KR100798053B1 - Cod analyzer - Google Patents

Cod analyzer Download PDF

Info

Publication number
KR100798053B1
KR100798053B1 KR1020070009742A KR20070009742A KR100798053B1 KR 100798053 B1 KR100798053 B1 KR 100798053B1 KR 1020070009742 A KR1020070009742 A KR 1020070009742A KR 20070009742 A KR20070009742 A KR 20070009742A KR 100798053 B1 KR100798053 B1 KR 100798053B1
Authority
KR
South Korea
Prior art keywords
reagent
inspection
tank
introduction
check
Prior art date
Application number
KR1020070009742A
Other languages
Korean (ko)
Inventor
박재성
박창기
Original Assignee
박재성
박창기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박재성, 박창기 filed Critical 박재성
Priority to KR1020070009742A priority Critical patent/KR100798053B1/en
Application granted granted Critical
Publication of KR100798053B1 publication Critical patent/KR100798053B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Biological oxygen demand [BOD] or chemical oxygen demand [COD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

A water quality analyzing apparatus for analysis of COD(chemical oxygen demand) in water is provided to reduce the detection error and use amount of reagents and improve stability and accuracy of analysis by installing a channel portion for measuring samples and reagents accurately. A water quality analyzing apparatus for analysis of COD in water comprises: a plurality of reagent storage tanks(8a, 8b, 8c); a plurality of reagent detection devices(10a, 10b, 10c); a plurality of reagent introduction tubes(9a, 9b, 9c) for connecting the reagent storage tank with the reagent detection devices; air introduction tubes(46) connecting the reagent detection devices with an air tank(22) which is connected to a vacuum suction pump(AP1); and electronic suction valves(SV12, SV13, SV14) which are installed in the medium of air introduction tubes for control the introduction and detection of reagents.

Description

수질 분석장치{COD ANALYZER}Water quality analyzer {COD ANALYZER}

도 1은 본 발명의 실시 예에 따른 COD분석용 수질 분석장치 개략 블록 구성도,1 is a schematic block diagram of a water quality analysis device for COD analysis according to an embodiment of the present invention;

도 2는 도 1의 검수 계량기 구성도,2 is a block diagram of the inspection meter of FIG.

도 3은 도 1의 시약 계량기 구성도,3 is a block diagram of the reagent meter of FIG.

도 4는 본 발명의 측정 제어흐름도.4 is a measurement control flow chart of the present invention.

본 발명은 수질 측정장치에 관한 것으로, 특히 수질내의 화학적 산소요구량(chemical oxygen demand: COD)를 분석하는 수질분석장치에 관한 것이다. The present invention relates to a water quality measuring apparatus, and more particularly, to a water quality analyzing apparatus for analyzing chemical oxygen demand (COD) in water quality.

요즈음 수자원의 수요량 증가와 더불어 산업배출수나 생활배출수 등을 통한 수질오염이 크게 문제화되고 있다. 공장이나 사업장 및 각 가정 등에서 배출되는 오수나 폐수와 같은 배출수중에는 산화가 되기 쉬운 유기물질이 포함되어 있으므로 그 수질을 오염시키게 된다. 그러므로 수중에 존재하는 이러한 유기물질을 지속적으로 측정하여 감시 감독하는 것이 매우 중요하게 되었다. In recent years, along with the increase in demand for water resources, water pollution through industrial discharges and domestic discharges has become a major problem. Effluents such as sewage and wastewater discharged from factories, workplaces, and homes contain organic substances that are easily oxidized, which contaminates the water quality. Therefore, it is very important to continuously measure, monitor and supervise these organic substances in water.

수질내의 화학적 산소요구량(COD)은 오염된 물의 수질을 나타내는 하나의 지표이다. 유기물질을 함유한 물에 과망간산칼륨(KMnO4)·중크롬산칼륨(K2Cr2O7) 등과 같은 수용액 산화제를 투입하면 유기물질이 산화가 되는데, 이때 소비된 산화제의 양에 상당하는 산소의 양을 mg/ℓ 또는 ppm으로 나타낸 것이 화학적 산소요구량(COD)이다.Chemical oxygen demand (COD) in water quality is an indicator of the quality of contaminated water. When an aqueous solution oxidant such as potassium permanganate (KMnO 4 ) or potassium dichromate (K 2 Cr 2 O 7 ) is added to the water containing the organic substance, the organic substance is oxidized, and the amount of oxygen corresponding to the amount of the oxidant consumed is In mg / l or ppm is the chemical oxygen demand (COD).

