodiment>
As shown in FIG. 4, the water quality monitoring device 1b according to the second embodiment of the present invention includes a biosensor 10 that detects harmful substances contained in sample water, and a substance identification device that identifies substances contained in the sample water. 20b.

この水質監視装置1bは、図1を用いて上述した水質監視装置1aと比較して、物質特定装置20aに代えて、物質特定装置20bを備えている点で異なる。以下の説明において、図1を用いて上述した水質監視装置1aと同一の構成については、同一の符号を付して説明を省略する。   This water quality monitoring device 1b is different from the water quality monitoring device 1a described above with reference to FIG. 1 in that a material specifying device 20b is provided instead of the material specifying device 20a. In the following description, the same components as those of the water quality monitoring device 1a described above with reference to FIG.

物質特定装置20bは、反応容器21bと、薬品注入手段22と、攪拌装置24と、光源25と、受光器26とを有する。   The substance identification device 20b includes a reaction vessel 21b, a chemical injection unit 22, a stirring device 24, a light source 25, and a light receiver 26.

光源25は、反応容器21b内の試料水に光を照射する。また、受光器26は、光源25から照射され、反応容器21b内の試料水を透過した光を受光する。   The light source 25 irradiates the sample water in the reaction vessel 21b with light. The light receiver 26 receives the light emitted from the light source 25 and transmitted through the sample water in the reaction vessel 21b.

物質特定装置20bの反応容器21bは、光源25と対向する面と、受光器26を対向する面とが透明部材211である必要がある。すなわち、物質特定装置20aでは、比色表23と反応容器21a内の試料水の色を対比できるように、例えば、反応容器21aの前面の一部のみが透明部材211であっても良かった。一方、物質特定装置20bでは、光源25から照射され、反応容器21b内の試料水を透過した光を受光器26で受光するため、光源25と向き合う面と、受光器26と向き合う面とを透明部材211にする必要がある。   In the reaction container 21b of the substance identification device 20b, the surface facing the light source 25 and the surface facing the light receiver 26 need to be the transparent member 211. That is, in the substance identification device 20a, for example, only a part of the front surface of the reaction vessel 21a may be the transparent member 211 so that the color table 23 and the color of the sample water in the reaction vessel 21a can be compared. On the other hand, in the substance specifying device 20b, the light that is irradiated from the light source 25 and transmitted through the sample water in the reaction vessel 21b is received by the light receiver 26, so that the surface facing the light source 25 and the surface facing the light receiver 26 are transparent. The member 211 needs to be used.

なお、光源25又は受光器26と向き合う面の全面を透明部材としなくても、光源25から受光器26の光路を保つことができればよい。すなわち、光源25から受光器26までの直線を光路としたとき、光源25から照射された光がこの光路を通って受光器26で受光されるように、少なくとも反応容器21bの光路上の部分が透明部材211であることが必要である。   Note that the light path from the light source 25 to the light receiver 26 may be maintained even if the entire surface facing the light source 25 or the light receiver 26 is not a transparent member. That is, when a straight line from the light source 25 to the light receiver 26 is used as an optical path, at least a portion on the optical path of the reaction vessel 21b is received by the light receiver 26 through the optical path. The transparent member 211 is required.

吸光度測定手段27は、光の照射を制御する制御信号を光源25に出力し、受光器26から光の受光量を入力する。吸光度測定手段27は、例えば、所定の光量で光を照射した際に試料水を透過した光の受光量から求められる吸光度と、この吸光度の場合に試料水に含まれると考えられる物質及び物質の濃度を関連付けた有害物データを記憶しており、光源25から照射した光量と受光器26から入力した光の受光量に基づいて試料水の吸光度を求め、求めた急高度に応じて試料水に含まれる物質及び物質の濃度を特定する。   The absorbance measuring means 27 outputs a control signal for controlling light irradiation to the light source 25 and inputs the amount of received light from the light receiver 26. For example, the absorbance measuring unit 27 is configured to calculate the absorbance obtained from the amount of light received through the sample water when the light is irradiated with a predetermined amount of light, and the substances and substances considered to be included in the sample water in the case of this absorbance. Hazardous substance data associated with the concentration is stored, and the absorbance of the sample water is obtained based on the amount of light irradiated from the light source 25 and the amount of received light input from the light receiver 26, and the sample water is added to the sample water according to the obtained steep altitude. Identify contained substances and substance concentrations.

この有害物データは、薬品を添加しない状態の試料水であるリファレンス水を透過する光の量と、薬品を添加して呈色反応が生じた状態の試料水を透過する光の量とを予め取得して求められる。例えば、物質特定装置20bでは、定期的にリファレンス水を通水して有害物データを更新してもよい。有害物データを更新した場合、反応容器21bの汚れによる誤差や、光源25や受光器26の経年劣化等による誤差にも対応することができる。なお、リファレンス水には純水や濁度を除去した原水を使用することができる。   This harmful substance data includes the amount of light that passes through the reference water, which is sample water in the state where no chemical is added, and the amount of light that passes through the sample water in which a color reaction has occurred after adding the chemical. Obtained and requested. For example, the substance identification device 20b may periodically update reference data by passing reference water. When the harmful substance data is updated, it is possible to deal with errors due to contamination of the reaction vessel 21b and errors due to aging deterioration of the light source 25 and the light receiver 26. The reference water can be pure water or raw water from which turbidity has been removed.

図5に示すフローチャートを用いて、水質監視装置1bにおける処理の流れを説明する。まず、水質監視装置1aの場合と同様に、制御装置80が出力処理装置70から電流値(測定電流I)入力し(S11)、この測定電流Iが警報値A以上であるとき(S12でYES)、制御装置80は物質特定装置20bを起動する(S13)。   The flow of processing in the water quality monitoring device 1b will be described using the flowchart shown in FIG. First, as in the case of the water quality monitoring device 1a, the control device 80 inputs a current value (measured current I) from the output processing device 70 (S11), and when the measured current I is greater than or equal to the alarm value A (YES in S12). ), The control device 80 activates the substance identification device 20b (S13).

その後、吸光度測定手段27は、受光器26から入力する受光量から吸光度を求め(S14)、求めた吸光度に応じて有害物質を特定する(S15)。   Thereafter, the absorbance measurement means 27 obtains the absorbance from the amount of received light input from the light receiver 26 (S14), and identifies the harmful substance according to the obtained absorbance (S15).

ステップS15において有害物質が特定できると(S16でYES)、その有害物質に応じた対策が実行される(S17)。また、有害物質が特定できないとき(S16でNO)、採水手段90が起動されてバルブ91が開となって試料水が採水される(S18)。   If a harmful substance can be specified in step S15 (YES in S16), a countermeasure corresponding to the harmful substance is executed (S17). When no harmful substance can be identified (NO in S16), the water sampling means 90 is activated, the valve 91 is opened, and sample water is sampled (S18).

上述した水質監視装置1bによれば、バイオセンサ10と物質特定装置20bとを有することで、試料水に有害物質を含んでいる場合、バイオセンサ10で有害物質の混入を検出する他、物質特定装置20bによって、有害物質及び有害物質の混入濃度を特定することができる。   According to the water quality monitoring device 1b described above, by including the biosensor 10 and the substance specifying device 20b, when the sample water contains a harmful substance, the biosensor 10 detects the mixing of the harmful substance, and also specifies the substance. With the device 20b, it is possible to specify the harmful substance and the concentration of the harmful substance.

また、上述したように、バイオセンサ10で有害物質を検出した場合にのみ制御装置80の制御によって物質特定装置20bでの特定を行なうようにすることで、物質特定装置20bを有効に使用することができる。   Further, as described above, the substance specifying device 20b can be effectively used by specifying the substance specifying device 20b under the control of the control device 80 only when the biosensor 10 detects a harmful substance. Can do.

なお、上述の説明では、水質監視装置1bは、バイオセンサ10による検出で試料水に有害物質を含んでいた場合に制御装置80が物質特定装置20bを起動していたが、ユーザの操作によって物質特定装置20bを起動するようにしても良い。   In the above description, the water quality monitoring device 1b is configured so that the control device 80 activates the substance specifying device 20b when the sample water contains a harmful substance as detected by the biosensor 10. The specific device 20b may be activated.

《具体例》
続いて、物質特定装置20bによって、JIS−K−0102で規定される「4−ピリジンカルボン酸−ピラゾロン吸光光度法」を使用し、シアン化物を有害物質として特定する場合の例について説明する。
"Concrete example"
Subsequently, an example in which the cyanide is identified as a harmful substance by using the “4-pyridinecarboxylic acid-pyrazolone absorptiometry” defined in JIS-K-0102 by the substance identifying device 20b will be described.

この場合、薬品注入手段22は、第1試薬「クロラミンT溶液(p−トルエンスルホンクロロアミドナトリウム三水和物)」と、第2試薬「4−ピリジンカルボン酸−ピラゾロン溶液」の2種類の薬品を使用する。薬品注入手段22は、粉末の状態で各試薬を試料水に注入してもよいし、水に希釈した液体の状態で試料水に注入してもよい。   In this case, the chemical injection means 22 includes two types of chemicals, a first reagent “chloramine T solution (p-toluenesulfonchloroamide sodium trihydrate)” and a second reagent “4-pyridinecarboxylic acid-pyrazolone solution”. Is used. The chemical injection means 22 may inject each reagent into the sample water in a powder state, or may inject it into the sample water in a liquid state diluted in water.

具体的には、薬品注入手段22は、20mlの試料水二対して、0.5mlの第1試薬を注入し、約5分間放置する。その後、薬品注入手段22は、この試料水に10mlの第2試薬を注入する。第2試薬が注入されると、攪拌装置24は試料水を攪拌し、約30分放置する。その後、吸光度測定手段27によって波長638nm付近の吸光度を測定してシアン及びシアンの濃度を特定する。   Specifically, the chemical injection means 22 injects 0.5 ml of the first reagent to 20 ml of sample water and leaves it for about 5 minutes. Thereafter, the chemical injection means 22 injects 10 ml of the second reagent into the sample water. When the second reagent is injected, the stirring device 24 stirs the sample water and leaves it for about 30 minutes. Thereafter, the absorbance at the wavelength of about 638 nm is measured by the absorbance measuring means 27 to identify cyan and cyan density.

ここで、第2試薬は、N,N−ジメチルホルムアミド20mlに0.3gの3−メチル1−フェニル−5−ピラゾロンを溶解し、別に約20mlの水酸化ナトリウム溶液(40g/l)に4−ピリジンカルボン酸カルボン酸を溶解して塩酸を添加してpHを約7として、両溶液の混合液に水を加えて100mlとすることで調整される。   Here, as the second reagent, 0.3 g of 3-methyl 1-phenyl-5-pyrazolone was dissolved in 20 ml of N, N-dimethylformamide, and separately from about 20 ml of sodium hydroxide solution (40 g / l). It is adjusted by dissolving pyridine carboxylic acid carboxylic acid and adding hydrochloric acid to a pH of about 7, and adding water to the mixture of both solutions to 100 ml.

薬品を注入後の試料水がpH6〜8であるときに呈色反応が最適に現れるため、薬品を注入後の試料水のpHがこの範囲(pH6〜8)を外れている場合には、pH調整のため、リン酸塩緩衝液を注入することが望ましい。   Since the color reaction appears optimal when the sample water after injecting the chemical has a pH of 6 to 8, the pH of the sample water after injecting the chemical is outside this range (pH 6 to 8). For adjustment, it is desirable to inject a phosphate buffer.

ここでは、「4−ピリジンカルボン酸−ピラゾロン吸光光度法」を用いて説明したが、「ピリジン−ピラゾロン吸光光度法」を用いても良い。   Here, “4-pyridinecarboxylic acid-pyrazolone absorptiometry” has been described, but “pyridine-pyrazolone absorptiometry” may be used.

なお、物質特定装置20aの場合、試料水に第2試薬を注入するまでの処理は同一であるが、第2試薬を注入して約30分放置後、試料水の色を比色表23でリストされる色とを利用して、シアン及びシアンの濃度を特定する。   In the case of the substance specifying device 20a, the process until the second reagent is injected into the sample water is the same. However, after the second reagent is injected and left for about 30 minutes, the color of the sample water is represented by the colorimetric table 23. Cyan and cyan density are specified using the listed colors.

第1の実施形態に係る水質監視装置の構成を説明する図である。It is a figure explaining the composition of the water quality monitoring device concerning a 1st embodiment. 図1の水質監視装置のバイオセンサにおける測定について説明する図である。It is a figure explaining the measurement in the biosensor of the water quality monitoring apparatus of FIG. 図1の水質監視装置における処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the process in the water quality monitoring apparatus of FIG. 第2の実施形態に係る水質監視装置の構成を説明する図である。It is a figure explaining the structure of the water quality monitoring apparatus which concerns on 2nd Embodiment. 図4の水質監視装置における処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the process in the water quality monitoring apparatus of FIG.

符号の説明Explanation of symbols

1a,1b…水質監視装置
10…バイオセンサ
11…測定槽
12…微生物膜
13…酸素電極
20a,20b…物質特定装置
21a,21b…反応容器
211…透明部材
22…薬品注入手段
23…比色表
24…攪拌装置
25…光源
26…受光器
27…吸光度測定手段
30…試料水供給手段
40…基質溶液供給手段
50…洗浄液供給手段
60…校正水供給手段
70…出力処理装置
80…制御装置
90…採水手段
DESCRIPTION OF SYMBOLS 1a, 1b ... Water quality monitoring apparatus 10 ... Biosensor 11 ... Measuring tank 12 ... Microbial membrane 13 ... Oxygen electrode 20a, 20b ... Substance identification device 21a, 21b ... Reaction container 211 ... Transparent member 22 ... Chemical injection means 23 ... Colorimetric table DESCRIPTION OF SYMBOLS 24 ... Stirring device 25 ... Light source 26 ... Light receiver 27 ... Absorbance measuring means 30 ... Sample water supply means 40 ... Substrate solution supply means 50 ... Washing liquid supply means 60 ... Calibration water supply means 70 ... Output processing device 80 ... Control device 90 ... Water sampling means

Claims (5)

試料水が送水される測定槽と、前記測定槽の内部に配置され、微生物を保持する微生物膜を透過する酸素量を測定する酸素電極とを有し、前記酸素電極によって測定された酸素量に基づいて、試料水への特定の物質の混入の有無を検知するバイオセンサと、
試料水が送水される反応容器と、試料水に特定の物質と反応する薬品を注入する薬品注入手段とを有し、薬品を添加後の試料水の変化に応じて、試料水に含まれる物質及び物質の濃度を特定する物質特定装置と、
前記バイオセンサによって特定の物質の混入されていることが検出された場合に、前記反応容器に試料水を送水するとともに、前記物質特定装置を起動する制御装置と、
を備えることを特徴とする水質監視装置。
A measuring tank to which sample water is sent, and an oxygen electrode that is disposed inside the measuring tank and that measures the amount of oxygen that permeates the microbial membrane holding microorganisms, and the amount of oxygen measured by the oxygen electrode Based on the biosensor that detects the presence or absence of a specific substance in the sample water,
A substance contained in the sample water according to the change in the sample water after the addition of the chemical, having a reaction vessel to which the sample water is sent and a chemical injection means for injecting a chemical that reacts with a specific substance into the sample water And a substance identifying device for identifying the concentration of the substance,
When the biosensor detects that a specific substance is mixed, it supplies sample water to the reaction container and activates the substance specifying device; and
A water quality monitoring device comprising:
前記反応容器は、少なくとも一部が透明素材で形成され、
前記物質特定装置は、
試料水と薬品の呈色反応で生じる色と、各呈色反応が生じた場合に試料水に含まれる物質の名称及び物質の濃度とが関連付けられるリストである比色表を有し、当該比色表を前記反応容器の透明部材の近傍に設置することを特徴とする請求項に記載の水質監視装置。
The reaction vessel is at least partially formed of a transparent material,
The substance identification device includes:
It has a colorimetric table that is a list in which the color generated by the color reaction between the sample water and the chemical and the name of the substance and the concentration of the substance contained in the sample water when each color reaction occurs are related. The water quality monitoring apparatus according to claim 1 , wherein a color table is installed in the vicinity of the transparent member of the reaction vessel.
前記物質特定装置は、
薬品と反応後の試料水の吸光度を測定し、測定された吸光度に応じて試料水に含まれる物質及び物質の濃度を特定する吸光度測定手段を備えることを特徴とする請求項に記載の水質監視装置。
The substance identification device includes:
2. The water quality according to claim 1 , further comprising an absorbance measurement unit that measures the absorbance of the sample water after reacting with the chemical and identifies the substance and the concentration of the substance contained in the sample water according to the measured absorbance. Monitoring device.
前記反応容器は、少なくとも対向する二ヶ所が透明部材で形成され、
前記物質特定装置は、
前記透明部材を通る光路に沿って光を照射する光源と、
前記光源から照射され、前記反応容器内の試料水を透過した光を受光する受光器と、
前記光源から照射した光の強度と前記受光器で受光した光の強度とから前記反応容器内の試料水の吸光度を測定し、測定された吸光度に応じて試料水に含まれる物質および物質の濃度を特定する吸光度測定手段と、
を備えることを特徴とする請求項に記載の水質監視装置。
The reaction vessel is formed of a transparent member at least at two opposing points,
The substance identification device includes:
A light source that emits light along an optical path through the transparent member;
A light receiver that receives light irradiated from the light source and transmitted through the sample water in the reaction vessel;
The absorbance of the sample water in the reaction vessel is measured from the intensity of the light emitted from the light source and the intensity of the light received by the light receiver, and the substance contained in the sample water and the concentration of the substance according to the measured absorbance Absorbance measurement means for identifying
The water quality monitoring device according to claim 1 , comprising:
前記微生物膜で保持する微生物として、鉄酸化細菌を利用することを特徴とする請求項1乃至のいずれか1に記載の水質監視装置。 The water quality monitoring apparatus according to any one of claims 1 to 4 , wherein iron-oxidizing bacteria are used as the microorganisms retained by the microbial membrane.
JP2008308630A 2008-12-03 2008-12-03 Water quality monitoring device Expired - Fee Related JP5023049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308630A JP5023049B2 (en) 2008-12-03 2008-12-03 Water quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308630A JP5023049B2 (en) 2008-12-03 2008-12-03 Water quality monitoring device

Publications (2)

Publication Number Publication Date
JP2010133783A JP2010133783A (en) 2010-06-17
JP5023049B2 true JP5023049B2 (en) 2012-09-12

Family

ID=42345222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308630A Expired - Fee Related JP5023049B2 (en) 2008-12-03 2008-12-03 Water quality monitoring device

Country Status (1)

Country Link
JP (1) JP5023049B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856152B1 (en) * 2016-09-19 2018-05-09 바이오뱅크 주식회사 Water Quality Analyser for conducting biochemistry and cytotoxicity test and testing-Method using thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349172B1 (en) * 2011-12-30 2014-01-09 (주)마이크로디지탈 Toxicity detecting apparatus
CN102680462B (en) * 2012-05-16 2015-04-22 王磊 Method and device for on-line monitoring of contents of multiple heavy metals in water body
CN103592234A (en) * 2013-11-18 2014-02-19 苏州科技学院 Method for evaluating apparent quality of landscape water body
CN104122319B (en) * 2014-08-13 2017-02-01 华安奥特(北京)科技股份有限公司 Method and system for identifying water source in mining area based on ion composite electrode detecting technology and spectrum analysis technology
CN111015651A (en) * 2019-11-26 2020-04-17 广东省医疗器械研究所 Novel online water quality analysis system and implementation method thereof
CN114184529B (en) * 2020-09-15 2024-05-07 中国石油化工股份有限公司 Method, device, electronic equipment and medium for acquiring irreducible water saturation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515088Y2 (en) * 1987-02-27 1993-04-21
JP3077461B2 (en) * 1993-08-24 2000-08-14 富士電機株式会社 How to monitor hazardous substances in water
JP4537788B2 (en) * 2004-07-15 2010-09-08 株式会社東芝 Hazardous substance detection method and apparatus
JP4602018B2 (en) * 2004-07-15 2010-12-22 株式会社東芝 Hazardous substance detection method and apparatus
JP4411657B2 (en) * 2004-08-02 2010-02-10 三浦工業株式会社 Residual chlorine concentration measuring composition and method for measuring residual chlorine concentration using this composition
JP2008054550A (en) * 2006-08-30 2008-03-13 Toshiba Corp Method for detecting medicine and device for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856152B1 (en) * 2016-09-19 2018-05-09 바이오뱅크 주식회사 Water Quality Analyser for conducting biochemistry and cytotoxicity test and testing-Method using thereof

Also Published As

Publication number Publication date
JP2010133783A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5023049B2 (en) Water quality monitoring device
CN102066926B (en) detection of free chlorine in water
US9897549B2 (en) Analytical device for automated determination of a measured variable of a liquid sample
US9518900B2 (en) Sample preparation system for an analytical system for determining a measured variable of a liquid sample
KR20150101142A (en) a residual chlorine detector and the multi-funtional residual chlorine detecting system using thereof
Lee et al. Amperometric carbon fiber nitrite microsensor for in situ biofilm monitoring
Li et al. Chlorination in the pandemic times: The current state of the art for monitoring chlorine residual in water and chlorine exposure in air
US8569045B2 (en) Water toxicity detecting apparatus and method using sulfur particles
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
US4140487A (en) Method and apparatus for analysis of water
Sanvito et al. Exploring bufferless iron speciation in seawater by Competitive Ligand Equilibration-Cathodic Stripping Voltammetry: Does pH control really matter?
US10989699B2 (en) Methods and systems for detecting and quantifying peroxy acid and peroxide in fluids
JP6191404B2 (en) Sludge activity measuring apparatus and sludge activity measuring method
Guwy et al. A technique for monitoring hydrogen peroxide concentration off-line and on-line
KR100724707B1 (en) Method of Determinnig Injection Amount of Chlorine/Dechlorination Agent, Controller and Wastewater Purification Apparatus Using the same
US5869342A (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
US20210033590A1 (en) Method for determining a chemical intake capacity of a process medium in a measuring point and measuring point for determining a chemical intake capacity of a process medium
Liao et al. Studies on the early detection of wastewater’s toxicity using a microbial sensing system
EP1200812B1 (en) Hydrogen peroxide monitoring
JP2006046985A (en) Composition for liquid concentration measurement, liquid concentration measuring method using the composition, and liquid concentration measuring instrument
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
CN108375610A (en) A kind of bearing calibration for analyzing sludge enzymatic activity based on temperature inhibiting rate
Leite et al. Implications of COD analysis use in the peracetic acid-based wastewater treatment
Chee et al. Stopped-flow system with ozonizer for the estimation of low biochemical oxygen demand in environmental samples
JP2017015669A (en) Residual chlorine measurement method and residual chlorine measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees