JP6191404B2 - Sludge activity measuring apparatus and sludge activity measuring method - Google Patents

Sludge activity measuring apparatus and sludge activity measuring method Download PDF

Info

Publication number
JP6191404B2
JP6191404B2 JP2013231372A JP2013231372A JP6191404B2 JP 6191404 B2 JP6191404 B2 JP 6191404B2 JP 2013231372 A JP2013231372 A JP 2013231372A JP 2013231372 A JP2013231372 A JP 2013231372A JP 6191404 B2 JP6191404 B2 JP 6191404B2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
oxygen concentration
sludge
measuring
sludge activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013231372A
Other languages
Japanese (ja)
Other versions
JP2015089548A (en
Inventor
文隆 加藤
文隆 加藤
加藤 敏朗
敏朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013231372A priority Critical patent/JP6191404B2/en
Publication of JP2015089548A publication Critical patent/JP2015089548A/en
Application granted granted Critical
Publication of JP6191404B2 publication Critical patent/JP6191404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、産業排水や工場排水のような活性汚泥により分解される基質を含有する液の活性汚泥処理に関するもので、活性汚泥により分解される基質を含有する液を処理する時の生物による酸素消費量を測定して汚泥活性度を求める装置に関する。   The present invention relates to an activated sludge treatment of a liquid containing a substrate that is decomposed by activated sludge, such as industrial wastewater and industrial wastewater, and oxygen by living organisms when treating a liquid containing a substrate that is decomposed by activated sludge. The present invention relates to an apparatus for measuring sludge activity to determine sludge activity.

近年の閉鎖性水域における水質規制は強化傾向にあり、下水道、産業排水、工場排水での対策が急務である。水質規制値を遵守するためには、どの成分をどこまで処理できれば基準を満たせるかを把握することが必要である。これまで下水道分野では、活性汚泥法等の生物学的処理プロセスによる下水の処理方法が取られてきた。活性汚泥は排水中の各種成分を代謝・分解する生物の総称であり、その代謝・分解により排水水質を浄化することができる。   In recent years, water quality regulations in closed water areas have been strengthening, and countermeasures for sewerage, industrial wastewater, and factory wastewater are urgently needed. In order to comply with the water quality regulation value, it is necessary to grasp which component can be processed to what extent and to what extent. Until now, in the sewerage field, sewage treatment methods have been taken by biological treatment processes such as activated sludge process. Activated sludge is a collective term for organisms that metabolize and decompose various components in wastewater, and the quality of wastewater can be purified by its metabolism and decomposition.

その代謝・分解がいかに活発に行われているかという活性の度合いを把握するため、活性汚泥と活性汚泥により分解される基質を含有する液を実験室的に反応させ、試料を逐次サンプリング・分析することで、その水質の変化を把握することが可能である。特に1槽式の酸素消費速度試験(Oxygen Uptake Rate;OUR試験)は、活性汚泥により分解される基質を含有する液を処理する時の生物による酸素消費量を見る方法であり、活性汚泥と活性汚泥により分解される基質を反応容器内で接触させた後、溶存酸素電極で反応容器内の溶存酸素濃度を測定する。反応が進むと溶存酸素濃度が低下するため、一定値以下になったところで空気をばっ気することで溶存酸素濃度が上昇し、一定値以上になったところでばっ気を停止させ、再び溶存酸素濃度が低下する。この溶存酸素濃度の低下を生物の代謝・分解とみなすことで、代謝・分解を詳細に把握することが可能となる(非特許文献1)。これを排水の毒性評価に用いたのが特許文献1であり、活性汚泥による基質の代謝・分解が毒性物質によってどの程度阻害されたかを判断することも可能である。また、溶存酸素消費量測定は溶存酸素電極により容易に行うことが可能であるため、代謝・分解を比較的迅速に把握することが可能である。   In order to understand the degree of activity of how metabolized and decomposed actively, the activated sludge and the liquid containing the substrate decomposed by the activated sludge are reacted in the laboratory, and the sample is sampled and analyzed sequentially. It is possible to grasp the change of the water quality. In particular, the single tank type oxygen consumption rate test (Oxygen Uptake Rate; OUR test) is a method of monitoring oxygen consumption by living organisms when treating a liquid containing a substrate that is degraded by activated sludge. After contacting the substrate decomposed by sludge in the reaction vessel, the dissolved oxygen concentration in the reaction vessel is measured with a dissolved oxygen electrode. As the reaction progresses, the dissolved oxygen concentration decreases, so when the air drops below a certain value, the aerated oxygen concentration rises, and when it exceeds a certain value, the aeration stops and then the dissolved oxygen concentration again. Decreases. By considering this decrease in dissolved oxygen concentration as the metabolism / decomposition of organisms, it becomes possible to grasp the metabolism / decomposition in detail (Non-patent Document 1). This is used in the evaluation of wastewater toxicity in Patent Document 1, and it is also possible to determine how much the metabolism and decomposition of the substrate by activated sludge is inhibited by the toxic substance. Moreover, since the dissolved oxygen consumption can be easily measured with the dissolved oxygen electrode, metabolism / decomposition can be grasped relatively quickly.

さらに非特許文献1では、図2に示す2槽式の酸素消費速度試験についても述べられている。2槽式の酸素消費量測定装置21の構成は、1槽目のばっ気容器25は活性汚泥により分解される基質を含有する液22および活性汚泥23を入れてばっ気装置24で常時空気ばっ気させ、2槽目の溶存酸素濃度測定槽29は密栓33で密閉状態にされているが、内部はスターラー30の撹拌子31で撹拌可能であるとともに、溶存酸素電極32が挿入されている。そして、1槽目のばっ気容器25の活性汚泥により分解される基質を含有する液22および活性汚泥23の混合物を送液手段28により2槽目の溶存酸素濃度測定槽29に送液すると、2槽目の溶存酸素濃度測定槽29は密閉状態のため導入された試料の分だけ1槽目のばっ気容器25に返送される。送液を停止すると、溶存酸素濃度測定槽29の中で活性汚泥による基質の代謝・分解により、溶存酸素電極32を用いて溶存酸素濃度計27で測定される溶存酸素濃度26が減少する。その後、ある一定の溶存酸素濃度以下になると、再び、送液手段28が動作し、1槽目のばっ気容器25の溶存酸素濃度が飽和した基質および活性汚泥の混合物が2槽目の溶存酸素濃度測定層29に置換され、そして送液手段28が停止すると、代謝・分解により溶存酸素濃度が減少する。   Further, Non-Patent Document 1 also describes a two-tank oxygen consumption rate test shown in FIG. The configuration of the two-tank oxygen consumption measuring device 21 is that the aeration container 25 in the first tank contains a liquid 22 containing a substrate that is decomposed by activated sludge and an activated sludge 23, and is continuously aerated with the aeration device 24. The dissolved oxygen concentration measuring tank 29 in the second tank is hermetically sealed with a sealing plug 33, but the inside can be stirred with a stirrer 31 of a stirrer 30 and a dissolved oxygen electrode 32 is inserted therein. Then, when the mixture of the liquid 22 containing the substrate decomposed by the activated sludge in the first tank aeration container 25 and the activated sludge 23 is fed to the second dissolved oxygen concentration measuring tank 29 by the liquid feeding means 28, The second dissolved oxygen concentration measuring tank 29 is sealed and returned to the first aeration container 25 by the amount of the introduced sample. When the liquid feeding is stopped, the dissolved oxygen concentration 26 measured by the dissolved oxygen concentration meter 27 using the dissolved oxygen electrode 32 decreases due to the metabolism and decomposition of the substrate by the activated sludge in the dissolved oxygen concentration measuring tank 29. Thereafter, when the concentration becomes lower than a certain dissolved oxygen concentration, the liquid feeding means 28 operates again, and the mixture of the substrate and the activated sludge in which the dissolved oxygen concentration in the first tank aeration container 25 is saturated is dissolved oxygen in the second tank. When the concentration measuring layer 29 is replaced and the liquid feeding means 28 is stopped, the dissolved oxygen concentration decreases due to metabolism and decomposition.

しかしながら、酸素消費速度試験では溶存酸素消費のデータの解析、具体的にはその傾きを求めることで酸素消費速度を求める操作が必要であるが、どのデータ範囲を対象に、どのように傾きを取るかについては、熟練した技術者が演算装置を用いて行う必要がある。そのため、酸素消費速度試験を全て現場またはオンサイトで実施することは難しく、試料を持ち帰り試験室で酸素消費速度試験を行った後、演算装置で解析を行うか、または、現場で酸素消費速度試験を行った後、実験データを持ち帰り、演算装置で解析を行う等が多かった。   However, in the oxygen consumption rate test, it is necessary to analyze the data of dissolved oxygen consumption, specifically to obtain the oxygen consumption rate by obtaining the slope, but how to take the slope for which data range This needs to be performed by a skilled engineer using an arithmetic unit. For this reason, it is difficult to perform all oxygen consumption rate tests on-site or on-site. After taking the sample and performing the oxygen consumption rate test in the test room, the analysis is performed with a computing device, or the oxygen consumption rate test is performed on site. After performing the above, there were many cases where the experimental data was taken home and analyzed with an arithmetic unit.

特開2010−271192号公報JP 2010-271192 A

味埜俊、活性汚泥モデル、日本、株式会社環境新聞社、2005年1月31日Shun Miso, activated sludge model, Japan, Environmental Newspaper Co., Ltd., January 31, 2005

上記のように、酸素消費試験では活性汚泥により分解される基質を含有する液の処理における生物の代謝・分解が把握できるが、下記のように様々な制約がある。   As described above, in the oxygen consumption test, it is possible to grasp the metabolism and decomposition of organisms in the treatment of a liquid containing a substrate that is decomposed by activated sludge, but there are various limitations as described below.

上記のように、酸素消費速度を求めるためには、溶存酸素消費のデータからその傾きを求める必要がある。傾きの計算には、一定時間の間に溶存酸素濃度が連続的に減少するデータが必要であるが、一定時間をどの範囲に設定するか、および/または、溶存酸素濃度が連続的に減少するデータにおいて、どの範囲のばらつきまで許容するかを設定する必要がある。その設定が正しく無ければ、正確な酸素消費速度を求めることができない。   As described above, in order to obtain the oxygen consumption rate, it is necessary to obtain the slope from the dissolved oxygen consumption data. The calculation of the slope requires data that the dissolved oxygen concentration continuously decreases during a certain time, but in what range the certain time is set and / or the dissolved oxygen concentration continuously decreases It is necessary to set which range of variation is allowed in the data. If the setting is not correct, an accurate oxygen consumption rate cannot be obtained.

たとえば、図3では2槽式の酸素消費速度試験を行った例を示す。図中の7分経過時に活性汚泥に排水を添加し、代謝・分解が開始することで、溶存酸素濃度が減少し始めていることが分かる。14分経過後には、溶存酸素濃度が1mg/L以下になると動作するように設定してある送液ポンプにより、2槽目の試料が1槽目の試料と置換され、再び溶存酸素濃度が上昇する。15分経過後には、再び代謝・分解により溶存酸素濃度が減少し始めている。その後、19分経過後には再び、送液ポンプが動作することで溶存酸素濃度が上昇する。以降同様の操作を繰り返し、およそ100分経過後には排水中成分の代謝・分解が終わり、内生呼吸による酸素消費のみが起きていると考えられ、溶存酸素消費速度の減少が緩やかになっている。   For example, FIG. 3 shows an example of a two-tank oxygen consumption rate test. It can be seen that the dissolved oxygen concentration starts to decrease by adding waste water to activated sludge at the elapse of 7 minutes in the figure and starting metabolism and decomposition. After the elapse of 14 minutes, the sample in the second tank is replaced with the sample in the first tank by the liquid feed pump set to operate when the dissolved oxygen concentration becomes 1 mg / L or less, and the dissolved oxygen concentration rises again. To do. After 15 minutes, the dissolved oxygen concentration begins to decrease again due to metabolism and decomposition. Thereafter, after 19 minutes, the dissolved oxygen concentration rises again by operating the liquid feed pump. Thereafter, the same operation was repeated, and after about 100 minutes, the metabolism and decomposition of the components in the wastewater was completed, and it is thought that only oxygen consumption due to endogenous breathing occurred, and the decrease in the dissolved oxygen consumption rate was moderate. .

この時の解析は、溶存酸素濃度が連続的に減少している7分から14分の時間の範囲を取り、傾きを求める。その結果を図4に示す。ただし、酸素消費速度は、溶存酸素消費を正とするため、溶存酸素濃度の傾きが負になれば、酸素消費速度は正になるようプロットする。   The analysis at this time takes a time range of 7 minutes to 14 minutes in which the dissolved oxygen concentration continuously decreases, and obtains the slope. The result is shown in FIG. However, since the oxygen consumption rate is positive for dissolved oxygen consumption, the oxygen consumption rate is plotted to be positive if the slope of the dissolved oxygen concentration becomes negative.

その結果、7分から14分における酸素消費速度は0.1から0.6mg/L/分と計算される。また、14分から15分経過時の溶存酸素濃度が上昇する時間帯は、活性汚泥による代謝・分解による溶存酸素消費は測定できず、酸素消費速度としても0mg/L/分以下になる。以降、同様の解析結果となり、およそ100分経過後には酸素消費速度が0.03mg/L/分に低下する。   As a result, the oxygen consumption rate from 7 to 14 minutes is calculated as 0.1 to 0.6 mg / L / min. In addition, during the time period when the dissolved oxygen concentration rises from 14 minutes to 15 minutes, the dissolved oxygen consumption due to metabolism and decomposition by activated sludge cannot be measured, and the oxygen consumption rate is 0 mg / L / min or less. Thereafter, similar analysis results are obtained, and after about 100 minutes, the oxygen consumption rate decreases to 0.03 mg / L / min.

この時の問題点として、どの酸素消費速度の値が正しいのかが明確ではないことである。すなわち、どの時間帯の酸素消費速度の値を見ればよいかは、熟練した技術者でないと判別は難しい。7分から14分の時間帯を例にとっても、酸素消費速度はバラツキがあり、また、14分から15分の時間帯は送液ポンプによる影響があるため、酸素消費速度として採用すべきではない。よって、傾きを取ろうとする溶存酸素濃度のデータについては、いずれの範囲を取るのが適しているかは判別が難しい。   The problem at this time is that it is not clear which oxygen consumption rate value is correct. In other words, it is difficult to determine which time zone the oxygen consumption rate value should be looked at unless it is a skilled engineer. Even in the time zone of 7 to 14 minutes as an example, the oxygen consumption rate varies, and the time zone of 14 to 15 minutes is affected by the liquid feed pump and should not be adopted as the oxygen consumption rate. Therefore, it is difficult to discriminate which range is appropriate for the dissolved oxygen concentration data to be inclined.

さらに、15分、20分、25分、65分経過時の酸素消費速度が一時的に1.5mg/L/分から2.0mg/L/分まで上昇しているが、これは溶存酸素電極の先端部に気泡が付着し、剥離することで溶存酸素濃度が見かけ上急速に低下していたためと考えられる。このような酸素消費速度の一時的な上昇は、活性汚泥による排水中成分の代謝・分解においては通常見られないため、酸素消費速度としては不適であると考えられる。よって、どの程度まで酸素消費速度のばらつきを許容するかを、予め設定する必要があると考えられるが、酸素消費速度試験装置の様々な変動要因があるため、その解析結果から不適なデータを判別することは、熟練した技術者でないと容易ではない。   Furthermore, the oxygen consumption rate at 15 minutes, 20 minutes, 25 minutes, and 65 minutes has temporarily increased from 1.5 mg / L / min to 2.0 mg / L / min. It is considered that the dissolved oxygen concentration apparently rapidly decreased due to bubbles adhering to the tip and peeling off. Such a temporary increase in the oxygen consumption rate is usually not observed in the metabolism / decomposition of the components in the wastewater by the activated sludge, so it is considered unsuitable as the oxygen consumption rate. Therefore, it is thought that it is necessary to set in advance how much variation in oxygen consumption rate is allowed. However, because there are various fluctuation factors of the oxygen consumption rate test device, inappropriate data is discriminated from the analysis result. It is not easy to do without a skilled technician.

また、上記のように、溶存酸素電極の先端部に気泡が付着すると、溶存酸素濃度の精度が低下し、酸素消費速度が正しく測定できない。この理由として、2槽式の溶存酸素測定槽が150mLとした場合、置換のために例えばその3倍量を1分間で流す場合には450mL/分の比較的大きい流量が必要となるため、1槽目で常時ばっ気をしている試料水が、気泡が水面に浮上して大気中に放散される前に、気泡を含んだまま2槽目に流入しやすいためである。   Further, as described above, when bubbles are attached to the tip of the dissolved oxygen electrode, the accuracy of the dissolved oxygen concentration is lowered and the oxygen consumption rate cannot be measured correctly. For this reason, when the 2-tank type dissolved oxygen measuring tank is 150 mL, a relatively large flow rate of 450 mL / min is required when, for example, three times the amount is used for replacement in 1 minute for replacement. This is because the sample water that is continuously aerated in the tank is likely to flow into the second tank while containing bubbles before the bubbles rise to the water surface and are diffused into the atmosphere.

本発明は、上述した従来の酸素消費速度の測定方法が有していた課題を解決し、汚泥の活性度を、より簡易的に、測定者によるバラつきが少なく、且つ、ばっ気の気泡による測定誤差が生じ難く、測定することができる活性汚泥度測定装置、及び活性汚泥度の測定方法を提供することを目的とする。   The present invention solves the problems of the conventional method for measuring the oxygen consumption rate described above, and measures the sludge activity more easily, with less variation by the measurer, and with aeration bubbles. An object of the present invention is to provide an activated sludge degree measuring apparatus and an activated sludge degree measuring method which are less likely to cause errors and can be measured.

通常、代謝・分解がいかに活発にどのように行われているかという活性の度合い、すなわち汚泥活性度を見るためには、排水中の基質がいかに速く分解されるかを以って評価するため、その基質濃度を分析し、基質分解速度を求めることで汚泥活性度を評価するが、通常の排水では基質の種類が多様であり、必ずしも定性・定量が可能なものだけではないため、各基質濃度をそれぞれ定量することは困難である。たとえば、下水には多様な有機物が含まれており、有機物成分を同定することは困難である。   Usually, in order to assess the degree of activity of how metabolizing and degrading is being carried out, that is, sludge activity, in order to evaluate how quickly the substrate in the wastewater is degraded, The sludge activity is evaluated by analyzing the substrate concentration and determining the substrate decomposition rate. However, there are various types of substrates in normal wastewater, and it is not always possible to qualitatively and quantitatively determine the concentration of each substrate. It is difficult to quantify each. For example, various organic substances are contained in sewage, and it is difficult to identify organic substance components.

一方、基質を好気的に分解する際には酸素消費が発生する。そのため、この酸素消費速度を指標とすることで汚泥の代謝・分解がいかに速く起きているかを測る指標と考えられている。この考え方を基にした技術が酸素消費速度試験であるが、この酸素消費速度試験では酸素消費速度の経時変化を基に、代謝・分解過程を解析的に捉えようとすることを目的としており、熟練した技術および高度な解析技術が必要とされる。   On the other hand, oxygen consumption occurs when the substrate is decomposed aerobically. Therefore, it is considered that this oxygen consumption rate is used as an index to measure how quickly sludge metabolism and decomposition occur. The technology based on this concept is the oxygen consumption rate test, but this oxygen consumption rate test aims to analyze metabolic and degradation processes analytically based on the change over time in the oxygen consumption rate. Skilled techniques and advanced analysis techniques are required.

そこで発明者等は、図3の2槽式の酸素消費速度試験装置を用いた測定方法のように、1槽目で常時ばっ気し、2槽目でバッチ的に溶存酸素濃度測定を行って、その後、1槽目の常時ばっ気している槽に戻すという方式ではなく、1槽目で常時ばっ気を行った試料を、連続的に反応経路に導入し、反応経路では新たなばっ気はせずに、活性汚泥反応により酸素を消費させ、反応経路の前後において、2本の溶存酸素電極により、反応経路の始点における溶存酸素濃度と反応経路の終点における溶存酸素濃度とを、それぞれ連続的に測定し、その差分から汚泥活性度を連続的に求めることで、上記課題を解決することができることを見出して、発明を為すに至った。   Therefore, the inventors continuously aerated the first tank and measured the dissolved oxygen concentration batchwise in the second tank, as in the measurement method using the two-tank oxygen consumption rate test apparatus in FIG. Then, instead of returning to the tank that is constantly aerated in the first tank, the sample that was continuously aerated in the first tank is continuously introduced into the reaction path, and a new aeration is performed in the reaction path. Instead, oxygen is consumed by the activated sludge reaction, and before and after the reaction path, the dissolved oxygen concentration at the start point of the reaction path and the dissolved oxygen concentration at the end point of the reaction path are respectively continuous by two dissolved oxygen electrodes. It was found that the above-mentioned problems can be solved by continuously measuring the sludge activity and continuously obtaining the sludge activity from the difference.

本発明は、具体的には、以下の[1]〜[11]である:
[1]活性汚泥および活性汚泥により分解される基質を含有する液の混合液をばっ気するばっ気容器と、
前記ばっ気容器の外に存在し、前記ばっ気された混合液中の前記基質を前記活性汚泥と前記混合液中の酸素により分解し、前記混合液中の酸素を消費させる反応経路と、
前記ばっ気された混合液を、前記ばっ気容器から連続的に抜き出して、前記反応経路を経由して前記ばっ気容器へと返送する送液手段と、
前記反応経路の上流側と下流側でそれぞれ前記混合液の溶存酸素濃度を連続的に測定する溶存酸素濃度測定手段1及び溶存酸素濃度測定手段2と、
を有し、前記溶存酸素濃度測定手段1で測定された溶存酸素濃度と、前記溶存酸素濃度測定手段2で測定された溶存酸素濃度との差分により、汚泥活性度を求めることができることを特徴とする汚泥活性度測定装置。
Specifically, the present invention includes the following [1] to [11]:
[1] An aeration container for aeration of activated sludge and a liquid mixture containing a substrate decomposed by activated sludge;
A reaction path that exists outside the aeration container, decomposes the substrate in the aerated mixture with the activated sludge and oxygen in the mixture, and consumes oxygen in the mixture;
Liquid feeding means for continuously drawing out the aerated mixture from the aerated container and returning it to the aerated container via the reaction path;
A dissolved oxygen concentration measuring means 1 and a dissolved oxygen concentration measuring means 2 for continuously measuring the dissolved oxygen concentration of the mixed solution respectively on the upstream side and the downstream side of the reaction path;
And the sludge activity can be determined by the difference between the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 1 and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 2. Sludge activity measuring device.

[2]前記溶存酸素濃度測定手段1で測定された溶存酸素濃度と、前記溶存酸素濃度測定手段2で測定された溶存酸素濃度との差分を演算して汚泥活性度を求める演算手段を更に備えていることを特徴とする前記[1]に記載の装置。   [2] The apparatus further includes a calculating means for calculating the difference between the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 1 and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 2 to obtain the sludge activity. The device according to [1] above, wherein

[3]前記送液手段は、前記混合液の送液流量を調整可能であることを特徴とする前記[1]又は[2]に記載の装置。   [3] The apparatus according to [1] or [2], wherein the liquid feeding unit is capable of adjusting a liquid feeding flow rate of the mixed liquid.

[4]前記反応経路は、複数の経路を有し、流路切り替え弁によって、前記溶存酸素濃度測定手段1と、前記溶存酸素濃度測定手段2との間の距離を変更可能であることを特徴とする前記[1]〜[3]のいずれか1項に記載の装置。   [4] The reaction path has a plurality of paths, and the distance between the dissolved oxygen concentration measuring means 1 and the dissolved oxygen concentration measuring means 2 can be changed by a flow path switching valve. The apparatus according to any one of [1] to [3].

[5]前記反応経路、前記ばっ気容器の少なくともいずれかを恒温化できることを特徴とする[1]〜[4]のいずれか1項に記載の装置。   [5] The apparatus according to any one of [1] to [4], wherein at least one of the reaction path and the aeration container can be kept at a constant temperature.

[6]前記溶存酸素濃度測定手段1と前記溶存酸素濃度測定手段2とは、それぞれ、フロー式の溶存酸素測定槽に溶存酸素濃度測定器が備わって形成されていることを特徴とする[1]〜[5]のいずれか1項に記載の装置。   [6] The dissolved oxygen concentration measuring means 1 and the dissolved oxygen concentration measuring means 2 are each formed by providing a dissolved oxygen concentration measuring device in a flow type dissolved oxygen measuring tank [1] ] The apparatus of any one of [5].

[7][1]〜[6]のいずれか1項に記載の汚泥活性度測定装置を用いて、汚泥活性度を測定することを特徴とする汚泥活性度の測定方法。   [7] A method for measuring sludge activity, wherein the sludge activity is measured using the sludge activity measuring device according to any one of [1] to [6].

[8][3]、[5]、[6]に記載の汚泥活性度測定装置を用いた、汚泥活性度の測定方法であって、送液ポンプの流量を調整することにより、反応経路での反応時間を調整することを特徴とする汚泥活性度の測定方法。   [8] A method for measuring sludge activity using the sludge activity measuring device according to [3], [5], [6], wherein the reaction path is adjusted by adjusting the flow rate of the liquid feed pump. The measuring method of sludge activity characterized by adjusting reaction time of.

[9][4]〜[6]のいずれか1項に記載の汚泥活性度測定装置を用いた、汚泥活性度の測定方法であって、前記流路切り替え弁によって、前記溶存酸素濃度測定手段1と、前記溶存酸素濃度測定手段2との間の距離を変更し、活性汚泥反応時間を調整することを特徴とする汚泥活性度の測定方法。   [9] A method for measuring sludge activity using the sludge activity measuring device according to any one of [4] to [6], wherein the dissolved oxygen concentration measuring means is provided by the flow path switching valve. The measuring method of the sludge activity characterized by changing the distance between 1 and the said dissolved oxygen concentration measuring means 2, and adjusting activated sludge reaction time.

[10]前記活性汚泥により分解される基質を含有する液が、石炭からコークスを製造する工程で排出される排水であることを特徴とする[7]〜[9]のいずれか1項に記載の汚泥活性度の測定方法。   [10] The liquid according to any one of [7] to [9], wherein the liquid containing a substrate decomposed by the activated sludge is wastewater discharged in a process of producing coke from coal. Method for measuring sludge activity in water.

[11]前記活性汚泥により分解される基質を含有する液が、前記活性汚泥により分解される1種類の基質のみ含有することを特徴とする[7]〜[9]のいずれか1項に記載の汚泥活性度の測定方法。   [11] The liquid according to any one of [7] to [9], wherein the liquid containing the substrate decomposed by the activated sludge contains only one kind of substrate decomposed by the activated sludge. Method for measuring sludge activity in water.

本発明によれば、以下の効果がある。   The present invention has the following effects.

活性汚泥と排水をばっ気したものを反応経路に導入し、流路の始点と終点の溶存酸素濃度を測定し、その差分を取ることで、従来酸素消費速度を求める際に必要であった熟練した技術者による解析および/または酸素消費速度の妥当性判別が不要となり、汚泥の活性度をより簡易的に、測定者によるバラつきが少なく、且つ、ばっ気の気泡による測定誤差が生じ難く、測定することができる。   Skill required to obtain the oxygen consumption rate in the past by introducing activated sludge and wastewater aerated into the reaction path, measuring the dissolved oxygen concentration at the start and end points of the flow path, and taking the difference Analysis and / or appropriateness determination of oxygen consumption rate is not required, the sludge activity is simplified, there is less variation by the operator, and measurement errors due to aeration bubbles are less likely to occur. can do.

また、2槽式の酸素消費速度試験と比べて試料の置換が不要であるため、送液量を少なくすることができ、それにより試料に含まれる気泡を一気に送液することが極めて少なくなるため、溶存酸素電極への気泡の付着が極めて少なくでき、安定的に溶存酸素濃度が測定できるため、安定的に汚泥活性度を求めることができる。   In addition, since the replacement of the sample is not necessary compared to the two-tank oxygen consumption rate test, the amount of liquid can be reduced, thereby extremely reducing the amount of bubbles contained in the sample at once. Since the adhesion of bubbles to the dissolved oxygen electrode can be extremely reduced and the dissolved oxygen concentration can be measured stably, the sludge activity can be determined stably.

本発明の汚泥活性度測定装置の1例を示す図である。It is a figure which shows one example of the sludge activity measuring apparatus of this invention. 従来技術の酸素消費量測定装置の1例を示す図である。It is a figure which shows one example of the oxygen consumption measuring device of a prior art. 従来技術の2槽式酸素消費速度試験による溶存酸素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the dissolved oxygen concentration by the 2 tank type oxygen consumption rate test of a prior art. 従来技術の2槽式酸素消費速度試験による酸素消費速度の経時変化を示す図である。It is a figure which shows the time-dependent change of the oxygen consumption rate by the 2 tank type oxygen consumption rate test of a prior art. 本発明の反応経路を複数備えてあり、弁により分岐する手段を示す図である。It is a figure which has a plurality of reaction paths of the present invention and shows means for branching by a valve. 本発明の実施例1における溶存酸素濃度および活性汚泥度の結果を示す図である。It is a figure which shows the result of the dissolved oxygen concentration and activated sludge degree in Example 1 of this invention. 本発明の実施例2における活性汚泥度と流速の結果を示す図である。It is a figure which shows the result of the activated sludge degree and flow velocity in Example 2 of this invention. 本発明の実施例3における活性汚泥度の結果を示す図である。It is a figure which shows the result of the activated sludge degree in Example 3 of this invention. 本発明の実施例4における活性汚泥度の温度の影響を示す図である。It is a figure which shows the influence of the temperature of the activated sludge degree in Example 4 of this invention. 本発明の実施例5における溶存酸素濃度および活性汚泥度の結果を示す図である。It is a figure which shows the result of the dissolved oxygen concentration and activated sludge degree in Example 5 of this invention.

図1は、本発明による汚泥活性度測定装置のフローを例示した図である。   FIG. 1 is a diagram illustrating a flow of a sludge activity measuring apparatus according to the present invention.

図1に示すように、本発明による活性汚泥度測定装置1は、活性汚泥により分解される基質を含有する液2および活性汚泥3の混合液をばっ気手段4によりばっ気するばっ気容器5と、
ばっ気容器5の外に存在し、ばっ気された混合液中の基質を活性汚泥3と混合液中の酸素により分解し、混合液中の酸素を消費させる反応経路9と、
ばっ気された混合液を、ばっ気容器5から連続的に抜き出して、反応経路9を経由して、ばっ気容器5へと返送する送液手段8と、
反応経路9の上流側と下流側でそれぞれ前記混合液の溶存酸素濃度6及び溶存酸素濃度10を連続的に測定する溶存酸素濃度測定手段7及び溶存酸素濃度測定手段11と
を有し、
前記溶存酸素濃度測定手段10で測定された溶存酸素濃度6と、前記溶存酸素濃度測定手段11で測定された溶存酸素濃度7との差分を汚泥活性度演算手段12で計算することにより、汚泥活性度を求めることができることを特徴とする汚泥活性度測定装置である。
As shown in FIG. 1, an activated sludge measuring apparatus 1 according to the present invention is an aeration container 5 in which a mixture of a liquid 2 containing activated substrate and a sludge 3 containing a substrate is aerated by an aeration means 4. When,
A reaction path 9 that exists outside the aeration container 5 and decomposes the substrate in the aerated mixture with activated sludge 3 and oxygen in the mixture, and consumes oxygen in the mixture;
A liquid feed means 8 for continuously extracting the aerated mixture from the aeration container 5 and returning it to the aeration container 5 via the reaction path 9;
A dissolved oxygen concentration measuring means 7 and a dissolved oxygen concentration measuring means 11 for continuously measuring the dissolved oxygen concentration 6 and the dissolved oxygen concentration 10 of the mixed solution on the upstream side and the downstream side of the reaction path 9 respectively;
By calculating the difference between the dissolved oxygen concentration 6 measured by the dissolved oxygen concentration measuring means 10 and the dissolved oxygen concentration 7 measured by the dissolved oxygen concentration measuring means 11 by the sludge activity calculating means 12, the sludge activity is calculated. It is a sludge activity measuring device characterized by being able to obtain the degree.

汚泥活性度はいかに活発に代謝・分解が進んでいるかを示す指標と捉えることができる。活発さの度合いを示す指標はいくつかあるが、本発明では代謝・分解がいかに速く進んでいるかを見るため、溶存酸素消費量の大きさに着目した。すなわち、排水に含まれる活性汚泥により分解される基質を速く好気的に分解するときの酸素消費が多いほど、汚泥活性度としては高いと考える。   Sludge activity can be taken as an indicator of how actively metabolizing and decomposing. Although there are several indexes indicating the degree of activity, in the present invention, in order to see how fast metabolism and decomposition proceed, attention was paid to the amount of dissolved oxygen consumption. That is, it is considered that the greater the oxygen consumption when the substrate decomposed by the activated sludge contained in the wastewater is rapidly and aerobically decomposed, the higher the sludge activity.

活性汚泥により分解される基質を含有する液2は、ここでは例として製鉄所におけるコークス工場から発生するフェノール、チオ硫酸、チオシアン等を含むコークス排水を示す(以下、活性汚泥により分解される基質を含有する液2を単に排水2ともいう)。しかし、本発明の適用範囲は、コークス排水中の活性汚泥により分解される基質に限定されるものではなく、食品工場、化学工業、薬品工業、塗装工業、繊維工業、染色工業等の産業排水、工場排水に含まれる活性汚泥により分解される基質に対しても適用可能である。   The liquid 2 containing the substrate that is decomposed by the activated sludge here shows, as an example, coke wastewater containing phenol, thiosulfuric acid, thiocyan, etc. generated from a coke plant in an ironworks (hereinafter referred to as a substrate that is decomposed by activated sludge). The liquid 2 contained is also simply referred to as drainage 2). However, the scope of application of the present invention is not limited to the substrate that is decomposed by the activated sludge in coke wastewater, such as industrial wastewater from food factories, chemical industry, pharmaceutical industry, painting industry, textile industry, dyeing industry, It can also be applied to substrates that are decomposed by activated sludge contained in factory wastewater.

前記活性汚泥により分解される基質を含有する液2の代わりに、所定の基質を含む液を用い、当該所定の基質を分解する際の活性汚泥度を求めることができる。たとえばコークス排水ではフェノール、チオ硫酸、チオシアン等の基質成分が含まれており、フェノール、チオ硫酸、チオシアン等を試薬で添加することで、各成分単独で代謝する際の酸素消費量を測定することができる。   Instead of the liquid 2 containing the substrate to be decomposed by the activated sludge, a liquid containing a predetermined substrate can be used to determine the activated sludge degree when decomposing the predetermined substrate. For example, coke wastewater contains substrate components such as phenol, thiosulfuric acid, and thiocyanate, and by adding phenol, thiosulfuric acid, thiocyan, etc. with reagents, measure the oxygen consumption when each component is metabolized alone. Can do.

活性汚泥3は、特に指定しないが、上記排水に限らず何らかの活性汚泥により分解される基質を含有する液を処理している生物を含む汚泥である。   The activated sludge 3 is not particularly specified, but is not limited to the above-described wastewater, but is sludge containing organisms that are treating a liquid containing a substrate that is decomposed by some activated sludge.

ばっ気手段4では、空気を集めた後、ばっ気容器5の中の排水2および活性汚泥3の混合物に、空気を吹き込む。方法について指定しないが、工場内の圧縮空気をそのまま用いることや、コンプレッサー、エアーポンプなどで空気を吹き込むことができる。   In the aeration means 4, after collecting the air, the air is blown into the mixture of the waste water 2 and the activated sludge 3 in the aeration container 5. Although the method is not specified, the compressed air in the factory can be used as it is, or air can be blown in with a compressor, an air pump, or the like.

ばっ気容器5は、排水2および活性汚泥3の混合物を入れ、ばっ気するための容器である。水漏れが無い構造であり、排水の特性により著しく劣化および破損するもので無いことが望ましい。容器の指定はしないが、ポリ容器、ガラス容器等を用いることができる。   The aeration container 5 is a container for putting a mixture of the waste water 2 and the activated sludge 3 into the aeration. It is desirable that the structure has no water leakage and is not significantly deteriorated or damaged due to the characteristics of the drainage. Although the container is not specified, a plastic container, a glass container, or the like can be used.

前記ばっ気容器5の代わりに、現場ばっ気槽から直接排水および活性汚泥の混合物を溶存酸素濃度測定手段7に導入し、同様の手順で汚泥活性度を測定することもできる。溶存酸素測定後の排水および活性汚泥の混合物は、再び現場ばっ気槽に戻せば良い。   Instead of the aeration container 5, a mixture of waste water and activated sludge can be introduced directly from the on-site aeration tank into the dissolved oxygen concentration measuring means 7, and the sludge activity can be measured in the same procedure. The mixture of the waste water and the activated sludge after the dissolved oxygen measurement may be returned to the on-site aeration tank again.

溶存酸素濃度測定手段7および溶存酸素濃度測定手段11は、ばっ気された直後の排水2および活性汚泥3における溶存酸素濃度6を測定する手段で、溶存酸素濃度測定手段10は反応経路の始点における溶存酸素濃度6を測定し、溶存酸素濃度測定手段11は反応経路の始点における溶存酸素濃度10を測定する。余程活性汚泥3の反応が速く無い限り、反応経路9の上流側の溶存酸素濃度6は飽和溶存酸素濃度となる。たとえば、1気圧25℃の条件における飽和溶存酸素濃度は8.11mg/Lである。   The dissolved oxygen concentration measuring means 7 and the dissolved oxygen concentration measuring means 11 are means for measuring the dissolved oxygen concentration 6 in the waste water 2 and activated sludge 3 immediately after aeration, and the dissolved oxygen concentration measuring means 10 is at the starting point of the reaction path. The dissolved oxygen concentration 6 is measured, and the dissolved oxygen concentration measuring means 11 measures the dissolved oxygen concentration 10 at the starting point of the reaction path. As long as the reaction of the activated sludge 3 is not so fast, the dissolved oxygen concentration 6 on the upstream side of the reaction path 9 becomes the saturated dissolved oxygen concentration. For example, the saturated dissolved oxygen concentration under the condition of 1 atm and 25 ° C. is 8.11 mg / L.

また、溶存酸素測定の原理は指定しないが、一般に隔膜式と蛍光式が使用されている。隔膜式は従来から用いられている溶存酸素測定方法であり、溶存酸素が隔膜を透過した後、金属電極の表面で酸化還元反応を起こさせる際に発生する電流値から溶存酸素濃度を測定する。蛍光式は近年広まりつつある溶存酸素測定方法であり、溶存酸素濃度に応じて蛍光要度が変化する物質を電極表面に固定させ、励起光を照射した際に発生する蛍光強度から溶存酸素濃度を測定する。   Moreover, although the principle of dissolved oxygen measurement is not specified, the diaphragm type and the fluorescence type are generally used. The diaphragm type is a conventionally used method for measuring dissolved oxygen. After dissolved oxygen permeates the diaphragm, the dissolved oxygen concentration is measured from the current value generated when an oxidation-reduction reaction is caused on the surface of the metal electrode. The fluorescence method is a method for measuring dissolved oxygen that has been spreading in recent years.A substance whose fluorescence level changes according to the dissolved oxygen concentration is fixed on the electrode surface, and the dissolved oxygen concentration is calculated from the fluorescence intensity generated when irradiated with excitation light. taking measurement.

また、溶存酸素測定の方法は限定しないが、好ましくはバッチ式よりもフロー式の方が良く、バッチ式ではバッチ容器での滞留時間が発生してしまい、バッチ容器での反応が進行するため、溶存酸素濃度値が瞬間的な値とは言えない。より正確に汚泥活性度を評価するためには、溶存酸素測定時に容積が小さく滞留時間が短いフロー式の方が良い。   In addition, the method of measuring dissolved oxygen is not limited, but preferably the flow method is better than the batch method, and the batch method causes a residence time in the batch container, and the reaction in the batch container proceeds. The dissolved oxygen concentration value is not an instantaneous value. In order to evaluate the sludge activity more accurately, the flow type with a small volume and a short residence time is better when measuring dissolved oxygen.

また、本発明によれば、溶存酸素濃度を測定する方法をフロー式にすることで、溶存酸素測定槽における滞留時間を最小限にし、溶存酸素濃度の減少をより迅速に測定することができる。すなわち、フロー式では、溶存酸素測定槽の容積が小さいため、その滞留時間の影響を考慮する時に、送液量は比較的小さく抑えられることから、流量は小さいポンプで良い。フロー式なので容積は数mL(10mL未満、さらには5mL以下や3mL以下。ただし、測定精度をの観点から1mL以上であることが好ましい。)とすることが可能であり、3倍量を1分間で流す場合でも10〜20mL/分の吐出量があれば良い。送液流量が少なければ、2槽式の酸素消費速度試験で見られるように、気泡を含んだまま溶存酸素測定槽へ試料が流入し、溶存酸素電極に気泡が付着することで、溶存酸素濃度の精度が低下し、酸素消費速度が正しく測定できないということは回避できる。   In addition, according to the present invention, the method for measuring the dissolved oxygen concentration is a flow method, so that the residence time in the dissolved oxygen measuring tank can be minimized and the decrease in the dissolved oxygen concentration can be measured more quickly. That is, in the flow type, since the volume of the dissolved oxygen measuring tank is small, when considering the influence of the residence time, the amount of liquid fed can be kept relatively small, so a pump with a small flow rate may be used. Since it is a flow type, the volume can be set to several mL (less than 10 mL, further 5 mL or less or 3 mL or less. However, from the viewpoint of measurement accuracy, it is preferably 1 mL or more). Even if it is made to flow, the discharge amount of 10 to 20 mL / min is sufficient. If the flow rate is low, the sample flows into the dissolved oxygen measuring tank with bubbles, and bubbles are attached to the dissolved oxygen electrode, as seen in the 2-tank oxygen consumption rate test. Therefore, it can be avoided that the oxygen consumption rate cannot be measured correctly.

フロー式の溶存酸素測定槽を用いた測定装置については、特に限定しないが、たとえば東亜ディーケーケー製DO−32Aを用いることができる。   Although it does not specifically limit about the measuring apparatus using a flow type dissolved oxygen measuring tank, For example, DOA-32A by Toa DKK can be used.

送液手段8は、ばっ気された混合液を、ばっ気容器5から連続的に抜き出す。方法は限定しないが、送液機構を備えた装置であるポンプを用いることができる。送液量は反応時間に応じて調整することができるため、想定と異なる活性であった時でも容易に適正な酸素消費量を測定することができる。これまでの酸素消費速度試験においては、一度試験を開始した後に、酸素消費量を変えるためには汚泥濃度を変更するなど、再試験が必要となるが、本発明では試験中に容易に送液量を変えることで、酸素消費量を適正な反応時間で測定することができるようになる。   The liquid feeding means 8 continuously extracts the aerated mixed liquid from the aerated container 5. Although the method is not limited, a pump which is a device having a liquid feeding mechanism can be used. Since the amount of liquid to be fed can be adjusted according to the reaction time, an appropriate oxygen consumption can be easily measured even when the activity is different from that assumed. In previous oxygen consumption rate tests, once the test is started, a retest is required to change the sludge concentration in order to change the oxygen consumption. By changing the amount, the oxygen consumption can be measured with an appropriate reaction time.

反応経路9は、指定しないが、反応経路9内で排水2および活性汚泥3を一定時間反応させるための空間であり、ばっ気された混合液中の基質を活性汚泥3と混合液中の酸素により分解し、混合液中の酸素を消費させる。反応経路9は、測定中その中で排水2および活性汚泥3が新たにばっ気がされない密閉空間とすることができるものとする。材質はガラス容器、ポリ容器などでも良く、または、チューブなどの配管でも良い。好ましくは、スパイラル状のシリコンチューブなどが、省スペース、強度、内壁への活性汚泥の付着しにくさなどの観点から、良い。   Although the reaction path 9 is not specified, it is a space for allowing the waste water 2 and the activated sludge 3 to react in the reaction path 9 for a certain period of time, and the substrate in the aerated mixed solution is used as the oxygen in the activated sludge 3 and the mixed solution. To consume oxygen in the mixture. It is assumed that the reaction path 9 can be a sealed space in which the drainage 2 and the activated sludge 3 are not newly aerated during measurement. The material may be a glass container, a plastic container, or a pipe such as a tube. Preferably, a spiral silicon tube or the like is preferable from the viewpoints of space saving, strength, and difficulty in attaching activated sludge to the inner wall.

反応経路9は、一定流量においては、その体積が大きくなるほど、反応時間は長くなる。このため、反応経路を予め複数備えておき、弁により分岐させることで、想定と異なる活性であった時でも容易に適正な酸素消費量を測定することができる。図5にはその例を示す。図4では直線のシリコンチューブ9aおよびスパイラル状のシリコンチューブ9bを三方コック弁9cで分岐している。ここで、想定よりも酸素消費量が低い状態と分かった場合、反応時間を長くさせるため、反応経路はスパイラル状のシリコンチューブ9bに切り替え、反対に、想定よりも酸素消費量が高い状態と分かった場合は反応時間を短くさせるため、反応経路は直線のシリコンチューブ9aに切り替えることができる。この反応経路9の調整は、前記送液手段8における送液量の調整と併せることで、より精緻に反応時間を調節することが可能となる。   The reaction path 9 becomes longer as the volume of the reaction path 9 increases at a constant flow rate. Therefore, by providing a plurality of reaction paths in advance and branching by a valve, it is possible to easily measure an appropriate oxygen consumption even when the activity is different from the assumed one. An example is shown in FIG. In FIG. 4, a straight silicon tube 9a and a spiral silicon tube 9b are branched by a three-way cock valve 9c. Here, if it is found that the oxygen consumption is lower than expected, the reaction path is switched to the spiral silicon tube 9b in order to lengthen the reaction time, and conversely, the oxygen consumption is higher than expected. In this case, the reaction path can be switched to the straight silicon tube 9a in order to shorten the reaction time. The adjustment of the reaction path 9 can be adjusted more precisely by adjusting the amount of liquid fed in the liquid feeding means 8 together.

前記送液手段8および反応経路9では、反応時間を調節することができ、それにより流路終点における溶存酸素濃度を一定以上にすることで、汚泥活性度を適正に求めることが可能となる。しかし、何度も反応時間を変更すると、他の汚泥活性度データと相対評価をする際に、標準化を行うことができる。   In the liquid feeding means 8 and the reaction path 9, the reaction time can be adjusted, and by setting the dissolved oxygen concentration at the flow path end point to a certain level or more, the sludge activity can be appropriately obtained. However, if the reaction time is changed many times, standardization can be performed when performing relative evaluation with other sludge activity data.

送液流量を調整することにより、反応時間を調節することができる。ある試料では送液流量5mL/分一定で50mL反応経路に導入し、反応時間10分での汚泥活性度3mg/Lが得られ、もう一方の試料では送液流量2.5mL/分一定で50mL反応経路に導入し、反応時間20分で汚泥活性度5mg/Lであった場合、単位時間当たりの汚泥活性度を求めることで相対評価が可能になる。上記例では1時間当たりの汚泥活性度に換算すると、それぞれ18mg/L/時間、15mg/L/時間となり、前者の汚泥活性度が高いことが分かる。ただし、この相対評価を行う際の注意点として、送液手段8における流量調整を行った後は、特に溶存酸素電極が流速の影響を受ける隔膜式の場合は、溶存酸素濃度が安定するまで送液を行うことが望ましい。   The reaction time can be adjusted by adjusting the liquid feed flow rate. One sample is introduced into the 50 mL reaction path at a constant flow rate of 5 mL / min, and a sludge activity of 3 mg / L is obtained at a reaction time of 10 minutes. The other sample is 50 mL at a constant flow rate of 2.5 mL / min. When introduced into the reaction path and the reaction time is 20 minutes and the sludge activity is 5 mg / L, relative evaluation is possible by obtaining the sludge activity per unit time. In the above example, when converted into the sludge activity per hour, it becomes 18 mg / L / hour and 15 mg / L / hour, respectively, which shows that the former sludge activity is high. However, as a precaution when performing this relative evaluation, after adjusting the flow rate in the liquid delivery means 8, particularly in the case of a diaphragm type in which the dissolved oxygen electrode is affected by the flow velocity, the dissolved oxygen concentration is fed until the dissolved oxygen concentration becomes stable. It is desirable to perform the liquid.

さらに、活性汚泥濃度の影響を標準化するため、汚泥活性度を汚泥濃度で除することにより、単位汚泥量当たりの汚泥活性度値を求めることも可能である。汚泥活性度20mg/L/時間、汚泥濃度2,000mg/Lであった場合、0.01mg−酸素/L/時間/(mg−汚泥/L)と算出できる。   Furthermore, in order to standardize the influence of the activated sludge concentration, it is also possible to obtain the sludge activity value per unit sludge amount by dividing the sludge activity by the sludge concentration. When the sludge activity is 20 mg / L / hour and the sludge concentration is 2,000 mg / L, it can be calculated as 0.01 mg-oxygen / L / hour / (mg-sludge / L).

また、図5のように複数の経路を予め用意しておき、流路切り替え弁によって反応経路9の容積を調整することができる。容積を調整した後、ある試料では送液流量2.5mL/分一定で5mL反応経路に導入し、反応時間2分での汚泥活性度1mg/Lが得られ、もう一方の試料では送液流量2.5mL/分一定で50mL反応経路に導入し、反応時間20分で汚泥活性度5mg/Lであった場合、単位時間当たりの汚泥活性度はそれぞれ30mg/L/時間、15mg/L/時間となり、前者の汚泥活性度が高いことが分かる。   Also, as shown in FIG. 5, a plurality of paths can be prepared in advance, and the volume of the reaction path 9 can be adjusted by the flow path switching valve. After adjusting the volume, a certain sample is introduced into a 5 mL reaction path at a constant flow rate of 2.5 mL / min, and a sludge activity of 1 mg / L is obtained with a reaction time of 2 minutes. When it is introduced into the 50 mL reaction path at a constant 2.5 mL / min and the sludge activity is 5 mg / L at a reaction time of 20 minutes, the sludge activity per unit time is 30 mg / L / hour and 15 mg / L / hour, respectively. It can be seen that the former sludge activity is high.

反応経路の容積は、厳密には入側および出側の溶存酸素濃度測定手段の間の容積であるが、溶存酸素濃度測定手段7と反応経路9の間、反応経路9と溶存酸素濃度測定手段10の間が直接接続されている等、容積が無視できる場合は、反応経路9の容積とみなしても良い。   Strictly speaking, the volume of the reaction path is the volume between the inlet and outlet dissolved oxygen concentration measuring means, but between the dissolved oxygen concentration measuring means 7 and the reaction path 9, the reaction path 9 and dissolved oxygen concentration measuring means. When the volume is negligible, such as when 10 is directly connected, the volume of the reaction path 9 may be considered.

さらに、反応経路9においては、一般的に活性汚泥の代謝・分解が温度に依存し、中温微生物、好冷微生物、好熱微生物のように至適温度範囲が存在すること、および、至適温度範囲では比増殖速度が温度上昇に伴い高くなり、10℃高くなると比増殖速度が2倍になるQ10法則があることが知られていることから、温度条件を一定に維持する目的で恒温手段を備えていることが望ましい。 Further, in the reaction path 9, the metabolism / decomposition of activated sludge generally depends on the temperature, and there exists an optimum temperature range such as a medium temperature microorganism, a cold microorganism, and a thermophilic microorganism, and the optimum temperature. increases as the temperature rises specific growth rate in the range, the higher 10 ° C. When since it was known that the specific growth rate is Q 10 laws doubled, thermostatic means for the purpose of maintaining the temperature constant It is desirable to have.

汚泥活性度は、反応前の溶存酸素濃度6と反応後の溶存酸素濃度10の差分で求めることができる。   The sludge activity can be determined by the difference between the dissolved oxygen concentration 6 before the reaction and the dissolved oxygen concentration 10 after the reaction.

さらに、演算装置12によって汚泥活性度を自動的に演算させることができ、その差分を蓄積することで経時的な汚泥活性度を記録し、過去データと比較する等の管理指標として用いることもできる。演算方法は指定しないが、単に引き算をして求めることや、活性汚泥濃度あたりの酸素消費速度を求めることができる。また、当然ながら反応経路容積(L)と送液流量速度(L/分)から滞留時間(分)を算出し、汚泥活性度(mg/L)を滞留時間で除することで、酸素消費速度(mg/L/分)相当の値を算出することもできる。   Furthermore, the sludge activity can be automatically calculated by the arithmetic device 12, and the difference can be accumulated to record the sludge activity over time and use it as a management index for comparing with past data. . Although the calculation method is not specified, it can be obtained simply by subtraction or the oxygen consumption rate per activated sludge concentration. Naturally, the residence time (min) is calculated from the reaction path volume (L) and the liquid flow rate (L / min), and the sludge activity (mg / L) is divided by the residence time, so that the oxygen consumption rate A value corresponding to (mg / L / min) can also be calculated.

また、汚泥活性度測定装置には演算装置12を備えずに、測定された、反応前の溶存酸素濃度6と反応後の溶存酸素濃度10のデータを、系外に取り出し、両者を差分して活性汚泥度を算出しても構わない。   In addition, the sludge activity measuring device does not include the arithmetic unit 12, and the measured data of the dissolved oxygen concentration 6 before the reaction and the dissolved oxygen concentration 10 after the reaction are taken out of the system, and the difference between the two is obtained. The activated sludge degree may be calculated.

以下の実施例では、図1に示した汚泥活性度測定装置を用いて汚泥活性度の測定を行った。
(実施例1)コークス排水処理における汚泥活性度評価
図6には、コークス排水処理に用いられる活性汚泥と試薬により調製した模擬コークス排水とをばっ気容器に入れ、本発明により汚泥活性度を測定した結果を示す。測定では、模擬コークス排水をばっ気容器に入れ、初めに反応経路を満たした後、ばっ気容器に活性汚泥を添加し、1L/分程度でばっ気を開始した。送液速度は5mL/分、反応経路は25mLとし、反応時間は5分と計算される。その結果、反応経路の始点における溶存酸素濃度は6.1〜6.4mg/L、終点における溶存酸素濃度は5.6〜6.2mg/L、汚泥活性度は0.27〜0.48mg/Lとなった。
In the following examples, sludge activity was measured using the sludge activity measuring apparatus shown in FIG.
(Example 1) Evaluation of sludge activity in coke wastewater treatment FIG. 6 shows activated sludge used for coke wastewater treatment and simulated coke wastewater prepared with a reagent in an aeration container, and the sludge activity is measured according to the present invention. The results are shown. In the measurement, simulated coke effluent was put into an aeration container, and after the reaction route was first satisfied, activated sludge was added to the aeration container, and aeration was started at about 1 L / min. The feeding speed is 5 mL / min, the reaction path is 25 mL, and the reaction time is calculated as 5 minutes. As a result, the dissolved oxygen concentration at the start point of the reaction path was 6.1 to 6.4 mg / L, the dissolved oxygen concentration at the end point was 5.6 to 6.2 mg / L, and the sludge activity was 0.27 to 0.48 mg / L. L.

このことから、汚泥活性度を安定的かつ連続的に、熟練した技術を用いずに汚泥活性度を求めることができた。
(実施例2)反応時間を切り替えることによる汚泥活性度評価
図7には、コークス排水処理に用いられる活性汚泥とコークス排水とをばっ気容器に入れ、本発明により送液ポンプ流量を調整しながら汚泥活性度を測定した結果を示す。測定では、流量を10mL/分から20mL/分に切り替えていき、反応経路を25mLとしたことから、反応時間はそれぞれ2.5分、1.25分に相当する。汚泥活性度はそれぞれの反応時間に減少した溶存酸素濃度を示しており、反応時間が長くなると汚泥活性度値は高くなる傾向が見られた。また、反応時間2.5分、1.25分における汚泥活性度はそれぞれ0.97mg/L、0.47mg/Lであり、単位時間当たりの汚泥活性度はそれぞれ23.28mg/L/時間、22.56mg/L/時間であり、汚泥活性度としては23mg/L/時間程度と考えられた。
From this, the sludge activity could be obtained stably and continuously without using a skilled technique.
(Example 2) Sludge activity evaluation by switching reaction time In FIG. 7, activated sludge used for coke wastewater treatment and coke wastewater are put in an aeration container, and the flow rate of the feed pump is adjusted according to the present invention. The result of measuring the sludge activity is shown. In the measurement, the flow rate was switched from 10 mL / min to 20 mL / min, and the reaction path was set to 25 mL. Therefore, the reaction times correspond to 2.5 minutes and 1.25 minutes, respectively. The sludge activity showed the dissolved oxygen concentration decreased in each reaction time, and the sludge activity value tended to increase as the reaction time increased. The sludge activity at reaction time of 2.5 minutes and 1.25 minutes was 0.97 mg / L and 0.47 mg / L, respectively, and the sludge activity per unit time was 23.28 mg / L / hour, It was 22.56 mg / L / hour, and the sludge activity was considered to be about 23 mg / L / hour.

このことから、用いる排水および活性汚泥によって汚泥活性度を適正に測定するため、送液ポンプの流量調整を行うことで反応時間を調整することが可能である。
(実施例3)所定の成分を添加することによる汚泥活性度評価
図8には、コークス排水処理に用いられる活性汚泥とコークス排水とをばっ気容器に入れた実験条件と、活性汚泥と排水中の単成分(基質はチオシアン酸の1種類)を添加した実験条件について、本発明により汚泥活性度を測定した結果を併せて示す。排水では汚泥活性度が2.5mg/L程度となった一方で、単成分では0.25mg/L程度となった。このことは、排水中成分を分解するのに必要な溶存酸素濃度2.5mg/Lのうち、その1割が添加した単成分によるものであることを示唆している。よって、活性度を測定したい所望の基質を添加することにより、所望の基質成分の分解活性度を求めることができる。
(実施例4)恒温することによる汚泥活性度評価
図9には、鉄酸化細菌を含む活性汚泥とFe2+イオンを含む排水とをばっ気容器に入れ、本発明によりばっ気容器および反応経路を恒温しながら汚泥活性度を測定した結果を示す。活性汚泥濃度は24,000mg/L、Fe2+イオン濃度は400mg/L、恒温条件は5〜30℃とし、それぞれの温度条件で同時に実験開始し反応時間30分となるようにそれぞれの汚泥活性度を測定し、その平均値をプロットした。その結果、温度の上昇に伴い汚泥活性度が線形的に増加した。このことから、汚泥活性度を測定する際には温度影響があることが分かったため、ばっ気容器および/または反応経路を恒温することにより、精度良く汚泥活性を測定することができる。
(実施例5)排水を処理しているばっ気槽から直接溶存酸素測定槽へ導入することによる汚泥活性度評価
図10には、コークス排水を連続的に処理している安水連続処理装置の安水処理槽をばっ気容器と見立てて、ここから、送液ポンプを用いて直接溶存酸素測定槽へ導入することで、安水連続処理装置における活性汚泥の汚泥活性度を評価した結果を示す。汚泥濃度は8,000mg/L、水温30℃であった。また、ばっ気槽内の溶存酸素濃度が3.5mg/L程度であったため、反応経路の始点では3.5mg/Lの溶存酸素濃度となった。反応経路の終点では2mg/L程度となった。汚泥活性度は1.3mg/L程度となった。反応経路は25mL、送液速度5mL/分であったため、反応時間は5分であった。これと汚泥濃度から、単位汚泥、単位時間当たりの汚泥活性度は0.002mg−酸素/L/時間/(mg−汚泥/L)となった。このことから、排水を処理しているばっ気槽から試料を直接溶存酸素測定槽1へ導入することで、連続的に汚泥活性度を求めることができた。
From this, in order to appropriately measure the sludge activity by the wastewater and activated sludge to be used, it is possible to adjust the reaction time by adjusting the flow rate of the liquid feed pump.
(Example 3) Evaluation of sludge activity by adding predetermined components FIG. 8 shows experimental conditions in which activated sludge and coke wastewater used for coke wastewater treatment are put in an aeration container, and activated sludge and wastewater. The results of measuring the sludge activity according to the present invention are also shown for the experimental conditions in which a single component (the substrate is one kind of thiocyanic acid) is added. In the wastewater, the sludge activity was about 2.5 mg / L, whereas in the single component, the sludge activity was about 0.25 mg / L. This suggests that 10% of the dissolved oxygen concentration of 2.5 mg / L required for decomposing the components in the wastewater is due to the added single component. Therefore, the decomposition activity of a desired substrate component can be determined by adding a desired substrate whose activity is to be measured.
Example 4 Sludge Activity Evaluation by Constant Temperature FIG. 9 shows that activated sludge containing iron-oxidizing bacteria and wastewater containing Fe 2+ ions are put in an aeration container. The result of measuring the sludge activity while keeping the temperature constant is shown. The activated sludge concentration is 24,000 mg / L, the Fe 2+ ion concentration is 400 mg / L, and the constant temperature condition is 5 to 30 ° C. Was measured and the average value was plotted. As a result, the sludge activity increased linearly with increasing temperature. From this, it was found that there is a temperature influence when measuring the sludge activity, and therefore, the sludge activity can be measured with high accuracy by keeping the temperature of the aeration container and / or the reaction path constant.
(Example 5) Sludge activity evaluation by directly introducing into a dissolved oxygen measuring tank from an aeration tank treating wastewater FIG. 10 shows a continuous low water treatment apparatus treating coke wastewater continuously. The result of evaluating the sludge activity of activated sludge in the continuous process of water-removal treatment equipment is shown by considering the water-treatment tank as an aeration container and introducing it directly into the dissolved oxygen measurement tank using a liquid feed pump. . The sludge concentration was 8,000 mg / L, and the water temperature was 30 ° C. Further, since the dissolved oxygen concentration in the aeration tank was about 3.5 mg / L, the dissolved oxygen concentration was 3.5 mg / L at the starting point of the reaction path. The end point of the reaction route was about 2 mg / L. Sludge activity was about 1.3 mg / L. Since the reaction path was 25 mL and the feeding speed was 5 mL / min, the reaction time was 5 minutes. From this and the sludge concentration, the sludge activity per unit sludge and unit time was 0.002 mg-oxygen / L / hour / (mg-sludge / L). From this, the sludge activity could be continuously obtained by directly introducing the sample from the aeration tank treating the wastewater into the dissolved oxygen measuring tank 1.

実施例1〜5で判るように、汚泥の活性度を、従来技術と比較して、より簡易的に、測定者によるバラつきが少なく、且つ、ばっ気の気泡による測定誤差が生じ難く、測定することができた。   As can be seen from Examples 1 to 5, the activity of sludge is measured more easily and with less variation by the measurer and less likely to cause measurement errors due to aerated bubbles. I was able to.

1 汚泥活性度測定装置
2 活性汚泥
3 活性汚泥により分解される基質を含有する液
4 ばっ気手段
5 ばっ気容器
6 溶存酸素濃度
7 溶存酸素濃度測定手段
8 送液手段
9 反応経路
10 溶存酸素濃度
11 溶存酸素濃度手段
12 汚泥活性度演算手段
21 酸素消費量測定装置
22 活性汚泥
23 活性汚泥により分解される基質を含有する液
24 ばっ気装置
25 ばっ気容器
26 溶存酸素濃度
27 溶存酸素濃度計
28 送液手段
29 溶存酸素濃度測定槽
30 スターラー
31 撹拌子
32 溶存酸素電極
33 密栓
DESCRIPTION OF SYMBOLS 1 Sludge activity measuring device 2 Activated sludge 3 Liquid containing the substrate decomposed by activated sludge 4 Aeration means 5 Aeration container 6 Dissolved oxygen concentration 7 Dissolved oxygen concentration measuring means 8 Liquid sending means 9 Reaction path 10 Dissolved oxygen concentration DESCRIPTION OF SYMBOLS 11 Dissolved oxygen concentration means 12 Sludge activity calculation means 21 Oxygen consumption measuring device 22 Activated sludge 23 Liquid containing substrate decomposed by activated sludge 24 Aeration device 25 Aeration container 26 Dissolved oxygen concentration 27 Dissolved oxygen concentration meter 28 Solution feeding means 29 Dissolved oxygen concentration measuring tank 30 Stirrer 31 Stirrer 32 Dissolved oxygen electrode 33 Seal plug

Claims (10)

活性汚泥および活性汚泥により分解される基質を含有する液の混合液をばっ気するばっ気容器と、
前記ばっ気容器の外に存在し、前記ばっ気された混合液中の前記基質を前記活性汚泥と前記混合液中の酸素により分解し、前記混合液中の酸素を消費させる反応経路と、
前記ばっ気された混合液を、前記ばっ気容器から連続的に抜き出して、前記反応経路を経由して前記ばっ気容器へと返送する送液手段と、
前記反応経路の上流側と下流側でそれぞれ前記混合液の溶存酸素濃度を連続的に測定する溶存酸素濃度測定手段1及び溶存酸素濃度測定手段2と、を有し、
前記反応経路は、複数の経路を有し、流路切り替え弁によって、前記溶存酸素濃度測定手段1と、前記溶存酸素濃度測定手段2との間の距離を変更可能であり、
前記溶存酸素濃度測定手段1で測定された溶存酸素濃度と、前記溶存酸素濃度測定手段2で測定された溶存酸素濃度との差分により、汚泥活性度を求めることができることを特徴とする汚泥活性度測定装置。
An aeration container for aeration of activated sludge and a mixture of liquids containing a substrate decomposed by activated sludge;
A reaction path that exists outside the aeration container, decomposes the substrate in the aerated mixture with the activated sludge and oxygen in the mixture, and consumes oxygen in the mixture;
Liquid feeding means for continuously drawing out the aerated mixture from the aerated container and returning it to the aerated container via the reaction path;
A dissolved oxygen concentration measuring means 1 and a dissolved oxygen concentration measuring means 2 for continuously measuring the dissolved oxygen concentration of the mixed solution respectively on the upstream side and the downstream side of the reaction path;
The reaction path has a plurality of paths, and the distance between the dissolved oxygen concentration measuring means 1 and the dissolved oxygen concentration measuring means 2 can be changed by a flow path switching valve.
Sludge activity can be obtained from the difference between the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 1 and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 2. measuring device.
前記溶存酸素濃度測定手段1で測定された溶存酸素濃度と、前記溶存酸素濃度測定手段2で測定された溶存酸素濃度との差分を演算して汚泥活性度を求める演算手段を更に備えていることを特徴とする請求項1に記載の汚泥活性度測定装置。   And a calculation means for calculating a sludge activity by calculating a difference between the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 1 and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means 2. The sludge activity measuring apparatus according to claim 1, wherein: 前記送液手段は、前記混合液の送液流量を調整可能であることを特徴とする請求項1又は2に記載の汚泥活性度測定装置。   The sludge activity measuring apparatus according to claim 1 or 2, wherein the liquid feeding means is capable of adjusting a liquid feeding flow rate of the mixed liquid. 前記反応経路、前記ばっ気容器の少なくともいずれかを恒温化できることを特徴とする請求項1〜のいずれか1項に記載の汚泥活性度測定装置。 The sludge activity measuring apparatus according to any one of claims 1 to 3 , wherein at least one of the reaction path and the aeration container can be kept at a constant temperature. 前記溶存酸素濃度測定手段1と前記溶存酸素濃度測定手段2とは、それぞれ、フロー式の溶存酸素測定槽に溶存酸素濃度測定器が備わって形成されていることを特徴とする請求項1〜のいずれか1項に記載の汚泥活性度測定装置。 Wherein the dissolved oxygen density measuring device 1 and the dissolved oxygen concentration measuring means 2, respectively, according to claim 1-4, characterized in that the flow-type dissolved oxygen measuring tank dissolved oxygen concentration measuring device is formed facilities The sludge activity measuring apparatus according to any one of the above. 請求項1〜のいずれか1項に記載の汚泥活性度測定装置を用いて、汚泥活性度を測定することを特徴とする汚泥活性度の測定方法。 A method for measuring sludge activity, comprising measuring sludge activity using the sludge activity measuring device according to any one of claims 1 to 5 . 請求項3〜5のいずれか1項に記載の汚泥活性度測定装置を用いた、汚泥活性度の測定方法であって、送液ポンプの流量を調整することにより、反応経路での反応時間を調整することを特徴とする汚泥活性度の測定方法。 A sludge activity measuring method using the sludge activity measuring device according to any one of claims 3 to 5 , wherein the reaction time in the reaction path is adjusted by adjusting a flow rate of a liquid feed pump. A method for measuring sludge activity, characterized by adjusting. 請求項のいずれか1項に記載の汚泥活性度測定装置を用いた、汚泥活性度の測定方法であって、前記流路切り替え弁によって、前記溶存酸素濃度測定手段1と、前記溶存酸素濃度測定手段2との間の距離を変更し、活性汚泥反応時間を調整することを特徴とする汚泥活性度の測定方法。 Claim using sludge activity measuring apparatus according to any one of 1 to 5, the method of measuring the sludge activity, by the flow path switching valve, and the dissolved oxygen concentration measuring means 1, the dissolved A method for measuring sludge activity, wherein the distance between the oxygen concentration measuring means 2 is changed and the activated sludge reaction time is adjusted. 前記活性汚泥により分解される基質を含有する液が、石炭からコークスを製造する工程で排出される排水であることを特徴とする請求項のいずれか1項に記載の汚泥活性度の測定方法。 The sludge activity according to any one of claims 6 to 8 , wherein the liquid containing a substrate that is decomposed by the activated sludge is wastewater discharged in a step of producing coke from coal. Measuring method. 前記活性汚泥により分解される基質を含有する液が、前記活性汚泥により分解される1種類の基質のみ含有することを特徴とする請求項のいずれか1項に記載の汚泥活性度の測定方法。 The liquid containing the substrate that is decomposed by the activated sludge contains only one type of substrate that is decomposed by the activated sludge, which has the sludge activity according to any one of claims 6 to 8 . Measuring method.
JP2013231372A 2013-11-07 2013-11-07 Sludge activity measuring apparatus and sludge activity measuring method Active JP6191404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013231372A JP6191404B2 (en) 2013-11-07 2013-11-07 Sludge activity measuring apparatus and sludge activity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013231372A JP6191404B2 (en) 2013-11-07 2013-11-07 Sludge activity measuring apparatus and sludge activity measuring method

Publications (2)

Publication Number Publication Date
JP2015089548A JP2015089548A (en) 2015-05-11
JP6191404B2 true JP6191404B2 (en) 2017-09-06

Family

ID=53193332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013231372A Active JP6191404B2 (en) 2013-11-07 2013-11-07 Sludge activity measuring apparatus and sludge activity measuring method

Country Status (1)

Country Link
JP (1) JP6191404B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11945739B2 (en) * 2019-03-11 2024-04-02 Gohda Water Treatment Technology Co., Inc. Testing method for wastewater treatment facility
CN110156177B (en) * 2019-07-02 2022-02-08 青岛大学 Intermittent vertical flow artificial wetland denitrification simulation experiment device and experiment method
CN110186970A (en) * 2019-07-10 2019-08-30 廊坊市慧璟科技有限公司 A kind of sewage treatment plant inflow toxicity on-line measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114485A (en) * 1977-03-16 1978-10-05 Toshiba Corp Sensor for measuring activity of active sludge
JPS5444594A (en) * 1977-09-16 1979-04-09 Toshiba Corp Measuring method of oxygen utilization speed of activated sludge
US4329232A (en) * 1980-12-09 1982-05-11 Union Carbide Corporation Method for measuring biomass viability
JPS5840097A (en) * 1981-09-03 1983-03-08 Nippon Kokan Kk <Nkk> Device for automatically measuring the activity of activated sludge bacteria
DE3842734A1 (en) * 1988-12-19 1990-06-21 Hoechst Ag METHOD FOR CONTINUOUSLY MONITORING WASTEWATER
JP5347711B2 (en) * 2009-05-21 2013-11-20 新日鐵住金株式会社 Detection method of harmful substances in water

Also Published As

Publication number Publication date
JP2015089548A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
US9970919B2 (en) Method and device for monitoring and controlling the state of a process stream
Larsen et al. Fast responding biosensor for on-line determination of nitrate/nitrite in activated sludge
Spanjers et al. Instrumentation in anaerobic treatment–research and practice
CN105548296B (en) A kind of activated sludge ammonia nitrogen utilizes rate on-line measuring device and detection method
EP2901149B1 (en) Device for monitoring wastewater treatment
DK156852B (en) PROCEDURE AND DEVICE FOR THE REGISTRATION OF BIOLOGICAL DEGRADABLE AND TOXIC INGREDIENTS IN Aqueous SOLUTIONS, eg WASTE WATER
CN105738287B (en) Water Test Kits
CN101788522A (en) Chemical oxygen demand (COD) on-line monitoring device and method based on boron-doped diamond membrane electrode
JP6191404B2 (en) Sludge activity measuring apparatus and sludge activity measuring method
KR101233623B1 (en) Process and device for simulating water quality
CN102288653A (en) Online biochemical oxygen demand (BOD) detector and detection method of same
CN101566489B (en) Reagent constant volume method and CODcr on-line monitoring art
US6248595B1 (en) Method of measuring a nitrification rate for liquids
CN202083662U (en) Online tester for biochemical oxygen demand BOD
JP2018025454A (en) Hydrogen peroxide analyzer and hydrogen peroxide analysis method
CN107367476A (en) Assess method and system and its application in water process of the biodegradability of water
KR100798053B1 (en) Cod analyzer
US20210033590A1 (en) Method for determining a chemical intake capacity of a process medium in a measuring point and measuring point for determining a chemical intake capacity of a process medium
CN103278495B (en) Active sludge specific oxygen utilization rate on-line determination device and method in sewage disposal system
JP3505559B2 (en) Pollution load meter
Young et al. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total oxygen demand (TOD)
TWI773233B (en) Method and apparatus for real-time monitoring activity of nitrifying bacteria
JP2008196873A (en) Phosphorus measuring method and apparatus thereof
CN115340173B (en) Operation index calculation method and device, and drainage treatment method and device
KR100467173B1 (en) virulence sensing apparatus of waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170724

R151 Written notification of patent or utility model registration

Ref document number: 6191404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350