JP2007333611A - Chemical analysis apparatus and chemical analysis method using same - Google Patents

Chemical analysis apparatus and chemical analysis method using same Download PDF

Info

Publication number
JP2007333611A
JP2007333611A JP2006166989A JP2006166989A JP2007333611A JP 2007333611 A JP2007333611 A JP 2007333611A JP 2006166989 A JP2006166989 A JP 2006166989A JP 2006166989 A JP2006166989 A JP 2006166989A JP 2007333611 A JP2007333611 A JP 2007333611A
Authority
JP
Japan
Prior art keywords
sample
tube pump
solution
analysis
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006166989A
Other languages
Japanese (ja)
Inventor
Tadashi Yoshida
正 吉田
Masanori Kitada
正則 北田
Hiroshi Tako
寛 田高
Ryoichi Kimizuka
亮一 君塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIGITAL WARE Inc
Ebara Udylite Co Ltd
Original Assignee
DIGITAL WARE Inc
Ebara Udylite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIGITAL WARE Inc, Ebara Udylite Co Ltd filed Critical DIGITAL WARE Inc
Priority to JP2006166989A priority Critical patent/JP2007333611A/en
Publication of JP2007333611A publication Critical patent/JP2007333611A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical analysis apparatus capable of overcoming the drawbacks of a conventional tube pump, capable of precisely quantitatively supplying a solution, and capable of securing the accuracy even when air bubbles are contained or generated in the solution. <P>SOLUTION: The chemical analysis apparatus includes a tube pump having a rotation amount detection means for converting a rotation amount to an electric signal; an analysis tank having a sensor capable of reading physicochemical characteristics of the solution by the electric signal; a suction line disposed on a suction side of the tube pump, communicated with a sample tank, a reagent container or a water container, and having a plurality of valves for selectively feeding a sample, a reagent or water; and a delivery line communicating a delivery side of the tube pump and the analysis tank, and having a gas intrusion detection means for detecting gas contained in the liquid and converting it to the electric signal. The chemical analysis apparatus further includes a calculating means for performing AND operation of the electric signal from the rotation amount detection means and the gas intrusion detection means, and an analysis means for associating the result of the calculating means with the electric signal from a sensor and calculating the ingredient concentration of the sample. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、化学分析装置に関し、更に詳細には、チューブポンプを用いた溶液を正確に供給することのできる溶液定量供給装置を用い、試料等を正確に定量採取し、分析することのできる化学分析装置およびこれを用いる化学分析方法に関する。   The present invention relates to a chemical analyzer, and more particularly, to a chemical analyzer capable of accurately collecting and analyzing a sample or the like using a solution quantitative supply device capable of accurately supplying a solution using a tube pump. The present invention relates to an analyzer and a chemical analysis method using the same.

従来の化学分析装置では、高精度に化学分析や測定を行う場合、微量の試薬溶液を正確に注入するために、チューブポンプが用いられていた。しかし、チューブポンプは、チューブをローラー等で押圧し、液体を吐出させるものであるため、長期間の使用によって、チューブが伸長し、単位時間当たりの吐出量が変化することがあり、このような、経時的な吐出量の変化は、定量化学分析における液添加機構に使用した場合、誤差の原因となるので、その用途が限られていた。   In conventional chemical analyzers, when performing chemical analysis and measurement with high accuracy, a tube pump has been used to accurately inject a small amount of reagent solution. However, since the tube pump presses the tube with a roller or the like and discharges the liquid, the tube may elongate due to long-term use, and the discharge amount per unit time may change. The change in the discharge amount over time causes an error when used in a liquid addition mechanism in quantitative chemical analysis, and its application has been limited.

また、試料液や試薬が圧力変化、接触摩擦、温度変化等で、その内部に気泡が発生しやすい場合、ローラー等の押圧によって配管内部に気泡を発生し、吐出量の精度を低下させる原因ともなっていた。   In addition, if the sample solution or reagent is subject to pressure change, contact friction, temperature change, etc., and bubbles are likely to be generated inside it, bubbles may be generated inside the pipe due to the pressure of the roller, etc., and this may cause the accuracy of the discharge amount to decrease It was.

したがって、液体の正確な定量が必要とされる高精度な化学分析や測定では、シリンダー方式のポンプなど、構造が複雑で高価な液添加機構に頼ったり、液体の容量ではなく、精密な天秤でその質量を正確に量り取り、分析系に添加する必要があった。   Therefore, in high-precision chemical analysis and measurement that requires accurate quantification of liquids, it is necessary to rely on a complicated and expensive liquid addition mechanism such as a cylinder type pump, or with a precise balance instead of liquid volume. The mass had to be accurately weighed and added to the analytical system.

近年、このような従来のチューブポンプの問題、とくに、チューブの経時変化による輸送量の変化の問題を解決するため、定容積秤量手段によりチューブポンプからの送液量を貯留必要時間に変換し、これによって分注時間を決定することにより、所定の分注量を精度よく確保できる装置が開発されている(特許文献1参照)。   In recent years, in order to solve such problems of conventional tube pumps, particularly the problem of changes in transport volume due to aging of tubes, the amount of liquid fed from the tube pump is converted into the required storage time by a constant volume weighing means, By determining the dispensing time in this way, an apparatus that can ensure a predetermined dispensing amount with high accuracy has been developed (see Patent Document 1).

しかしながら、この装置は所定の分注量を分注時間により管理するものであるので、試料液や試薬に気泡が発生した場合などの分注量の精度までも担保するものではなかた。   However, since this apparatus manages a predetermined dispensing amount according to the dispensing time, it does not guarantee the accuracy of the dispensing amount when bubbles are generated in the sample solution or reagent.

特開平5−80060号JP-A-5-80060

上記実情に鑑み、従来のチューブポンプのかかる欠点を克服し、溶液を正確に定量供給することができ、溶液中に気泡が混入あるいは発生する場合においてもその精度を保証することのできる分析装置の開発が望まれており、このような分析装置を提供することが、本発明の課題である。   In view of the above situation, an analyzer that can overcome the disadvantages of the conventional tube pump, can accurately supply a solution, and can guarantee the accuracy even when bubbles are mixed in or generated in the solution. Development is desired, and it is an object of the present invention to provide such an analyzer.

本発明は、上記課題を解決するものであり、 回転量を電気的信号に変換する回転量検出手段を備えたチューブポンプ、溶液の物理化学的特性を電気的信号で読み取ることの可能なセンサを備えた分析槽、前記チューブポンプの吸入側に設置され、試料槽、試薬容器もしくは水容器と連通し、試料、試薬もしくは水を選択送液するための複数の弁を有する吸入ラインおよび前記チューブポンプの排出側と前記分析槽とを連通し、液体に混入する気体を検知し、これを電気信号に変換する気体混入検出手段を備えた排出ラインとを有する化学分析装置であって、更に、前記回転量検出手段および気体混入検出手段からの電気的信号を論理積演算する演算手段と、前記演算手段の結果とセンサーからの電気的信号と関係づけ、試料の成分濃度を算出する分析手段とを有してなる化学分析装置である。   The present invention solves the above-described problem, and provides a tube pump provided with a rotation amount detecting means for converting a rotation amount into an electrical signal, and a sensor capable of reading the physicochemical characteristics of a solution with an electrical signal. The analysis tank provided, the suction line of the tube pump, the suction line that communicates with the sample tank, the reagent container or the water container and has a plurality of valves for selectively feeding the sample, reagent or water, and the tube pump A chemical analyzer having a discharge line provided with a gas mixing detection means for detecting a gas mixed in the liquid and converting it into an electrical signal. Calculation means that performs an AND operation on the electrical signals from the rotation amount detection means and the gas contamination detection means, and relates the result of the calculation means to the electrical signal from the sensor to calculate the component concentration of the sample. Is a chemical analysis apparatus comprising and a analysis means for.

また本発明は、チューブポンプ、前記チューブポンプの吸入側に設置され、試料容器、試薬容器もしくは水容器と連通し、試料、試薬もしくは水を選択送液するための複数の弁を有する吸入ラインおよび前記チューブポンプの排出ラインの末端に設置され、溶液の物理化学的特性を電気的信号で読み取ることの可能なセンサを備えた分析槽を有する化学分析装置を用いる化学分析方法であって、前記複数の弁を開閉しつつ試料ないし試薬を分析槽中に送液し、分析槽中の溶液の物理化学的特性変化を電気的信号で読み取るとともに、前記チューブポンプの回転量と排出ラインの途中に設けられた気体混入検出手段の電気信号から送液量を算出し、この送液量と分析槽中の溶液の物理化学的特性変化とを関係づけることにより試料の濃度を分析することを特徴とする化学分析方法である。   The present invention also provides a tube pump, a suction line installed on the suction side of the tube pump, having a plurality of valves in communication with a sample container, a reagent container or a water container, and selectively feeding a sample, reagent or water, and A chemical analysis method using a chemical analysis apparatus having an analysis tank having a sensor installed at an end of a discharge line of the tube pump and capable of reading a physicochemical characteristic of a solution with an electric signal, The sample or reagent is fed into the analysis tank while opening and closing the valve, and the changes in the physicochemical characteristics of the solution in the analysis tank are read with an electrical signal, and the rotation amount of the tube pump and the middle of the discharge line are provided. Calculate the amount of liquid delivered from the electrical signal of the gas contamination detection means, and analyze the concentration of the sample by correlating the amount of liquid delivered with the changes in the physicochemical properties of the solution in the analysis tank It is a chemical analysis method comprising Rukoto.

本発明によれば、チューブポンプにより試料等を採取する際に発生する気泡の量を、液体採取量に反映させることができるため、試料または試薬を正確に分析槽中に送り込むことが可能である。   According to the present invention, since the amount of bubbles generated when a sample or the like is collected by a tube pump can be reflected in the liquid collection amount, it is possible to accurately feed the sample or reagent into the analysis tank. .

また、本発明装置では、試料または試薬を同一のチューブポンプで送液するため、仮にチューブの経時変化による輸送量が変化したとしても、問題とならず、正確に分析が行えるものである。   Further, in the apparatus of the present invention, since the sample or reagent is fed by the same tube pump, even if the transport amount due to aging of the tube changes, there is no problem and the analysis can be performed accurately.

以下、本発明の一実施態様を示す図面を挙げ、本発明を更に詳しく説明するが、本発明はこれに何ら制約されるものではない。   Hereinafter, the present invention will be described in more detail with reference to the drawings showing an embodiment of the present invention, but the present invention is not limited thereto.

図1は、本発明化学分析装置の構成の一態様を模式的に示したす図面である。図中、1は化学分析装置、2はチューブポンプ、3は回転量検出手段、4は吸入ライン、5は排出ライン、6は気体混入検出手段、7は分析槽、8はセンサ、9は弁をそれぞれ示す。また、10は試料容器、11は試薬容器、12は純水容器、13はコンピュータ、13aは演算手段、13bは成分算出手段、14は排出口、15は排液ポンプを示す。   FIG. 1 is a drawing schematically showing one embodiment of the configuration of the chemical analyzer of the present invention. In the figure, 1 is a chemical analyzer, 2 is a tube pump, 3 is a rotation amount detection means, 4 is a suction line, 5 is a discharge line, 6 is a gas contamination detection means, 7 is an analysis tank, 8 is a sensor, 9 is a valve Respectively. Further, 10 is a sample container, 11 is a reagent container, 12 is a pure water container, 13 is a computer, 13a is a calculation means, 13b is a component calculation means, 14 is a discharge port, and 15 is a drainage pump.

図1に示すように、本発明の化学分析装置は、チューブポンプ2の吸入側に吸入ライン4が、排出側に排出ライン5がそれぞれ設けられている。このうち吸入ライン4には、弁9a、9bおよび9cを介して試料槽10、試薬容器11および純水容器12が連通されており、各弁をそれぞれ開けることにより、必要な試料ないし試薬を後記分析槽7中に送液することができ、更に純水により分析槽7を洗浄することが可能となる。なお、図1での試薬容器11は一つであるが、分析対象試薬に合わせ、これを複数として良いことはいうまでもない。   As shown in FIG. 1, the chemical analyzer of the present invention is provided with a suction line 4 on the suction side of the tube pump 2 and a discharge line 5 on the discharge side. Among them, the sample tank 10, the reagent container 11 and the pure water container 12 are communicated with the suction line 4 through valves 9a, 9b and 9c, and necessary samples or reagents are described later by opening each valve. The liquid can be fed into the analysis tank 7, and the analysis tank 7 can be washed with pure water. In addition, although the reagent container 11 in FIG. 1 is one, it cannot be overemphasized that this may be made into multiple according to an analysis object reagent.

上記排出ライン5の途中には、気体混入検出手段6が、その末端には、センサ8を備えた分析槽7が設けられている。この気体混入検出手段6としては、気泡センサー等が利用され、ここでの気泡有無の情報は、電気信号に変換され、演算手段13aに送られる。   In the middle of the discharge line 5, a gas mixing detection means 6 is provided, and an analysis tank 7 having a sensor 8 is provided at the end thereof. As the gas mixing detection means 6, a bubble sensor or the like is used, and information on the presence or absence of bubbles here is converted into an electrical signal and sent to the calculation means 13a.

チューブポンプ2のローターを回転駆動させるモーターとしては、サーボーモーター、エンコーダー付きDCモータ、ブラシレスDCモーター等の、チューブポンプのローターの回転角が正確に把握できる機構を設けることができるものであれば良く、これ以外でもモーターの回転軸の回転角が正確に判定できるものであれば利用することができる。   As a motor that rotationally drives the rotor of the tube pump 2, a mechanism that can accurately grasp the rotation angle of the tube pump rotor, such as a servo motor, a DC motor with an encoder, or a brushless DC motor, can be provided. Anything other than this can be used as long as it can accurately determine the rotation angle of the rotating shaft of the motor.

また、チューブポンプ2には、その回転量を測定するための回転量検出手段3が設けられている。この回転量検出手段3としては、チューブポンプ2のローターの駆動軸に直結したロータリーエンコーダ等が用いられ、ローターの回転量の情報は、電気信号、例えばローターの回転角を示す電気パルスに変換され、演算手段13aに送られる。この演算手段13aでは、気体混入検出手段からの電気信号と論理積演算されて、実際の送液量を示す電気信号とされる。例えば、図2に示すように、回転量検出手段3からの回転量の電気信号Aと、気体混入検出手段6からの電気信号Bが送られた場合には、実際に液が送られた部分に対応する回転量の電気信号のみを有効とし、電気信号Cを実送液量とすることになる。   The tube pump 2 is provided with a rotation amount detecting means 3 for measuring the rotation amount. As the rotation amount detecting means 3, a rotary encoder or the like directly connected to the drive shaft of the rotor of the tube pump 2 is used. Information on the rotation amount of the rotor is converted into an electric signal, for example, an electric pulse indicating the rotation angle of the rotor. And sent to the calculation means 13a. In this calculating means 13a, a logical product operation with the electric signal from the gas mixing detection means is performed to obtain an electric signal indicating the actual liquid feeding amount. For example, as shown in FIG. 2, when an electric signal A of the rotation amount from the rotation amount detection means 3 and an electric signal B from the gas mixture detection means 6 are sent, the part where the liquid is actually sent Only the electric signal of the rotation amount corresponding to is made effective, and the electric signal C becomes the actual liquid feeding amount.

一方、試料ないし試薬が送液された分析槽7では、これらの送液の結果による溶液の物理化学的特性変化をセンサ8で読み取り、これを電気的信号に変換する。この物理化学的特性変化としては、pH、色、透明度、酸化還元電位、伝導度、イオン濃度、温度等の変化を利用することができ、センサ8として、pHセンサー、酸化還元電位センサー、温度センサー、吸光度センサー、ならびに色センサーなどを1つあるいは2つ以上を組み合わせることができる。例えば、分析すべき試料溶液がアルカリ性であれば、試薬として酸性溶液を加え、その混合溶液の変化をpHで読み取れば良く、また、分析すべき試料が還元性溶液であれば、試薬として酸化性溶液を加え、その混合溶液の変化を酸化還元電位で読み取ればよい。   On the other hand, in the analysis tank 7 to which the sample or reagent has been sent, the sensor 8 reads changes in the physicochemical characteristics of the solution resulting from these results, and converts them into electrical signals. As this physicochemical property change, changes in pH, color, transparency, redox potential, conductivity, ion concentration, temperature, etc. can be used. As sensor 8, a pH sensor, redox potential sensor, temperature sensor can be used. In addition, one or a combination of two or more absorbance sensors, color sensors, and the like can be used. For example, if the sample solution to be analyzed is alkaline, an acidic solution may be added as a reagent, and the change in the mixed solution may be read by pH. If the sample to be analyzed is a reducing solution, the reagent may be oxidized. What is necessary is just to read the change of the mixed solution by oxidation-reduction potential, adding a solution.

最後に、上記で得られた実送液量と、前記で得られた溶液の物理化学的特性変化を、成分算出手段13bで関係づけることにより、分析対象であった試料の溶液濃度を定めることができる。すなわち、本発明装置では、チューブポンプ2が用いられ、かつ、気泡の分を差し引くことが可能であるので、試料および試薬の送液量は正確に定めることができる。従って、使用試薬として濃度が正確に定められているものを利用すれば、試料の濃度を正確に求めることが可能となるのである。   Finally, the solution concentration of the sample to be analyzed is determined by associating the actual liquid delivery amount obtained above with the physicochemical property change of the solution obtained above by the component calculation means 13b. Can do. That is, in the apparatus of the present invention, the tube pump 2 is used and the amount of bubbles can be subtracted, so that the amount of sample and reagent to be fed can be accurately determined. Therefore, if a reagent whose concentration is accurately determined is used, the concentration of the sample can be accurately determined.

なお、本発明装置では、チューブポンプ2を使用しているが、試料も試薬も同じチューブを利用して送液しているため、長期間の使用によりチューブが経時変化したとしても、試料および試薬の量には変化がなく、測定には影響を与えることはない。すなわち、チューブポンプ2の回転角と化学量論的濃度の関係について説明すると次の通りである。   In the apparatus of the present invention, the tube pump 2 is used. However, since the sample and the reagent are fed using the same tube, the sample and the reagent can be used even if the tube changes over time due to long-term use. There is no change in the amount, and the measurement is not affected. That is, the relationship between the rotation angle of the tube pump 2 and the stoichiometric concentration will be described as follows.

まず、試料の採取に要した気泡を除くローターの回転角をmとする。チューブポンプ2が単位角度あたりに輸送する容積をVrとする。試薬を所定のpHになるまでチューブポンプのローターを駆動させた回転角の総和をΣpとする。さらに試薬の濃度N、そのファクターをf、求める化学種に対する当量係数をEとすると化学量論的濃度Cは下記の式で表せる。   First, let m be the rotation angle of the rotor excluding bubbles necessary for sampling. Let Vr be the volume transported by the tube pump 2 per unit angle. The sum of the rotation angles at which the tube pump rotor is driven until the reagent reaches a predetermined pH is Σp. Further, when the reagent concentration N, the factor thereof is f, and the equivalent coefficient for the desired chemical species is E, the stoichiometric concentration C can be expressed by the following equation.

[式1]
C=(E×f×Vr×Σp)/(Vr×m)
C=(E×f×Σp)/m
[Formula 1]
C = (E × f × Vr × Σp) / (Vr × m)
C = (E × f × Σp) / m

この式から明白なようにチューブポンプが単位角度あたりに輸送する容積Vrは相殺される。チューブポンプが長期間の稼動で徐々に変化する特性値はVrであるが、この式から明らかなように本発明ではVrの変化の影響を受けない。また試料や試薬の気泡を除いた真の液体の容積に比例する回転角を使用することで上記の式の再現性が向上することになる。   As is apparent from this equation, the volume Vr that the tube pump transports per unit angle is offset. The characteristic value that gradually changes during long-term operation of the tube pump is Vr. However, as is apparent from this equation, the present invention is not affected by changes in Vr. In addition, the reproducibility of the above equation is improved by using a rotation angle proportional to the volume of the true liquid excluding the sample and reagent bubbles.

次に、本発明の化学分析装置を用いて分析する方法の一態様を説明する。   Next, an embodiment of a method for analyzing using the chemical analyzer of the present invention will be described.

まず、試料液を定量採取するために電磁弁9aのみを開放し、チューブポンプ2を駆動する。この状態で送液された試料は、三方電磁弁9dで配管経路(吸入ライン4および排出ライン5)に残存していた液体と試料液が完全に置換するまで、排出口16を開け、流し出す。次いで、頃合をみはからって三方電磁弁9dを分析槽7側へ切り替えて定量採取を開始する。ここで気体混入検出手段6の信号Bとローター駆動軸の回転量信号Aから気泡を除く液体が通過した量に相当する信号Cを論理積演算により得る。   First, only the electromagnetic valve 9a is opened to drive the tube pump 2 in order to collect a sample liquid quantitatively. The sample sent in this state is opened and discharged through the three-way solenoid valve 9d until the sample liquid is completely replaced with the liquid remaining in the piping path (suction line 4 and discharge line 5). . Next, the three-way solenoid valve 9d is switched to the analysis tank 7 side in a timely manner, and quantitative sampling is started. Here, a signal C corresponding to the amount of the liquid excluding the bubble passing through the signal B of the gas mixing detection means 6 and the rotation amount signal A of the rotor drive shaft is obtained by a logical product operation.

分析槽7中の試料が少量であり、センサ8の感応部位まで達さない場合は、弁9aを閉じた後、弁9cを開け、純水を純水容器12からチューブポンプ2により採取する。この場合も、一定時間純水を排出口16より流し出してから分析槽7注入する。以上で試料の採取工程は完了する。   When the sample in the analysis tank 7 is small and does not reach the sensitive site of the sensor 8, the valve 9 a is closed, the valve 9 c is opened, and pure water is collected from the pure water container 12 by the tube pump 2. Also in this case, pure water is poured from the discharge port 16 for a certain period of time and then injected into the analysis tank 7. This completes the sample collection process.

次に試薬を一定量づつ試薬容器11から分析槽7に添加し、スターラー17により撹拌する。この場合も試料の採取と同様に電磁弁9bのみを開放し、チューブポンプ2より試薬の輸送を行う。この場合も、最初の一定時間は、試薬を排出口16より流し出すことは前記と同じである。   Next, a predetermined amount of reagent is added from the reagent container 11 to the analysis tank 7 and stirred by the stirrer 17. In this case as well, as with sample collection, only the solenoid valve 9b is opened and the reagent is transported from the tube pump 2. Also in this case, for the first fixed time, the reagent is poured out from the discharge port 16 in the same manner as described above.

この試薬を一定量づつ分析槽7に添加し、スターラー17で混合された後の液体の物理化学的変化をセンサ8で測定する。物理化学的変化が、一定の値に達するまで測定、試薬の添加を繰り返し続ける。所定の値に達するまでに要した試薬の量と採取した試料の量から試料の化学量論的濃度を得ることができる。濃度が得られた後、排液ポンプ16で分析槽7内の液を排水し一連の操作を終了する。   A certain amount of this reagent is added to the analysis tank 7, and the physicochemical change of the liquid after being mixed by the stirrer 17 is measured by the sensor 8. Measurement and reagent addition are repeated until the physicochemical change reaches a certain value. The stoichiometric concentration of the sample can be obtained from the amount of reagent required to reach the predetermined value and the amount of sample collected. After the concentration is obtained, the liquid in the analysis tank 7 is drained by the drainage pump 16 and the series of operations is completed.

なお、本発明装置の各機器類の制御や演算は、コンピュータ13で行っている。濃度表示や各機器類の単独操作のためにコンピュータ13にプリンターやディスプレー装置、キーボードを組み込んでも良い。   Note that the computer 13 controls and calculates each device of the device of the present invention. A printer, a display device, and a keyboard may be incorporated in the computer 13 for density display and individual operation of each device.

次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

実 施 例 1
近年、電子部品製造工程で使用される過水硫酸系エッチング液について本発明を使用して分析を行った。この過水硫酸系エッチング液は、その酸化剤に過酸化水素水溶液を使用ており、液の輸送に伴う圧力変化や接触刺激により液中に酸素の気泡を発生することがあった。また酸化性で酸度も高いために、チューブポンプに使用する樹脂チューブの減肉等の問題によりチューブポンプの性能変化も激しかった。
Example 1
In recent years, the present invention was used to analyze perhydrosulfuric acid-based etchants used in electronic component manufacturing processes. This perhydrosulfuric acid-based etching solution uses an aqueous hydrogen peroxide solution as its oxidant, and oxygen bubbles may be generated in the solution due to a pressure change or contact stimulus accompanying the transport of the solution. In addition, because of its oxidizing nature and high acidity, the performance change of the tube pump was severe due to problems such as thinning of the resin tube used in the tube pump.

本実施例では、図1に示す装置を用いた。また、発明の効果を確認するために、比較として故意に気泡検出器(気体混入検出手段)を取り外した装置も用いた。それぞれ連続運転で1ヶ月間の分析値の変化を使用技術において比較した。その結果を表1にしめす。なお本実施例で分析値とはエッチング液中の過酸化水素の容量パーセントを意味する。   In this example, the apparatus shown in FIG. 1 was used. Moreover, in order to confirm the effect of invention, the apparatus which removed the bubble detector (gas mixing detection means) intentionally as a comparison was also used. The change in analytical value for one month in each continuous operation was compared in the technique used. The results are shown in Table 1. In the present example, the analytical value means the volume percentage of hydrogen peroxide in the etching solution.

Figure 2007333611
Figure 2007333611

この結果から明らかなように、気泡検出がない比較装置では、時たま標準より低い値が散見された。このとき試料に気泡が含まれた状態で分析槽に流れ込むことが目視でも確認された。   As is clear from this result, in the comparison apparatus without air bubble detection, values lower than the standard were occasionally found. At this time, it was also confirmed visually that the sample flowed into the analysis tank in a state where bubbles were included.

実 施 例 2
高濃度のエッチング液を1日12回の割合で1ヶ月間分析をおこない、その変動幅および変動係数を調べた。本発明の分析装置を採用したものを条件A(本発明)、本発明の装置を使用せず別個のチューブポンプで試料と試薬を輸送する分析機構を採用したものを条件B(従来技術)として比較した。なお、1ヶ月稼動前後の確認試験には気泡の影響が少ない低濃度エッチング液を繰返分析の試料液とした。
Example 2
A high-concentration etching solution was analyzed at a rate of 12 times a day for one month, and the fluctuation range and coefficient of variation were examined. Condition A (present invention) using the analyzer of the present invention, and Condition B (prior art) adopting an analysis mechanism that transports the sample and reagent by separate tube pumps without using the apparatus of the present invention Compared. In the confirmation test before and after the operation for one month, a low-concentration etching solution with little influence of bubbles was used as a sample solution for repeated analysis.

Figure 2007333611
Figure 2007333611

この結果から、本発明と従来技術を比較すると稼動前後において分析値の安定性には両者とも顕著な差はないが、従来技術では全体的に分析値が上昇する傾向にあることが見て取れた。一方、本発明を採用した分析装置では分析値の顕著な変動は認められなかった。   From this result, when comparing the present invention with the prior art, it can be seen that there is no significant difference in the stability of the analytical value before and after operation, but the analytical value tends to increase overall in the prior art. On the other hand, in the analyzer employing the present invention, no significant fluctuation of the analysis value was observed.

本発明装置によれば、気泡の発生しやすい試料であっても正確にその濃度を測定することが可能となる。従って、化学工業、例えば金属表面処理分野において利用される各種処理液を自動的に分析するための装置として広く利用しうるものである。   According to the apparatus of the present invention, it is possible to accurately measure the concentration of a sample that easily generates bubbles. Therefore, it can be widely used as an apparatus for automatically analyzing various processing solutions used in the chemical industry, for example, the metal surface treatment field.

本発明化学分析装置の構成を示す図面である。It is drawing which shows the structure of this invention chemical analyzer. 本発明化学分析装置において、実送液量の検出方法を示す図面である。図中、Aは回転量の信号、Bは気泡の存否の信号、Cは実送液量の信号を意味する。It is drawing which shows the detection method of the actual liquid feeding amount in this invention chemical analyzer. In the figure, A indicates a rotation amount signal, B indicates a bubble presence / absence signal, and C indicates an actual liquid supply amount signal.

符号の説明Explanation of symbols

1 … … 化学分析装置
2 … … チューブポンプ
3 … … 回転量検出手段
4 … … 吸入ライン
5 … … 排出ライン
6 … … 気体混入検出手段
7 … … 分析槽
8 … … センサ
9 … … 弁
10 … … 試料容器
11 … … 試薬容器
12 … … 純水容器
13 … … コンピュータ
13a… … 演算手段
13b… … 成分算出手段
14 … … 排出口
15 … … 排液ポンプ
16 … … モーター
17 … … スターラー
以 上
DESCRIPTION OF SYMBOLS 1 ...... Chemical analyzer 2 ...... Tube pump 3 ...... Rotation amount detection means 4 ...... Suction line 5 ...... Discharge line 6 ...... Gas mixing detection means 7 ...... Analysis tank 8 ...... Sensor 9 ...... Valve 10 ... ... Sample container 11 ... Reagent container 12 ... Pure water container 13 ... Computer 13a ... Calculation means 13b ... Component calculation means 14 ... Discharge port 15 ... Drain pump 16 ... Motor 17 ... Stirrer
more than

Claims (2)

回転量を電気的信号に変換する回転量検出手段を備えたチューブポンプ、溶液の物理化学的特性を電気的信号で読み取ることの可能なセンサを備えた分析槽、前記チューブポンプの吸入側に設置され、試料槽、試薬容器若しくは水容器と連通し、試料、試薬もしくは水を選択送液するための複数の弁を有する吸入ラインおよび前記チューブポンプの排出側と前記分析槽とを連通し、液体に混入する気体を検知し、これを電気信号に変換する気体混入検出手段を備えた排出ラインとを有する化学分析装置であって、更に、前記回転量検出手段および気体混入検出手段からの電気的信号を論理積演算する演算手段と、前記演算手段の結果とセンサーからの電気的信号と関係づけ、試料の成分濃度を算出する分析手段とを有してなる化学分析装置。   Tube pump with rotation amount detection means for converting rotation amount into electrical signal, analysis tank with sensor capable of reading physicochemical characteristics of solution with electrical signal, installed on suction side of tube pump A sample tank, a reagent container or a water container, a suction line having a plurality of valves for selectively feeding the sample, reagent or water, and a discharge side of the tube pump and the analysis tank, and a liquid A chemical analyzer having a discharge line provided with gas mixture detection means for detecting gas mixed in and converting the gas into an electrical signal, and further comprising an electrical circuit from the rotation amount detection means and the gas mixture detection means. A chemical analysis apparatus comprising: arithmetic means for performing a logical AND operation on a signal; and analysis means for calculating a component concentration of a sample in association with a result of the arithmetic means and an electrical signal from a sensor. チューブポンプ、前記チューブポンプの吸入側に設置され、試料容器、試薬容器または水容器と連通し、試料、試薬若しくは水を選択送液するための複数の弁を有する吸入ラインおよび前記チューブポンプの排出ラインの末端に設置され、溶液の物理化学的特性を電気的信号で読み取ることの可能なセンサを備えた分析槽を有する化学分析装置を用いる化学分析方法であって、前記複数の弁を開閉しつつ試料もしくは試薬を分析槽中に送液し、分析槽中の溶液の物理化学的特性変化を電気的信号で読み取るとともに、前記チューブポンプの回転量と排出ラインの途中に設けられた気体混入検出手段の電気信号から送液量を算出し、この送液量と分析槽中の溶液の物理化学的特性変化とを関係づけることにより試料の濃度を分析することを特徴とする化学分析方法。

Tube pump, suction line installed on the suction side of the tube pump, communicating with the sample container, reagent container or water container, and having a plurality of valves for selectively feeding the sample, reagent or water, and discharge of the tube pump A chemical analysis method using a chemical analysis apparatus having an analysis tank having a sensor installed at an end of a line and capable of reading a physicochemical characteristic of a solution with an electrical signal, wherein the plurality of valves are opened and closed. While the sample or reagent is fed into the analysis tank, the changes in the physicochemical properties of the solution in the analysis tank are read with an electrical signal, and the amount of rotation of the tube pump and detection of gas contamination provided in the middle of the discharge line The solution concentration is calculated from the electrical signal of the means, and the concentration of the sample is analyzed by correlating the amount of solution flow with the change in the physicochemical properties of the solution in the analysis tank. Chemical analysis methods for.

JP2006166989A 2006-06-16 2006-06-16 Chemical analysis apparatus and chemical analysis method using same Pending JP2007333611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166989A JP2007333611A (en) 2006-06-16 2006-06-16 Chemical analysis apparatus and chemical analysis method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166989A JP2007333611A (en) 2006-06-16 2006-06-16 Chemical analysis apparatus and chemical analysis method using same

Publications (1)

Publication Number Publication Date
JP2007333611A true JP2007333611A (en) 2007-12-27

Family

ID=38933215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166989A Pending JP2007333611A (en) 2006-06-16 2006-06-16 Chemical analysis apparatus and chemical analysis method using same

Country Status (1)

Country Link
JP (1) JP2007333611A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064529A (en) * 2017-04-06 2017-08-18 亚智系统科技(苏州)有限公司 A kind of automatic analysing apparatus and automatic analysis method
JP2017537328A (en) * 2014-12-10 2017-12-14 モレキュラー デバイシーズ, エルエルシー Liquid and plate sensors for microplate injector systems
JP2019513986A (en) * 2016-03-29 2019-05-30 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Self-contained slide processing unit for biological samples
CN113413826A (en) * 2021-05-31 2021-09-21 深圳市科曼医疗设备有限公司 Adding device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198052A (en) * 1985-02-28 1986-09-02 Toshiba Corp Reagent-less residual chlorine meter
JPH0484966A (en) * 1990-07-27 1992-03-18 Shimadzu Corp Blood pump
JPH10160701A (en) * 1996-11-28 1998-06-19 Nissin Electric Co Ltd Bod instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198052A (en) * 1985-02-28 1986-09-02 Toshiba Corp Reagent-less residual chlorine meter
JPH0484966A (en) * 1990-07-27 1992-03-18 Shimadzu Corp Blood pump
JPH10160701A (en) * 1996-11-28 1998-06-19 Nissin Electric Co Ltd Bod instrument

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537328A (en) * 2014-12-10 2017-12-14 モレキュラー デバイシーズ, エルエルシー Liquid and plate sensors for microplate injector systems
JP2019513986A (en) * 2016-03-29 2019-05-30 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション Self-contained slide processing unit for biological samples
US11446671B2 (en) 2016-03-29 2022-09-20 Leica Microsystems Cms Gmbh Self-contained slide processing unit for biological specimens
US11826760B2 (en) 2016-03-29 2023-11-28 Leica Microsystems Cms Gmbh Self-contained slide processing unit for biological specimens
CN107064529A (en) * 2017-04-06 2017-08-18 亚智系统科技(苏州)有限公司 A kind of automatic analysing apparatus and automatic analysis method
CN113413826A (en) * 2021-05-31 2021-09-21 深圳市科曼医疗设备有限公司 Adding device and method

Similar Documents

Publication Publication Date Title
US10295458B2 (en) Analytical device for determining a digestion parameter of a liquid sample
US20200182851A1 (en) Measuring device
US9207204B2 (en) Method and apparatus for determining information concerning presence of constituents of a liquid sample with oxygen demand
US5364510A (en) Scheme for bath chemistry measurement and control for improved semiconductor wet processing
US9518900B2 (en) Sample preparation system for an analytical system for determining a measured variable of a liquid sample
EP0796432A1 (en) An automated analyzing apparatus for measuring water quality with a cylinder-shaped syringe unit
US20150168366A1 (en) Digestion reactor and analytical device for determining a digestion parameter of a liquid sample
RU2562921C2 (en) Viscosity calculation method
CN113008883A (en) Method for determining a parameter based on the concentration of at least one analyte in a sample liquid
CN112305238A (en) Method for metering a liquid amount with a peristaltic pump
JP2007333611A (en) Chemical analysis apparatus and chemical analysis method using same
US9535048B2 (en) Method for determining number of drops
EP0214846A2 (en) Sample monitoring instrument for on-line application
JP2008076342A (en) Automatic analyzer
US20150233838A1 (en) Colorimetric analyzer with de-bubbling
CN112305034B (en) Method for calibrating an analytical measurement device and measurement points of an analytical measurement device
KR100798053B1 (en) Cod analyzer
JP2001296305A (en) Sample solution automatic analyzing device and method
US20210033590A1 (en) Method for determining a chemical intake capacity of a process medium in a measuring point and measuring point for determining a chemical intake capacity of a process medium
US9316660B2 (en) Reagent preparation apparatus and specimen processing system
US5595635A (en) Apparatus for measuring lead content of water
EP3767286B1 (en) Sp3 substituted carbon electrode analysis
EP3635369B1 (en) Colorimetric analyzer with improved error detection
EP3472597B1 (en) A method for measuring the concentration of a chemical species using a reagent baseline
CN115290421B (en) Dilution apparatus and dilution method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

RD02 Notification of acceptance of power of attorney

Effective date: 20090611

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004