이러한 COD분석방법중 과망간산칼륨(KMnO4)에 의한 화학적 산소요구량 측정법을 이용한 COD분석장치가 여러형태로 개발되고 있지만 장치의 내부 환경이나 조건에 따라 측정 결과치가 다르게 나타나는 경우가 종종 있다. 예컨대, COD분석장치의 내부 구조가 복잡한 관계로 오작동이 발생할 수 있으며, 측정시약을 계량하는데 있어서도 계량 액량의 변화로 인한 측정오차가 발생되는 문제가 있고, 시약의 계량과 분배가 부정확하여 시약소모량이 많아지는 단점이 있다. Among these COD analysis methods, a COD analysis device using a chemical oxygen demand measurement method using potassium permanganate (KMnO 4 ) has been developed in various forms, but the measurement results are often different depending on the internal environment or conditions of the device. For example, a malfunction may occur due to a complicated internal structure of the COD analyzer, and a measurement error may occur due to a change in the amount of the measurement liquid even when the measurement reagent is weighed. There are many disadvantages.

따라서 본 발명의 목적은 수질의 COD분석에 있어 시료 및 시약를 정확하게 측정할 수 있도록 유로부를 구현하여 기기의 안정성과 신뢰성을 갖추도록 한 수질 분석장치를 제공하는데 있다. Accordingly, an object of the present invention is to provide a water quality analysis apparatus that implements a flow path portion to accurately measure a sample and a reagent in COD analysis of water quality to ensure the stability and reliability of the device.

상기한 목적에 따라, 본 발명은, 화학적 산소요구량 측정을 위한 수질 분석장치에 있어서, 다수의 시약저장조들(8a)(8b)(8c)과 시약계량기들(10a)(10b)(10c)간을 각 시약도입튜브(9a)(9b)(9c)들로 연결하고, 다수의 시약계량기들(10a)(10b)(10c) 각각에 연결된 에어도입튜브(46)들을 하나의 진공흡입펌프(AP1)와 연결된 에어탱크(22)에 연결되게 구성하되 에어도입튜브(46)들에는 전자흡입밸브(SV12)(SV13)(SV14)가 설치되게 구성하여서 진공흡입펌프(AP1)에 의한 진공흡입으로 시약저장조들(8a)(8b)(8c)에 저장된 각 시약이 해당 시약계량기(10a)(10b)(10c)에 선택적으로 도입 및 계량되게 함을 특징으로 한다. In accordance with the above object, the present invention, in the water quality analysis apparatus for measuring the chemical oxygen demand, between a plurality of reagent reservoirs (8a) (8b) (8c) and reagent meters (10a) (10b) (10c) To each reagent introduction tube (9a) (9b) (9c), and the air introduction tube (46) connected to each of the plurality of reagent meter (10a) (10b) (10c) one vacuum suction pump (AP1) It is configured to be connected to the air tank 22 connected to the air inlet tube 46, the electromagnetic suction valve (SV12) (SV13) (SV14) is configured to be installed by vacuum suction pump (AP1) Each reagent stored in the reservoirs 8a, 8b, 8c is selectively introduced and metered into the corresponding reagent meters 10a, 10b, 10c.

이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 첨부 도면을 포한한 명세서에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략될 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted in the specification including the accompanying drawings.

도 1은 본 발명의 실시 예에 따른 COD를 분석하는 수질 분석장치의 개략 구성도로서, 과망간산칼륨(KMnO4)에 의한 COD 측정원리를 이용하는 공정 시험법에 준한 자동측정장치이다. 1 is a schematic configuration diagram of a water quality analysis device for analyzing COD according to an embodiment of the present invention, which is an automatic measurement device based on a process test method using a COD measurement principle by potassium permanganate (KMnO 4 ).

본 발명에 적용되는 도 1의 COD분석용 수질 분석장치는 일정주기로 검수 시료를 채수하여 시험절차에 따라 희석, 시약의 도입, 산화를 시키고 적정 분석하여 COD측정값을 측정자에게 제공해준다. 보다 구체적으로 설명하면, COD분석용 수질 분석장치는 채수된 검수에 일정량(10ml)의 과망간산칼륨(KMnO4)을 가한 후 일정시간동안(30분) 가열반응시키고, 검수중의 유기물질을 산화시켰을 때 소비된 과망간산칼륨에 대응된 산화 환원전위차에 따른 검출값(mV)을 마이크로프로세스(미도시됨) 로 연산함으로써 COD를 분석한다. The water quality analysis device for COD analysis of FIG. 1 applied to the present invention collects a test sample at regular intervals, and dilutes, introduces, oxidizes, and titrates the test procedure according to a test procedure to provide a COD measurement value to a measurer. More specifically, the water quality analyzer for COD analysis adds a certain amount (10 ml) of potassium permanganate (KMnO 4 ) to the collected water and heat-reacts it for a predetermined time (30 minutes) to oxidize the organic material in the water. COD is analyzed by calculating a detection value (mV) according to the redox potential corresponding to potassium permanganate consumed by a microprocess (not shown).

본 발명의 실시 예에 따른 수질 분석장치는 수질의 COD분석에 있어 시료 및 시약를 정확하게 측정할 수 있도록 유로부를 구현한다. 그 유로부는 검수를 도입하는 검수도입 정류조(2)의 구조와 희석수 및 시험액을 포함한 검수시료와 시약을 도입 및 계량하는 구조에 관련된다. Water quality analysis apparatus according to an embodiment of the present invention implements a flow path portion to accurately measure the sample and reagent in the COD analysis of water quality. The flow path portion relates to the structure of the inspection-introducing rectifier tank 2 for introducing the inspection and the structure for introducing and metering the inspection sample and the reagent including the dilution water and the test liquid.

COD분석을 위한 검수는 펌프(P1)를 통해서 검수도입 정류조(2)에 항시 공급되도록 구성한다. 검수도입 정류조(2)는 도입된 검수가 3단계로 차례로 넘어 흘러갈 수 있도록 저장조들을 구성하여 부유물질 및 침전물질이 검수도입 정류조(2)에 의해서 걸러내어지도록 해준다. 검수도입 정류조(2)로의 검수 도입량은 설치 여건에 따라 설정되며 다수 밸브들(BV1,BV2,BV3)을 통해 설정된 값으로 조정되어진다. 밸브들(BV1,BV2,BV3)에서, BV1은 1차 저장조의 전단에 설치된 입수밸브이고, BV2,BV3은 1차 및 2차 저장조의 저부에 설치된 폐수밸브이다. 그리고 2차 저장조내 수중에는 검수 계량기(4)와 연결되는 검수도입튜브(40)의 하단이 위치되게 구성한다. Inspection for COD analysis is configured to be always supplied to the inspection introduction rectifier (2) through the pump (P1). The inspection rectification tank 2 configures the reservoirs so that the introduced inspection flows in three steps in turn so that suspended matter and sediment are filtered out by the inspection rectification tank 2. The inspection introduction amount into the inspection introduction rectification tank 2 is set according to the installation conditions and adjusted to a value set through the plurality of valves BV1, BV2, and BV3. In the valves BV1, BV2, BV3, BV1 is an inlet valve installed in front of the primary reservoir, and BV2, BV3 are wastewater valves installed at the bottom of the primary and secondary reservoirs. The lower end of the inspection introduction tube 40 connected to the inspection meter 4 is configured to be underwater in the secondary reservoir.

검수도입 정류조(2)에 도입된 검수는 전자밸브(SV6)가 설치된 검수도입튜브(40)를 통해서 검수계량기(4)에 도입되어지고, 희석수 및 시험액도 다른 튜브(42)를 통해서 검수 계량기(4)에 도입되어진다. 상기 희석수는 밸브(NV1)를 통해서 수압 조절되어지고 전자밸브(SV8)를 통해서 검수 계량기(4)에 도입되어지며, 시험액은 제로점(zero)설정이나 스판 교정(span drift)이 요구될 시(설정모드시) 전자밸브(SV9)를 통해서 검수 계량기(4)에 도입되어진다. The inspection introduced into the inspection introduction rectification tank 2 is introduced into the inspection meter 4 through the inspection introduction tube 40 provided with the solenoid valve SV6, and the dilution water and the test liquid are also inspected through the other tubes 42. Is introduced into the meter 4. The dilution water is hydraulically regulated via valve NV1 and introduced to check gauge 4 via solenoid valve SV8, and the test solution is required when zero setting or span drift is required. It is introduced to the inspection meter 4 through the solenoid valve SV9 (in the setting mode).

한편 시약저장조(8a)(8b)(8c)에는 각각의 시약인 액상의 수산나트륨(Na2C2O4), 황산(H2S04), 질산은(AgNO3)이 저장되어 있다. 이들 시약들중에서 수산나트륨(Na2C2O4)은 환원제이고, 황산(H2S04)과 질산은(AgNO3)은 산화제이다. Reagent reservoirs (8a) (8b) (8c) store liquid sodium hydroxide (Na 2 C 2 O 4 ), sulfuric acid (H 2 SO 4 ), and silver nitrate (AgNO 3 ), which are the respective reagents. Among these reagents, sodium hydroxide (Na 2 C 2 O 4 ) is the reducing agent, sulfuric acid (H 2 SO 4 ) and silver nitrate (AgNO 3 ) are the oxidizing agents.

수산나트륨(Na2C2O4)액을 저장하는 제1 시약 저장조(8a)는 제1 시약도입튜브(9a)를 통해서 제1 시약 계량기(10a)에 연결되고, 황산(H2S04)액을 저장하는 제2 시약 저장조(8b)는 제2 시약도입튜브(9b)를 통해서 제2 시약 계량기(10b)에 연결되며, 질산은(AgNO3)액을 저장하는 제3 시약 저장조(8c)는 제3 시약도입튜브(9c)를 통해서 제3 시약 계량기(10c)에 연결된다. The first reagent reservoir 8a storing the sodium hydroxide (Na 2 C 2 O 4 ) solution is connected to the first reagent meter 10a through the first reagent introduction tube 9a, and sulfuric acid (H 2 SO 4 ). The second reagent reservoir 8b for storing the liquid is connected to the second reagent meter 10b through the second reagent introduction tube 9b, and the third reagent reservoir 8c for storing the silver nitrate (AgNO 3 ) solution is provided. The third reagent introduction tube 9c is connected to the third reagent meter 10c.

본 발명의 실시 예에 따라 검수 계량기(4)로의 검수도입 및 계량과 시약계량기(10a)(10b)(10c)로의 시약도입 및 계량은 에어탱크(22)에 연결된 진공흡입펌프(AP1)에 의한 진공흡입으로 이루어진다. According to an embodiment of the present invention, the inspection introduction and metering into the inspection meter 4 and the reagent introduction and metering into the reagent meter 10a, 10b, 10c are performed by a vacuum suction pump AP1 connected to the air tank 22. It is made by vacuum suction.

진공흡입펌프(AP1)에 연결된 하나의 에어탱크(22)에는 검수 계량기(4)의 에어도입튜브(44)와 다수의 시약 계량기(10a)(10b)(10c) 각각의 에어도입튜브(46)들이 연결되어 있으며, 각 에어도입튜브(44)(46)들에는 각 전자밸브(SV12∼SV15)가 설치되어 있다. One air tank 22 connected to the vacuum suction pump AP1 includes an air introduction tube 44 of the inspection meter 4 and an air introduction tube 46 of each of the plurality of reagent meters 10a, 10b, and 10c. Are connected to each air introduction tube (44, 46) is provided with each solenoid valve (SV12 ~ SV15).

상기의 전자밸브(SV12∼SV15)중 검수 흡입전자밸브(SV12)는 검수도입 정류조(2)에서 검수 계량기(4)로 검수, 희석수, 시험수를 도입하기 위해 공기를 흡입시 작동하는 밸브이며, 검수 도입시에는 전자밸브(SV6)와 연동작동하게 된다. 전자밸 브(SV13∼SV15)에서 'SV13'는 수산나트륨 흡입전자밸브이고, 'SV14'는 황산 흡입전자밸브이며, 'SV15'은 질산은 흡입전자밸브이다.Among the above-mentioned solenoid valves SV12 to SV15, the check suction solenoid valve SV12 is a valve which operates when the air is sucked to introduce the check, the dilution water, and the test water from the check introduction rectifier tank 2 to the check meter 4. When the inspection is introduced, it is interlocked with the solenoid valve SV6. In the solenoid valves (SV13 to SV15), 'SV13' is the sodium hydroxide intake solenoid valve, 'SV14' is the sulfuric acid intake solenoid valve, and 'SV15' is the nitric acid intake solenoid valve.

본 발명의 실시 예에서는 하나의 진공흡입펌프(AP1)와 에어탱크(22)를 이용한 진공흡입으로 작동함으로써 검수계량기(4)로의 검수도입 및 계량과 시약계량기(10a)(10b)(10c)로의 시약도입 및 계량이 정확하게 이루어지며, 각 계량기(4)(10a)(10b)(10c)간의 계량편차는 없게된다. 특히 시약계량기(10a)(10b)(10c)의 전단에는 별도의 밸브없이도 시약이 정확하게 도입되게 해줌으로써 계량재현성의 오차범위가 ±5%이내에 둘 수 있다. In the embodiment of the present invention by operating the vacuum suction using a single vacuum suction pump (AP1) and the air tank 22, the inspection introduction and metering to the check meter (4) and to the reagent meter (10a) (10b) (10c) Reagent introduction and metering are made accurately, and there is no metering deviation between each meter (4) (10a) (10b) (10c). In particular, the front end of the reagent meter (10a) (10b) (10c) to ensure that the reagent is accurately introduced without a separate valve can be within the error range of ± 5% of the meter reproducibility.

도 2는 도 1의 검수 계량기(4)의 구체 구성도이고, 도 3은 도 1의 시약 계량기(10a)(10b)(10c)의 구체 구성도이다.FIG. 2 is a specific configuration diagram of the inspection meter 4 of FIG. 1, and FIG. 3 is a specific configuration diagram of the reagent meters 10a, 10b and 10c of FIG. 1.

도 2의 검수 계량기(4) 및 도 3의 시약 계량기(8a)(8b)(8c)에서의 계량은 레벨러(leveler)(50)(52)에 의한 레벨전극과 대기압을 이용하여 계량되어진다. The metering in the check meter 4 of FIG. 2 and the reagent meter 8a, 8b, 8c of FIG. 3 is metered using the level electrode and atmospheric pressure by the levelers 50 and 52.

검수는 도 2에 도시된 바와 같은 검수 계량기(4)에 도입되어지고 자체 계량되어지며 전자밸브(SV5)를 통하여 반응조(6)에 주입되며, 해당 시약은 도 3에 도시된 바와 같은 해당 시약 계량기(8a)(8b)(8c)에 도입되어져 자체 계량되어지고, 그 후 각 전자밸브(SV2)(SV3)(SV4)를 통해서 반응조(6)로 주입되어진다. 제1 시약 계량기(8a)는 수산나트륨(Na2C2O4)의 계량기이고, 제2 시약 계량기(8b)는 황산(H2S04)의 계량기이며, 제3 시약 계량기(8c)는 질산은(AgNO3)의 계량기이다. The inspection is introduced into the inspection meter 4 as shown in FIG. 2 and self-weighed and injected into the reactor 6 through the solenoid valve SV5, and the reagent is added to the corresponding reagent meter as shown in FIG. It is introduced into (8a), (8b) and (8c) and self-weighed, and it is inject | poured into the reaction tank 6 through each solenoid valve SV2 (SV3) and SV4 after that. The first reagent meter 8a is a meter of sodium hydroxide (Na 2 C 2 O 4 ), the second reagent meter 8b is a meter of sulfuric acid (H 2 SO 4 ), and the third reagent meter 8c is a silver nitrate. It is a meter of (AgNO 3 ).

한편 보관조(14)에 보관된 과망간산칼륨(KMnO4)은 망간도입 실린지펌프(12) 와 삼방 전자밸브(SV1)를 통하여 반응조(6)로 주입되어진다. Meanwhile, potassium permanganate (KMnO 4 ) stored in the storage tank 14 is injected into the reaction tank 6 through the manganese introduction syringe pump 12 and the three-way solenoid valve SV1.

유욕조(oil bath)(20)에 담겨진 반응조(6)는 히터(H)로 가열된 실리콘 오일에 의한 간접가열방식으로 교반되면서 30분간 반응하며, 이때 검수중의 유기오염물에 해당하는 양만큼의 과망간산 칼륨이 소모되어진다. The reaction tank 6 contained in the oil bath 20 is reacted for 30 minutes while stirring by an indirect heating method by the silicone oil heated by the heater H, and the amount corresponding to the organic pollutants in the inspection is Potassium permanganate is consumed.

반응조(6)에 관련된 부호 'ORP(Oxidation Reduction Potential)'는 산화환원전위센서이고, TEMP1은 반응조(6)의 온도센서이며, TMEP2는 유욕조(20)의 온도센서이다. 에어탱크(22)와 연결된 밸브(SV18)와 냉각관(CT1)은 반응조(6)에서의 가열반응시 증기 냉각을 위해 작동한다. 그리고 에어탱크(22)에 연결된 대기개방밸브(SV17)은 측정공정의 필요에 따라 반응조(6)를 선택적으로 밀폐와 개방하게 위한 밸브이다. The symbol 'ORP (Oxidation Reduction Potential)' related to the reactor 6 is a redox potential sensor, TEMP1 is a temperature sensor of the reactor 6, and TMEP2 is a temperature sensor of the oil bath 20. The valve SV18 and the cooling tube CT1 connected to the air tank 22 operate for steam cooling during the heating reaction in the reactor 6. And the atmospheric release valve (SV17) connected to the air tank 22 is a valve for selectively sealing and opening the reaction tank (6) as necessary for the measurement process.

망간도입 실린지펌프(12)로 과망간산칼륨(KMnO4)을 반응조(6)에 주입하면서 과잉의 수산화나트륨을 전극으로 적정하여 마이크로프로세서(미도시됨)에서의 연산처리를 통해 COD농도를 표시 출력하게 된다. 적정은 반응조(6)에 과망간산칼륨(KMnO4)을 넣어서 OPR센서가 종말점을 검출할 때까지 소비된 과망간산칼륨(KMnO4)을 자동으로 계산함으로써 이루어진다. Injecting potassium permanganate (KMnO 4 ) into the reactor (6) with a manganese-injected syringe pump (12), titrating excess sodium hydroxide to the electrode and displaying the COD concentration through arithmetic processing in a microprocessor (not shown). Done. The titration is performed by putting potassium permanganate (KMnO 4 ) in the reactor 6 and automatically calculating potassium permanganate (KMnO 4 ) consumed until the OPR sensor detects the end point.

도 1에서, 미설명된 밸브 'SV7'은 희석수 계량후 여분의 양을 배출하기 위한 밸브이고, 'SV19, SV20'은 측정한 폐액이나 세정수를 배출하는 전자밸브로서, 'SV19'는 상시 배출용도로 사용되고, 'SV20'은 측정한 폐액만을 배액할 수 있도록 사용되어진다.  In FIG. 1, the valve 'SV7', which is not described, is a valve for discharging excess amount after dilution water measurement, and 'SV19 and SV20' are solenoid valves for discharging the measured waste liquid or washing water, and 'SV19' is always 'SV20' is used to drain only the measured waste liquid.

가압펌프(AP2)와 배액공기밸브(SV10)는 반응조(6)내의 폐액 및 세정액을 외부로 배출하기 위한 펌프와 밸브로서, 배출을 위한 전자밸브(SV19)(SV20)와 연동 작동한다. The pressure pump AP2 and the drainage air valve SV10 are pumps and valves for discharging the waste liquid and the washing liquid in the reaction tank 6 to the outside, and operate in conjunction with the solenoid valve SV19 (SV20) for discharging.

상기와 같은 COD분석용 수질분석장치에서의 측정공정은 미리 설정된 계측시간마다 정시 측정을 행하며, 도 4에서와 같은 제어흐름도와 같은 단계들을 통해서 측정하게 된다. The measurement process in the COD analysis water quality analysis apparatus as described above is performed on a timely measurement every predetermined measurement time, it is measured through the same steps as the control flow chart as shown in FIG.

제로점(zero) 측정이나 스판교정(span drift)의 경우에는 검수 대신 대응 시험액으로 시험을한다. 염소이온이 일정량 존재할 경우에는 프로그램으로 보상하고, 염소이온이 불규칙적으로 존재할 경우에는 질산은 측정법을 사용하며, 오염이 심할 경우에는 수산나트륨수 등으로 세정한다. In the case of zero measurement or span drift, the test is carried out with the corresponding test solution instead of the inspection. If a certain amount of chlorine ions is present, the program is compensated. If chlorine ions are irregular, the silver nitrate measurement method is used. If the contamination is severe, it is washed with sodium hydroxide water.

상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시할 수 있다. 따라서 본 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위의 균등한 것에 의해 정해 져야 한다. In the above description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the equivalent of claims and claims.

상술한 바와 같이 본 발명은 기기의 안정성과 신뢰성을 갖추며 자동적으로 C0D를 측정 분석할 수 있다. As described above, the present invention has the stability and reliability of the device and can automatically measure and analyze the COD.

Claims (3)

화학적 산소요구량 측정을 위한 수질 분석장치에 있어서,In the water quality analysis device for measuring the chemical oxygen demand, 다수의 시약저장조들(8a)(8b)(8c)과 시약계량기들(10a)(10b)(10c)간을 각 시약도입튜브(9a)(9b)(9c)들로 연결하고, 다수의 시약계량기들(10a)(10b)(10c) 각각에 연결된 에어도입튜브(46)들을 하나의 진공흡입펌프(AP1)와 연결된 에어탱크(22)에 연결되게 구성하되 에어도입튜브(46)들에는 전자흡입밸브(SV12)(SV13)(SV14)가 설치되게 구성하여서 진공흡입펌프(AP1)에 의한 진공흡입으로 시약저장조들(8a)(8b)(8c)에 저장된 각 시약이 해당 시약계량기(10a)(10b)(10c)에 선택적으로 도입 및 계량되게 함을 특징으로 하는 수질 분석장치. Connect a plurality of reagent reservoirs (8a) (8b) (8c) and reagent meters (10a) (10b) (10c) to each reagent introduction tube (9a) (9b) (9c), and The air induction tube 46 connected to each of the meters 10a, 10b, 10c is configured to be connected to the air tank 22 connected to the one vacuum suction pump AP1. Each of the reagents stored in the reagent reservoirs 8a, 8b, and 8c by the suction of the suction valves SV12, SV13, and SV14 is vacuum suctioned by the vacuum suction pump AP1. (10b) (10c) Water quality analysis device characterized in that it is selectively introduced and metered. 제1항에 있어서, 검수도입 정류조(2)와 검수 계량기(4)를 더 구비하되, 상기 검수도입 정류조(2)와 검수 계량기(4)간을 전자밸브(SV6)가 설치된 검수도입튜브(40)로 연결하고, 검수계량기(4)와 상기 에어탱크(22)간을 전자흡입밸브(SV12)가 설치된 에어도입튜브(44)로 연결 구성하여 진공흡입펌프(AP1)에 의한 진공흡입으로 검수도입 정류조(2)에 저장된 검수가 도입 및 계량되게 함을 특징으로 하는 수질 분석장치. The inspection introduction tube according to claim 1, further comprising a check introduction rectification tank (2) and a check gauge (4), wherein a solenoid valve (SV6) is provided between the check introduction rectification tank (2) and the check meter (4). (40), connecting the check gauge (4) and the air tank (22) by an air inlet tube (44) provided with an electromagnetic suction valve (SV12) to vacuum suction by the vacuum suction pump (AP1). Water quality analysis device characterized in that the inspection stored in the inspection rectification tank (2) is introduced and quantified. 제2항에 있어서, 상기 검수도입 정류조(2)는 도입된 검수가 3단계로 차례로 넘어 흘러갈 수 있도록 저장조들을 구성하고, 검수도입 정류조(2)의 1차 저장조의 전단에는 입수밸브(BV1)가 설치되고 1차 및 2차 저장조의 저부 각각에는 폐수밸브(BV2)(BV3)가 설치되며, 상기 2차 저장조내 수중에는 상기 검수 계량기(4)와 연결되는 검수도입튜브(40)의 하단이 위치되게 구성함을 특징으로 하는 수질 분석장치. According to claim 2, wherein the check introduction rectification tank (2) constitutes the storage tank so that the introduced inspection flows in turn in three stages, and the inlet valve (front) of the primary storage tank of the check introduction rectification tank (2) BV1) is installed, and wastewater valves BV2 and BV3 are installed at the bottoms of the primary and secondary reservoirs, and in the secondary reservoir, the water inlet tube 40 is connected to the inspection meter 4. Water quality analysis device characterized in that the bottom is configured to be located.
KR1020070009742A 2007-01-31 2007-01-31 Cod analyzer KR100798053B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070009742A KR100798053B1 (en) 2007-01-31 2007-01-31 Cod analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070009742A KR100798053B1 (en) 2007-01-31 2007-01-31 Cod analyzer

Publications (1)

Publication Number Publication Date
KR100798053B1 true KR100798053B1 (en) 2008-01-28

Family

ID=39219310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070009742A KR100798053B1 (en) 2007-01-31 2007-01-31 Cod analyzer

Country Status (1)

Country Link
KR (1) KR100798053B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001904B1 (en) 2008-11-10 2010-12-17 한국지질자원연구원 portable vacuum pump assembly for analysis of water qulity and apparatus having the same for analysis of water qulity
KR101769736B1 (en) 2017-04-18 2017-08-30 주식회사 동일그린시스 Apparatus for Automatically Analyzing Chemical Oxygen Demand
JP2020101511A (en) * 2018-12-25 2020-07-02 東亜ディーケーケー株式会社 Titrator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050101123A (en) * 2005-07-18 2005-10-20 주식회사 동일그린시스 Automatic measure device for biochemical oxygen demand

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050101123A (en) * 2005-07-18 2005-10-20 주식회사 동일그린시스 Automatic measure device for biochemical oxygen demand

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001904B1 (en) 2008-11-10 2010-12-17 한국지질자원연구원 portable vacuum pump assembly for analysis of water qulity and apparatus having the same for analysis of water qulity
KR101769736B1 (en) 2017-04-18 2017-08-30 주식회사 동일그린시스 Apparatus for Automatically Analyzing Chemical Oxygen Demand
JP2020101511A (en) * 2018-12-25 2020-07-02 東亜ディーケーケー株式会社 Titrator
JP7189429B2 (en) 2018-12-25 2022-12-14 東亜ディーケーケー株式会社 Titrator

Similar Documents

Publication Publication Date Title
US10295458B2 (en) Analytical device for determining a digestion parameter of a liquid sample
JP5622063B1 (en) Chemical oxygen consumption (COD) automatic measuring device
US9518900B2 (en) Sample preparation system for an analytical system for determining a measured variable of a liquid sample
US9207204B2 (en) Method and apparatus for determining information concerning presence of constituents of a liquid sample with oxygen demand
CN105738287B (en) Water Test Kits
Li et al. A spectrophotometric method for determination of chemical oxygen demand using home-made reagents
DE102013108556A1 (en) Method and analyzer for determining the chemical oxygen demand of a fluid sample
KR100798053B1 (en) Cod analyzer
CN108169505B (en) Method and analyzer for determining the concentration of a measured object of a liquid sample
Jiang et al. An environmentally-benign flow-batch system for headspace single-drop microextraction and on-drop conductometric detecting ammonium
CA1293912C (en) Sample monitoring instrument for on-line application
KR102148076B1 (en) Method and Device for analyzing inorganic ion concentration in sample
JP2011220944A (en) Automatic titration analyzer, automatic titration analysis method, automatic analysis management system of process liquid and automatic titration analysis method of process liquid
EP3450975A1 (en) Portable system for physicochemical analysis of a soil fluid
JP6191404B2 (en) Sludge activity measuring apparatus and sludge activity measuring method
MXPA03009174A (en) Pickle liquor acid analyzer.
CN204649628U (en) Reductive agent addition pick-up unit and analyser
JP2007333611A (en) Chemical analysis apparatus and chemical analysis method using same
JP2001296305A (en) Sample solution automatic analyzing device and method
JP2017223583A (en) Water Quality Analyzer
Zhang et al. A simple high-throughput headspace gas chromatographic method for the determination of dissolved oxygen in aqueous samples
EP3472597B1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
TWM575863U (en) Water quality testing system
CN115290421B (en) Dilution apparatus and dilution method
Despot et al. Comparison of Online Sensors for Liquid Phase Hydrogen Sulphide Monitoring in Sewer Systems. Water 2021, 13, 1876

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee