KR102258375B1 - Method of measuring for water soluble chlorine ion having improved precision - Google Patents

Method of measuring for water soluble chlorine ion having improved precision Download PDF

Info

Publication number
KR102258375B1
KR102258375B1 KR1020200075037A KR20200075037A KR102258375B1 KR 102258375 B1 KR102258375 B1 KR 102258375B1 KR 1020200075037 A KR1020200075037 A KR 1020200075037A KR 20200075037 A KR20200075037 A KR 20200075037A KR 102258375 B1 KR102258375 B1 KR 102258375B1
Authority
KR
South Korea
Prior art keywords
sample
measuring
water
salt
present
Prior art date
Application number
KR1020200075037A
Other languages
Korean (ko)
Inventor
이은진
박지원
한광현
엄재용
이정수
Original Assignee
대한민국(농촌진흥청장)
(주)테크넬
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장), (주)테크넬, 충북대학교 산학협력단 filed Critical 대한민국(농촌진흥청장)
Priority to KR1020200075037A priority Critical patent/KR102258375B1/en
Application granted granted Critical
Publication of KR102258375B1 publication Critical patent/KR102258375B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention relates to a method for measuring water-soluble chlorine ions with improved precision. In particular, the present invention relates to a method for measuring water-soluble chlorine ions, comprising steps of: S1) preparing a sample; S2) adjusting the pH of the sample to 2.8 to 3.2; S3) adding an anionic adsorption dye to the sample; S4) adding an excess of AgNO_3 to the sample and uniformly mixing them; S5) removing a salt of the mixed sample; and S6) taking a solution from which the salt is separated and measuring the absorbance. The method for measuring water-soluble chlorine ions according to the present invention is convenient to use in the field because the measuring method is simple while having high precision.

Description

정밀도가 향상된 수용성 염소이온 측정방법 {Method of measuring for water soluble chlorine ion having improved precision}{Method of measuring for water soluble chlorine ion having improved precision}

본 발명은 정밀도가 향상된 수용성 염소이온 측정방법에 관한 것으로, 특히 기존의 측정방법인 적정법이나 전기전도도를 이용하는 방법을 탈피하여 정밀성이 높으면서도 측정방법이 간단하여 현장에서 사용하기가 편리한 수용성 염소이온 측정방법에 관한 것이다.The present invention relates to a method of measuring water-soluble chloride ions with improved precision, and in particular, measuring water-soluble chloride ions that are convenient to use in the field due to high precision and simple measurement method by breaking away from the conventional method of titration or electrical conductivity. It's about the method.

이하에 기술되는 내용은 단순히 본 발명과 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.The contents described below merely provide background information related to the present invention and do not constitute the prior art.

기존에 수질 시료에 포함된 염소이온(Cl-)을 적정 및 정량하는 방법들에는 적정법이나 전기전도도를 이용하는 다양한 방법들이 실행되어 왔다.A chloride ion (Cl -) contained in the water sample to the existing methods of titration and the amount has been run using a variety of methods titration or conductivity.

일예로 대한민국특허 제10-1433228호에서는 토양 분석용 시료 또는 수질 분석용 시료의 pH를 조절하여 시료 내에 존재하는 인산 이온의 방해 없이, 염소 이온 또는 황산 이온의 침전에 따른 전기전도도의 변화량을 측정하여 염소 이온 또는 황산 이온의 농도를 결정할 수 있는 방법을 제공하고 있다.For example, in Korean Patent No. 10-1433228, by adjusting the pH of a sample for soil analysis or a sample for water quality analysis, the amount of change in electrical conductivity due to precipitation of chloride ions or sulfate ions is measured without interfering with phosphate ions present in the sample. It provides a method for determining the concentration of chlorine ions or sulfate ions.

또한 대한민국특허 제195594호에는 측정대상이온 및 이 측정대상이온과 동일한 이온값인 방해이온을 포함하는 시료용액중의 측정대상이온의 농도를 측정하는 이온농도 측정 장치로서, 상기 측정대상이온에 감응하여 전위를 출력하는 이온선택성 전극과; 각각이 상기 측정대상이온 및 방해이온을 포함하고, 그들의 농도가 각각 이미 알려진 제1표준액, 제2표준액 및 제3표준액에 상기 이온선택성 전극을 순차 접촉시키는 기구; 상기 제1, 제2 및 제3표준액과의 접촉에 의해 얻은 상기 이온선택성 전극의 출력전위에 기초하여, 상기 이온 선택성 전극의 선택계수를 연산하는 제1연산부; 상기 시료용액에 상기 이온 선택성 전극을 접촉시키는 기구; 상기 시료용액과의 접촉에 의해 얻은 상기 이온선택성 전극의 출력전위와 상기 선택계수를 이용하여, 상기 시료용액중의 측정대상이온의 농도를 연산하는 제2연산부를 구비한 이온농도 측정장치 및 그에 따른 측정방법이 제공되었다.In addition, Korean Patent No. 195594 discloses an ion concentration measuring device that measures the concentration of an ion to be measured in a sample solution containing an ion to be measured and an interfering ion having the same ion value as the ion to be measured. An ion-selective electrode for outputting an electric potential; A mechanism for sequentially contacting the ion-selective electrode with a first standard solution, a second standard solution, and a third standard solution, each of which contains the measurement target ions and the interfering ions, and their concentrations are known, respectively; A first calculation unit that calculates a selection coefficient of the ion-selective electrode based on the output potential of the ion-selective electrode obtained by contacting the first, second and third standard solutions; A mechanism for contacting the ion-selective electrode with the sample solution; An ion concentration measuring device having a second calculation unit for calculating the concentration of the ions to be measured in the sample solution using the output potential of the ion-selective electrode obtained by contact with the sample solution and the selection coefficient, and accordingly A method of measurement was provided.

또한 대한민국특허 제722888호에서는 2개 이상의 전극을 갖는 전기전도도 측정 셀을 공급되어 오는 시료와 차례로 접하도록 시료 측정 유로 중에 2개 직렬로 배치하고, 양 전기전도도 측정 셀로부터의 검출 신호 자신의 차분을 양 전기전도도 측정 셀의 위치 사이의 시료의 전기전도도의 차분으로서 출력하는 차전도도계를 가지고, 이 차전도도계의 출력으로부터, 미리 구해진 시료의 전기전도도의 변화분과 시료중의 검출 대상 이온 농도의 변화분과의 상관 관계에 의거하여 시료중의 이온 농도의 변화를 산출해 내도록 한 이온 농도 측정 장치가 제공되었다.In addition, in Korean Patent No. 722888, two electric conductivity measurement cells having two or more electrodes are arranged in series in the sample measurement flow path so as to sequentially contact the supplied sample, and the difference between detection signals from both electric conductivity measurement cells is determined. It has a differential conductivity meter that outputs as the difference in the electrical conductivity of the sample between the positions of the positive electrical conductivity measurement cells, and the change in the electrical conductivity of the sample obtained in advance from the output of the differential conductivity meter and the change in the concentration of the target ions in the sample An ion concentration measuring device was provided that calculated the change in the ion concentration in the sample based on the correlation with the component.

그러나 상기 전기전도도를 이용한 염소이온 측정방법들은 측정방법이 복잡하고 안정성이 떨어져 현장에 적용하기에 어려움이 있었으며, 이에 따라 정밀성이 높으면서도 측정방법이 간단하여 현장에서 사용하기가 편리한 수용성 염소이온 측정방법이 절실히 요청되고 있다.However, the chlorine ion measurement methods using the electrical conductivity were difficult to apply to the field due to the complex and poor stability of the measurement method, and thus, the water-soluble chloride ion measurement method that is convenient to use in the field due to high precision and simple measurement method. This is desperately requested.

본 발명이 이루고자 하는 기술적 과제는 종래의 문제점을 해결하기 위한 것으로, 정밀성이 높으면서도 측정방법이 간단하여 현장에서 사용하기가 편리한 수용성 염소이온 측정방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to solve the conventional problem, and it is to provide a water-soluble chloride ion measuring method that is convenient to use in the field due to high precision and a simple measurement method.

이러한 기술적 과제를 해결하기 위한 본 발명은The present invention for solving these technical problems

S1) 시료를 준비하는 단계;S1) preparing a sample;

S2) 상기 시료의 pH를 2.8 내지 3.2로 조정하는 단계;S2) adjusting the pH of the sample to 2.8 to 3.2;

S3) 상기 시료에 음이온성 흡착염료를 투입하는 단계;S3) adding an anionic adsorption dye to the sample;

S4) 상기 시료에 과량의 AgNO3를 첨가하고 균일하게 혼합하는 단계;S4) adding an excessive amount of AgNO 3 to the sample and mixing uniformly;

S5) 상기 혼합된 시료의 염을 제거하는 단계; 및S5) removing the salt of the mixed sample; And

S6) 염이 분리된 용액을 취해 흡광도를 측정하는 단계;S6) measuring the absorbance by taking the solution from which the salt was separated;

를 포함하는 수용성 염소이온 측정방법을 제공한다.It provides a water-soluble chloride ion measurement method comprising a.

바람직하기로 상기 음이온성 흡착염료는 Eosin Y 또는 Dichlorofluorescein이다.Preferably, the anionic adsorption dye is Eosin Y or Dichlorofluorescein.

구체적으로 상기 시료의 pH는 Acetic acid로 조정한다.Specifically, the pH of the sample is adjusted with Acetic acid.

구체적으로 시료에 포함된 염의 제거는 원심분리를 이용한다.Specifically, the salt contained in the sample is removed by centrifugation.

바람직하기로 상기 AgNO3의 양은 예상되는 염소이온 농도의 1.2 내지 2.0배의 당량비로 투입된다.Preferably, the amount of AgNO 3 is added in an equivalent ratio of 1.2 to 2.0 times the expected chlorine ion concentration.

본 발명에 따르면, 정밀성이 높으면서도 측정방법이 간단하여 현장에서 사용하기가 편리한 수용성 염소이온 측정방법을 제공할 수 있다.According to the present invention, it is possible to provide a water-soluble chloride ion measuring method that is convenient to use in the field due to high precision and simple measurement method.

도 1은 pH에 따른 Eosin Y의 흡수스펙트럼 변화를 나타낸 그래프이다.
도 2는 pH에 따른 Eosin Y의 안정성을 측정한 그래프이다.
도 3은 Ag+ 농도에 따른 시료의 안정성을 측정하여 나타낸 그래프이다.
도 4는 흡광도와 염소이온 농도와의 보정곡선을 나타낸 것이다.
1 is a graph showing changes in the absorption spectrum of Eosin Y according to pH.
2 is a graph measuring the stability of Eosin Y according to pH.
3 is a graph showing the measurement of the stability of a sample according to Ag + concentration.
4 shows a correction curve between absorbance and chloride ion concentration.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art may easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are attached to similar parts throughout the specification.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless specifically stated to the contrary.

본 발명의 정밀도가 향상된 수용성 염소이온 측정방법은 The water-soluble chloride ion measuring method with improved precision of the present invention

S1) 시료를 준비하는 단계;S1) preparing a sample;

S2) 상기 시료의 pH를 2.8 내지 3.2로 조정하는 단계;S2) adjusting the pH of the sample to 2.8 to 3.2;

S3) 상기 시료에 음이온성 흡착염료를 투입하는 단계;S3) adding an anionic adsorption dye to the sample;

S4) 상기 시료에 과량의 AgNO3를 첨가하고 균일하게 혼합하는 단계;S4) adding an excessive amount of AgNO 3 to the sample and mixing uniformly;

S5) 상기 혼합된 시료의 염을 제거하는 단계; 및S5) removing the salt of the mixed sample; And

S6) 염이 분리된 용액을 취해 흡광도를 측정하는 단계;S6) measuring the absorbance by taking the solution from which the salt was separated;

를 포함하는 것을 특징으로 한다.It characterized in that it comprises a.

이하 단계별로 상세히 설명한다.It will be described in detail step by step below.

S1) 시료를 준비하는 단계;S1) preparing a sample;

측정대상이 되는 시료를 준비한다. 공지의 시험관에 적정량의 시료를 넣어 준비할 수 있다.Prepare a sample to be measured. It can be prepared by putting an appropriate amount of sample in a known test tube.

S2) 상기 시료의 pH를 2.8 내지 3.2로 조정하는 단계;S2) adjusting the pH of the sample to 2.8 to 3.2;

본 발명에서는 시료의 pH를 2.8 내지 3.2로 조정한다. 바람직하기로는 상기 pH는 3.0이다. 시료의 pH가 상기 범위를 벗어나는 경우 흡착염료의 감도가 떨어지거나, 안정성이 떨어져 수용성 염소이온의 정밀한 측정이 어려워질 수 있다.In the present invention, the pH of the sample is adjusted to 2.8 to 3.2. Preferably, the pH is 3.0. If the pH of the sample is out of the above range, the sensitivity of the adsorbed dye may decrease or stability may decrease, making it difficult to accurately measure water-soluble chloride ions.

상기 pH의 조정은 약산을 사용하여 조절할 수 있으며, 구체적인 예로는 Acetic acid를 사용할 수 있다.The pH can be adjusted using a weak acid, and as a specific example, Acetic acid may be used.

S3) 상기 시료에 음이온성 흡착염료를 투입하는 단계;S3) adding an anionic adsorption dye to the sample;

본 발명에서는 음이온성 흡착염료가 적정 종말점에 도달하기 이전에는 (-) 표면전하 상태인 AgCl 염에 흡착하지 않으나, 종말점에서 잉여 Ag+가 AgCl 염에 생성됨으로써 흡착하게 되고, 이 때 색변화가 동반되는 성질을 이용한 것이다. 특히 음이온성 흡착염료와 염소이온이 공존하는 용액에 과량의 AgNO3용액을 첨가 혼합하면, 생성된(+) 표면전하 상태의 AgCl 염에 음이온성 염료가 정량적으로 흡착되고, 용액에 잔존하는 염료의 농도는 원심분리 혹은 필터링으로 염이 제거된 용액의 흡광도를 측정함으로써 정량하는 방법을 이용한 것이다.In the present invention, the anionic adsorption dye does not adsorb to the AgCl salt in the (-) surface charge state before reaching the appropriate end point, but the excess Ag + is adsorbed by being formed in the AgCl salt at the end point, and color change is accompanied at this time. It is to use the property that becomes. In particular, when an excessive amount of AgNO 3 solution is added to and mixed with a solution in which anionic adsorption dye and chlorine ion coexist, the anionic dye is quantitatively adsorbed to the AgCl salt in the (+) surface charge state, and the dye remaining in the solution The concentration is quantified by measuring the absorbance of the solution from which the salt has been removed by centrifugation or filtering.

바람직하기로 상기 음이온성 흡착염료는 Eosin Y 또는 Dichlorofluorescein을 이용할 수 있으며, 이 경우 수용성 염소이온 측정의 정밀성이 높으면서도 안정성이 높아 현장에서 사용하기가 편리하다.Preferably, Eosin Y or Dichlorofluorescein may be used as the anionic adsorption dye, and in this case, it is convenient to use in the field due to high precision and high stability of water-soluble chloride ion measurement.

S4) 상기 시료에 과량의 AgNOS4) Excess AgNO in the sample 33 를 첨가하고 균일하게 혼합하는 단계;Adding and mixing uniformly;

본 발명에서 투입되는 상기 AgNO3의 양은 예상되는 염소이온 농도의 1.2 내지 2.0배의 당량비로 투입되는 것이 좋다. 상기 범위 내인 경우 수용성 염소이온 측정의 정밀성이 높으면서도 안정성이 높다. The amount of AgNO 3 to be added in the present invention is preferably added in an equivalent ratio of 1.2 to 2.0 times the expected chlorine ion concentration. If it is within the above range, the water-soluble chloride ion measurement has high precision and stability.

S5) 상기 혼합된 시료의 염을 제거하는 단계; 및S5) removing the salt of the mixed sample; And

본 발명에서 상기 염의 제거는 공지의 방법들이 적용될 수 있다. 구체적인 예로 원심분리 또는 필터링이 적용될 수 있으며, 바람직하기로는 원심분리를 이용하는 것이다. 이 경우 수용성 염소이온 측정의 정밀성이 높으면서도 안정성이 높다.In the present invention, known methods may be applied to remove the salt. As a specific example, centrifugation or filtering may be applied, and centrifugation is preferably used. In this case, the accuracy of the measurement of water-soluble chloride ions is high and stability is high.

S6) 염이 분리된 용액을 취해 흡광도를 측정하는 단계;S6) measuring the absorbance by taking the solution from which the salt was separated;

본 발명에서는 구체적으로 파장 520 nm에서 흡광도를 측정할 수 있다.In the present invention, it is possible to measure absorbance at a wavelength of 520 nm in detail.

본 발명에 따른 정밀도가 향상된 수용성 염소이온 측정의 예는 다음과 같다.An example of measuring water-soluble chloride ions with improved precision according to the present invention is as follows.

(1) 시약 (1) reagent

- 염소이온 표준용액: 0, 30, 60, 120, 180, 240, 300 ppm Cl-이 되도록 제조하였다.-Chlorine ion standard solution: 0, 30, 60, 120, 180, 240, 300 ppm Cl - was prepared to be.

- pH 조절 용액: Acetic acid를 사용하여 반응 중 pH가 2.1, 2.5, 3.0, 4.0이 되도록 제조하였다.-pH adjustment solution: It was prepared so that the pH during the reaction was 2.1, 2.5, 3.0, 4.0 using Acetic acid.

- Eosin Y: 각 pH 조건에서 520 nm 흡광도가 약 1.2가 되도록 제조하였다.-Eosin Y: was prepared so that the absorbance at 520 nm was about 1.2 in each pH condition.

- AgNO3: 최대 염소이온 농도의 1.5배 수준으로 처리하였다.-AgNO 3 : Treated at the level of 1.5 times the maximum chlorine ion concentration.

(2) 방법(2) method

S1) 10 내지 300 ppm Cl-를 포함하는 표준용액 혹은 시료 1 mL를 시험관에 옮겼다.S1) 1 mL of a standard solution or sample containing 10 to 300 ppm Cl -was transferred to a test tube.

S2) 10 내지 2000 mM Acetic acid 2 mL를 첨가하였다.S2) 2 mL of 10 to 2000 mM Acetic acid was added.

S3) 100 내지 1000 uM Eosin Y 1 mL를 첨가하였다.S3) 100-1000 uM Eosin Y 1 mL was added.

S4) 용액을 섞은 후 20 내지 100 mM AgNO3 0.2mL를 첨가하고 균일하게 혼합하였다.S4) After mixing the solution, 0.2 mL of 20 to 100 mM AgNO 3 was added, and the mixture was uniformly mixed.

S5) 10000 g에서 1분간 원심분리하였다.S5) Centrifuged at 10000 g for 1 minute.

S6) 용액을 취해 파장 520 nm에서 흡광도를 측정하였다.S6) Take the solution and measure the absorbance at a wavelength of 520 nm.

pH에 따른 Eosin Y의 흡수스펙트럼 변화Changes in absorption spectrum of Eosin Y according to pH

도 1은 pH에 따른 Eosin Y의 흡수스펙트럼 변화(Eosin Y 농도는 60 uM으로 동일)를 나타낸 것이다. 도 1에 나타난 바와 같이 pH 4.0, 3.0, 2.5, 2.1에서 60 uM Eosin Y의 흡수 스펙트럼의 패턴은 동일하나, 흡광도 수준의 큰 차이가 있었다. pH 4.0에서의 흡광도가 제일 높았으며, pH가 낮아질수록 흡광도가 크게 감소하였다. 이는 보정 곡선의 감도가 pH에 크게 영향을 받을 것임을 의미한다. 1 shows the change in the absorption spectrum of Eosin Y according to pH (Eosin Y concentration is the same as 60 uM). As shown in FIG. 1, the absorption spectrum pattern of 60 uM Eosin Y at pH 4.0, 3.0, 2.5, and 2.1 was the same, but there was a large difference in absorbance level. The absorbance at pH 4.0 was the highest, and as the pH decreased, the absorbance decreased significantly. This means that the sensitivity of the calibration curve will be greatly affected by the pH.

pH에 따른 Eosin Y의 안정성Stability of Eosin Y according to pH

도 2는 pH에 따른 Eosin Y의 안정성을 나타낸 것이다. Eosin Y의 농도는 pH 4.0, 3.0, 2.5, 2.1 조건에서 흡광도가 1.2이 되도록 각각 24, 80, 200, 250 uM 로 조절되었으며, 오차막대는 표준오차로 나타낸다(n=3). 용액 중 Eosin Y의 흡광도는 pH 2.5, 3.0, 4.0에서 반응 후 60분까지 일정하면서 안정한 것으로 확인되었으나, pH 2.1에서는 시간이 경과함에 따라 감소하였다.Figure 2 shows the stability of Eosin Y according to the pH. The concentration of Eosin Y was adjusted to 24, 80, 200, 250 uM, respectively, so that the absorbance was 1.2 under the conditions of pH 4.0, 3.0, 2.5, and 2.1, and the error bars were indicated by standard error (n=3). The absorbance of Eosin Y in the solution was found to be constant and stable up to 60 minutes after reaction at pH 2.5, 3.0, and 4.0, but decreased with time at pH 2.1.

AgAg + + 농도에 따른 블랭크 시료의 안정성Stability of blank sample depending on concentration

도 3은 Ag+ 농도에 따른 블랭크 시료의 안정성을 나타낸 그래프이다. Eosin Y의 농도는 pH 4.0, 3.0, 2.5 조건에서 흡광도가 1.2이 되도록 각각 24, 80, 200 uM 로 조절되었으며, 오차막대는 표준오차로 나타낸다(n=3). Eosin Y 지시약과 AgNO3의 반응성 테스트 결과, pH 3.0에서는 105.78 mM AgNO3까지 안정된 흡광도가 유지되었으나, pH 2.5 및 4.0에서는 AgNO3 농도가 높아짐에 따라 흡광도가 증가 혹은 감소하는 정도가 매우 컸다. 이는 pH 3.0이 Ag+ 농도에 영향을 받지 않는 안정적인 보정곡선을 얻을 수 조건임을 나타낸다.3 is a graph showing the stability of a blank sample according to Ag + concentration. The concentration of Eosin Y was adjusted to 24, 80, and 200 uM, respectively, so that the absorbance was 1.2 under pH 4.0, 3.0, and 2.5 conditions, and the error bars were indicated as standard errors (n=3). As a result of the reactivity test between the Eosin Y indicator and AgNO 3 , stable absorbance was maintained up to 105.78 mM AgNO 3 at pH 3.0, but at pH 2.5 and 4.0, the degree of increase or decrease of the absorbance was very high as the AgNO 3 concentration increased. This indicates that pH 3.0 is a condition to obtain a stable calibration curve that is not affected by Ag + concentration.

염소이온 농도와의 보정곡선Calibration curve with chloride ion concentration

도 4는 흡광도와 염소이온 농도와의 보정곡선을 나타낸 것이다. pH 3.0 조건에서 Cl-표준용액을 3반복 분석하여 작성되었다. AgNO3의 농도는 반응 중 과량의 Ag+가 존재하도록 Cl-의 최대농도인 300 ppm의 1.5배(63.47 mM)로 조절되었다. 오차막대는 표준오차로 나타낸다(n=3).4 shows a correction curve between absorbance and chloride ion concentration. It was prepared by analyzing the Cl- standard solution 3 times under the condition of pH 3.0. The concentration of AgNO 3 was adjusted to 1.5 times (63.47 mM) of 300 ppm, the maximum concentration of Cl − , so that excessive Ag + was present during the reaction. Error bars are represented by standard error (n=3).

pH 3, 그리고 최대 염소농도의 1.5배 수준의 AgNO3를 사용하는 경우, 0 내지 300 ppm 농도 구간에 걸쳐 정량적이고 재현성 있는 보정곡선이 얻어짐을 확인할 수 있다. When using AgNO 3 at a pH of 3 and 1.5 times the maximum chlorine concentration, it can be seen that a quantitative and reproducible correction curve is obtained over a concentration range of 0 to 300 ppm.

상기 보정곡선은 반응직후와 반응 30분 후 간에 차이가 없이 안정적임을 보여준다.The calibration curve shows that there is no difference between immediately after the reaction and 30 minutes after the reaction, and is stable.

또한, 본 발명에서는, 시료의 수용성 염소이온의 농도를 흡광도에 따른 보정곡선을 적용하여 결정할 수 있으며, 본 발명에 따른 수용성 염소이온 측정방법은 정밀성이 높으면서도 측정방법이 간단하여 현장에서 사용하기가 편리하다.In addition, in the present invention, the concentration of the water-soluble chloride ion in the sample can be determined by applying a correction curve according to the absorbance, and the water-soluble chloride ion measurement method according to the present invention has high precision and is simple to use in the field. It is convenient.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (5)

S1) 시료를 준비하는 단계;
S2) 상기 시료의 pH를 2.8 내지 3.2로 조정하는 단계;
S3) 상기 시료에 음이온성 흡착염료를 투입하는 단계;
S4) 상기 시료에 과량의 AgNO3를 첨가하고 균일하게 혼합하는 단계;
S5) 상기 혼합된 시료의 염을 제거하는 단계; 및
S6) 염이 분리된 용액을 취해 흡광도를 측정하는 단계;
를 포함하며,
상기 음이온성 흡착염료는 Eosin Y 또는 Dichlorofluorescein인 것을 특징으
로 하는 수용성 염소이온 측정방법.
S1) preparing a sample;
S2) adjusting the pH of the sample to 2.8 to 3.2;
S3) adding an anionic adsorption dye to the sample;
S4) adding an excessive amount of AgNO3 to the sample and mixing uniformly;
S5) removing the salt of the mixed sample; And
S6) measuring the absorbance by taking the solution from which the salt was separated;
Including,
The anionic adsorption dye is characterized in that Eosin Y or Dichlorofluorescein
Water-soluble chloride ion measurement method.
삭제delete 제1항에 있어서,
상기 시료의 pH는 Acetic acid로 조정하는 것을 특징으로 하는 수용성 염소이온 측정방법.
The method of claim 1,
Water-soluble chloride ion measuring method, characterized in that the pH of the sample is adjusted with Acetic acid.
제1항에 있어서,
시료에 포함된 염의 제거는 원심분리를 이용하는 것을 특징으로 하는 수용성 염소이온 측정방법.
The method of claim 1,
Water-soluble chloride ion measurement method, characterized in that the removal of the salt contained in the sample using centrifugation.
제1항에 있어서,
상기 AgNO3의 양은 예상되는 염소이온 농도의 1.2 내지 2.0배의 당량비로 투입되는 것을 특징으로 하는 수용성 염소이온 측정방법.
The method of claim 1,
The amount of AgNO 3 is a water-soluble chloride ion measuring method, characterized in that added in an equivalent ratio of 1.2 to 2.0 times the expected chloride ion concentration.
KR1020200075037A 2020-06-19 2020-06-19 Method of measuring for water soluble chlorine ion having improved precision KR102258375B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200075037A KR102258375B1 (en) 2020-06-19 2020-06-19 Method of measuring for water soluble chlorine ion having improved precision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200075037A KR102258375B1 (en) 2020-06-19 2020-06-19 Method of measuring for water soluble chlorine ion having improved precision

Publications (1)

Publication Number Publication Date
KR102258375B1 true KR102258375B1 (en) 2021-05-31

Family

ID=76149951

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200075037A KR102258375B1 (en) 2020-06-19 2020-06-19 Method of measuring for water soluble chlorine ion having improved precision

Country Status (1)

Country Link
KR (1) KR102258375B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200461582Y1 (en) * 2011-12-13 2012-07-24 이진우 Magnetized water pipe
JP2017032502A (en) * 2015-08-05 2017-02-09 東亜ディーケーケー株式会社 Residual chlorine measurement system and program
KR20200017660A (en) * 2018-08-09 2020-02-19 (주)테크넬 Method and Device for analyzing inorganic ion concentration in sample
KR102089831B1 (en) * 2013-10-16 2020-03-16 미츠비시 쥬코 엔지니아링구 가부시키가이샤 Wastewater treatment method and wastewater treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200461582Y1 (en) * 2011-12-13 2012-07-24 이진우 Magnetized water pipe
KR102089831B1 (en) * 2013-10-16 2020-03-16 미츠비시 쥬코 엔지니아링구 가부시키가이샤 Wastewater treatment method and wastewater treatment apparatus
JP2017032502A (en) * 2015-08-05 2017-02-09 東亜ディーケーケー株式会社 Residual chlorine measurement system and program
KR20200017660A (en) * 2018-08-09 2020-02-19 (주)테크넬 Method and Device for analyzing inorganic ion concentration in sample

Similar Documents

Publication Publication Date Title
Morelli Determination of iron (III) and copper (II) by zeroth, first and second derivative spectrophotometry with 2-thiobarbituric acid (4, 6-dihydroxy-2-mercaptopyrimidine) as reagent
West et al. A new method for the determination of nitrates
AU2001247614B2 (en) Lithium ion-selective electrode for clinical applications
Soda et al. Protamine/heparin optical nanosensors based on solvatochromism
D'Orazio et al. Accuracy of commercial blood gas analyzers for monitoring ionized calcium at low concentrations
AU2001247614A1 (en) Lithium ion-selective electrode for clinical applications
KR102258375B1 (en) Method of measuring for water soluble chlorine ion having improved precision
Wise et al. Direct potentiometric measurement of potassium in blood serum with liquid ion-exchange electrode
Young et al. Simultaneous spectrophotometric determination of calcium and magnesium
Afkhami et al. Simultaneous kinetic-spectrophotometric determination of periodate–bromate and iodate–bromate mixtures using the H-point standard addition method
CN108802083A (en) A kind of method of sulphur, chlorinity in measurement triphenylphosphine
Garcia et al. Determination of iron at ng/ml level by solid phase spectrophotometry after preconcentration on cation exchange filters
Gumbi et al. Direct spectrophotometric detection of the endpoint in metachromatic titration of polydiallyldimethylammonium chloride in water
Idriss et al. Determination of strontium and simultaneous determination of strontium oxide, magnesium oxide and calcium oxide content of Portland cement by derivative ratio spectrophotometry
Ingols et al. Determination of Fluoride Ion with Ferric Thiocyanate
Jaselskis et al. Polarographic determination of perbromate in the presence of bromate
Khorshid New analysis for itopride hydrochloride utilizing chemically modified carbon paste sensor in ganaton, garopride, bulk, human urine/plasma
Spichiger-Keller et al. Optical quantification of sodium, potassium, and calcium ions in diluted human plasma based on ion-selective liquid membranes
Saranchina et al. A simple method for colorimetric and naked-eye detection of mercury in fish products
Bairstow et al. The photometric determination of dissolved oxygen in condensates and feed waters by means of the starch-iodide complex
EP0506922B1 (en) Indirect potentiometric method and diluent for analysis of lithium
Smith et al. An evaluation of the ICA1 ionized calcium analyzer in a clinical chemistry laboratory
US5110742A (en) Indirect potentiometric method and diluent for analysis of lithium
JPS5991367A (en) Highly sensitive analysis of phosphate ion
Zhang et al. Simultaneous determination of micro bromide and iodide by kinetic spectrophotometric method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant